Abstract
We consider the isotropic elasticity system: \[ \begin{array}{cclcc} \rho \partial _{t}^{2}\mathbf{u}&-&\mu (\Delta\mathbf{u}+\nabla (\nabla ^{T}\mathbf{u})-\nabla (\lambda\nabla ^{T}\mathbf{u})&&\\ &-&\sum _{j=1}^{3}\nabla\mu\cdot (\nabla u_{j}+\partial _{j}\mathbf{u})\mathbf{e}_{j}=0 &\text{in}& \Omega\times (0,T) \end{array} \] for the displacement vector $\mathbf{u} = (u_{1}, u_{2}, u_{3})$ depending on $x \in \Omega$ and $t \in (0, T)$ where $\Omega$ is a bounded domain in $\mathbb{R}^{3}$ with the $C^{2}$-boundary, and we assume the density $\rho \in C^{2}(\Bar{\Omega}\times[0, T])$ and the Lamé parameters $\mu , \lambda \in C^{3}(\Bar{\Omega}\times[0, T])$. We will give Lipschitz stability estimates for solutions $\mathbf{u}$ to the above elasticity system with the lateral boundary data \[ \begin{array}{cc} \mathbf{u} = \mathbf{g} \textrm{ on } \partial\Omega\times (0, T),& \partial _{\nu}\mathbf{u} = \mathbf{h} \textrm{ on } \Gamma \times (0, T) \end{array} \] where $\Gamma$ is some part of $\partial\Omega$. Our proof is based on (1) a Carleman estimate with boundary data, (2) cut-off technique, and (3) principal diagonalization of the Lamé system.
Citation
Jin Cheng. Victor Isakov. Masahiro Yamamoto. Qi Zhou. "Lipschitz stability in the lateral Cauchy problem for elasticity system." J. Math. Kyoto Univ. 43 (3) 475 - 501, 2003. https://doi.org/10.1215/kjm/1250283691
Information