
CLASSIFICATION OF RIEMANN SURFACES

By Mitsuru OZAWA

§1. Introduction.

Does there exist a function harmo-
nic or analytic and satisfying a pre-
scribed condition on a given Riemann
surface? This question is a princi-
pal leading idea in the recent func-
tion-theory, especially in the theory
of classification, and it leads us
to the various deep and important
results as well as new notions.
Moreover it brings to the various ex-
tremal problems to be solved. In
this tendency several authors above
all Finnish colleagues have contri-
buted to the theory* Although this
theory is gained in a great success,
there remain many important and un-
solved problems*

In the present paper we shall ex-
plain a method to classify the Riemann
surface. It is directed by the fol-
lowing leading idea: Under what con-
ditions does there exist a solution
of a partial differential equation
of elliptic type Δu, =Pu, on a
given Riemann surface? Although we
have succeeded to establish a classi-
fication theory to a certain extent,
there remain many problems unsolved,
and we have found yet no application
to the function-theory.

vVe first give a more precise expla-
nation on our Riemann surface and
differential equation to be consider-
ed*

Riemann surface F means here the
one in the sense of Weyl-Radό* Its
ideal boundary is denoted by ["* ,
and we restrict ourselves to the
Riemann surface oί infinite genus
save when the contrary is explicitly
mentioned*

Differential equation considered
here is the following type:

(A)~
z

tux,

where £ =c x + i ̂ is a local unifor-

mizing parameter at a point f> on

F f P(
χ
/ 3-) is a real holomor-

phic function of («,, %-) being po-
sitive except at a countable set of

zero-points with accumulation points
lying only on the ideal boundary Γ* «
We assume moreover that ii we change
the local parameter *Z to Z' , then
p (z) changes as follows:

Iz

For this type of differential equa-
tion (A) we can prove the existence
of the so-called kernel function and
Green functions under various boundary
conditions, for instance, the Green
function with ordinary, i.e. vanishing
boundary values or the Neumann func-
tion, i.βo the one with vanishing
normal derivative along the boundary,
and also the solvability oί the first
boundary value problem. Moreover the
maximum or minimum principle and
Harnack's convergence theorem are
valid with a slight modification.
These facts will be shortly explained
but the precise proofs will be omitted
off* For the precise formulations
one can refer to the S.Bergman's book
ClJ and S Bergman-M.Schiffer [1,2]

 o

For other* ways of formulations cf
R.Courant-DoHilbert [1], E.Picard
[1,2], L Lichtenstein [1,2J , R

β

Nevanlinna [1] and D*Hilbert [1].

§ 2. Definitions and General
Considerations*

exhaustion of F
sense, that is,

l
' *-> ••• be an
in the ordinary

i) Fn is a compact connected
analytic subregion of F , that is,
F

n
 is connected and the closure of

F* $ F\«, say, is compact and its
boundary consists of a finite number
oX' simple closed analytic curves

rre-ι. ••«) . r.-g Γ Γ
Especially F

o
 ^

s
 supposed to be a

simply-connected compact analytic
subregion of F >

ii)

iii) F.
Definition 2

O
1, Dirichlet integral

D(α) and mixed Dirichlet integral



By the Qreen's formula, we see that
if Δ u = Pii , then P

F
 U,ir) = J

r
v|f As

for any v , where 'a/av denotes the
differentiation in the direction of
outer normal.

Definition 2.2. If α is a solu-
tion of (A) and satisfy D

F
 (u) < oo

 f

then we call
 U

e CCE^) «

Obviously L t F
ft
) forms a real

Hubert space with respect to the
inner product

Definition 2,3. Kernel function
K n U ' Xo) of U'CF*) : If K ^ * * )
€ L*(F») n a s the^ reproducing
property for any L (FV) -integra-
ble solution u, of (A) :

the repro-then we call K n(
z/ Z ^

due ing kernel function of

We explain here the existence of
K* (*, *.'•) According to N
Aronszajn [1] , in a locally uniform-
ly bounded Hubert space, there exists
one and only one reproducing kernel
function K * (*,*<,) of L*lR>) >
and hence we have only to prove the
locally uniformly boundedness. Since
Riemann surface is of locally Eucli-
dean character, we may discuss the
problem in a Euclidean small disc
Let u U) be an arbitrary solution
of (A) with "DF I*) < H , then
Δ(u*) £ 0 *. In fact, we have

Let B R Λ denote a ring domain

bounded by C» ( l*-* l
 β
 & )

 a n d
 Ct

(\-r. T \- 9 *Z- c ̂  then
we have

έ 0.

