Open Access
2003 Lipschitz stability in the lateral Cauchy problem for elasticity system
Jin Cheng, Victor Isakov, Masahiro Yamamoto, Qi Zhou
J. Math. Kyoto Univ. 43(3): 475-501 (2003). DOI: 10.1215/kjm/1250283691

Abstract

We consider the isotropic elasticity system: \[ \begin{array}{cclcc} \rho \partial _{t}^{2}\mathbf{u}&-&\mu (\Delta\mathbf{u}+\nabla (\nabla ^{T}\mathbf{u})-\nabla (\lambda\nabla ^{T}\mathbf{u})&&\\ &-&\sum _{j=1}^{3}\nabla\mu\cdot (\nabla u_{j}+\partial _{j}\mathbf{u})\mathbf{e}_{j}=0 &\text{in}& \Omega\times (0,T) \end{array} \] for the displacement vector $\mathbf{u} = (u_{1}, u_{2}, u_{3})$ depending on $x \in \Omega$ and $t \in (0, T)$ where $\Omega$ is a bounded domain in $\mathbb{R}^{3}$ with the $C^{2}$-boundary, and we assume the density $\rho \in C^{2}(\Bar{\Omega}\times[0, T])$ and the Lamé parameters $\mu , \lambda \in C^{3}(\Bar{\Omega}\times[0, T])$. We will give Lipschitz stability estimates for solutions $\mathbf{u}$ to the above elasticity system with the lateral boundary data \[ \begin{array}{cc} \mathbf{u} = \mathbf{g} \textrm{ on } \partial\Omega\times (0, T),& \partial _{\nu}\mathbf{u} = \mathbf{h} \textrm{ on } \Gamma \times (0, T) \end{array} \] where $\Gamma$ is some part of $\partial\Omega$. Our proof is based on (1) a Carleman estimate with boundary data, (2) cut-off technique, and (3) principal diagonalization of the Lamé system.

Citation

Download Citation

Jin Cheng. Victor Isakov. Masahiro Yamamoto. Qi Zhou. "Lipschitz stability in the lateral Cauchy problem for elasticity system." J. Math. Kyoto Univ. 43 (3) 475 - 501, 2003. https://doi.org/10.1215/kjm/1250283691

Information

Published: 2003
First available in Project Euclid: 14 August 2009

zbMATH: 1067.35142
MathSciNet: MR2028663
Digital Object Identifier: 10.1215/kjm/1250283691

Subjects:
Primary: 35Q72
Secondary: 35B35 , 74H55

Rights: Copyright © 2003 Kyoto University

Vol.43 • No. 3 • 2003
Back to Top