Letting

ZiίfL 1

tend to zero, we have

Si*

and integrating with respect to K-
from f to fL , o < Y < R. ,we
have

f I0 B
n,t

where

*

?<« and ?. >o

in view of the isolatedness of the
zero-points of P(x,) Thus
is locally uniformly bounded, what
leads to the existence of K»(2,«»)

Definition 2»4. Green function
of (A). Green function &*(*. *o)
(the ordinary one) is a fundamental
solution of (A) in F^ and fa, l*,*

0
)

so on ΓV , that is, Δ^ «f«^
for x(*z

0
) 6 F* and ^(z, z

β
)

-Aί^^XgJiiΛc-ad) is a holomor-
phic solution or (A) where A (z,Z )
is also a holomorphic function satis-
fying Lm,

τ
+
Zo
hl*,z*) « 1 , and more-

over J, e o on Π
Λ

Once the existence of the kernel
function and a fundamental solution
having been established, we obtain
the existence and the expression of
Green function in the following way:
Let S t*,

 x
 > and K

n
 (fc, *<>) be

a fundamental solution and the kernel
function in F\* , respectively. If
we put r(io

<
w)=ή

?ft
(K

t
(ϊ,z.),δ(ί

 /
w))

;

then we see that

S (z, w) - <r (x, w)

is the desired Green function, a fact
following from the consideration of
uniqueness of J'* which is easily
proved from the assumption. For the
existence of a fundamental solution
of (A) one can refer to' the Hubert

1
3

book [X\ and E.Holmgren [1] .

Obviously we have an inequality

I frkfcv-—*.«•«.«.> I s Ji |*-«,ι,

and, by means of the Green's formula,
the Poisson integral representation

f
-

Γ
where α(x«) 6 L ί F*)

 #
 Thus we

can conclude that the so-called
Harnack's convergence theorem remains
valid in a slight modified form in
our case.
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Definition a.s. Neumann function
of (A). Neumann function M* (*.*«)
is a fundamental solution of (Λ) in

and so on Γ̂ ,
 #

The existence of l\|n (x, xβ) is
easily proved. Furthermore, its ex-
plicit expression is given by

For our kernel function
we have

ii) If * ί m , then

iii) lί'i%W) , v«t,2,

is a complete orthonorinal system in

L*F> a

These facts are obtained in more
abstract way in the Hubert space
with a reproducing kernel function;
cf N.Aronszajn [1] . Especially
in our case we have

iv) K
n
 (*>*.) Z 0 .

This is proved by S.Bergman-M.Schif~
fer [1] .

Here we shall explain two lemmata
of which we shall often make use in
later.

Lemma 2
O
1. If u and V are two

solutions of (A) and u £ v on p*
then \K-ZV on F^ . '

Proof. Let

set satisfying Ϋ < O
connecteα component

F

» u - v , then
Let P be a point-
Ϋ , then a

of P is a
P = 03ubregion of F*. and *

 n

Now "Ϋ is superharmonic on Pi
and hence 0 > 1Ί* >2$t *<*> - $ Y
where (̂ i) is the boundary of Ό\, .
Thus D

t
 and hence P also is an

empty set Therefore *γ(z) ~£ 0 on
F

u
 q.β d

Lemma <ί.2 If w, and V satisfy
the equation Δ u « 0 and Δυ s p v *
respectively, and u ^ v ϊ 0 on

P^ , then vi XV on F*

Proof. By Lemma ϋ l , we have irgo
on F«. , and hence if we put y=u-v*,
then ψ is superharmonic on F*v and

£ 0 on Γ Λ . Therefore we
have ψ i o on' p Λ and hence
u * tr on F«

To solve the first boundary value
problem, we can also make use of the
so-called Schwarz's alternating pro-
cess and the method of successive
approximation used by E.Pipard [1,2].
Or more directly we can prove the
solvability and expression named
Poissoπ integral formula by making
use of the kernel function or Green
function. And the uniqueness of the
solution can be deduced by Lemma 2,1.

The following Lemma is a precision
of Lemma 2.^.

Lemma 2 3
#
 Let u be a solution

of (A) on F̂v satisfying u » t on
Γ

Λ
 , then 0 ̂ u ^ 1 in F»

the right hand inequality being of
the strict sense, that is, the equality
sign being excluded,*

Proof. By Lemma 2.2, O ̂
is obtained* If ttU>

β
)~ i

a point z
β
 € F«* ., Φ Π* , then

for

2M_

«x
β

s
 a^

o
 « © and

On the other hand dα(* ) - P<* )
and thus we have P(*β) « o
Hence u(%) ̂  1 for any point
x e F* such that ?(*) > o
By the isolatedness of the zero-points
of P(2) , we have P(») ̂  0
for o< \z -2

β
l * E , where ε

is a sufficiently small positive num-
ber. Thus, for such a point Z ,
•w-lfc) % i . O n the other hand,

the subharmonicity of «-(%) im-
plies that

Hence i = u (z
o
y $ 1

 #
 which

is absurd. Thus we have the desired
result„

Definition 2.6. Let oo
n
(z, T«,,

Pi - F
β
 ) be the finite solution

of (A) in F* - F
β
 , being iden-

tically 1 on XT* and 0 on Γ^

Definition 2.7. Let £hΛ
%
> ^ / Pn.)

be the finite solution of (A) in F^
and be identically 1 on t"Vt «.

By Lemma 2.1, we have, for *«2*

lϊ ω
w
fe, Π., F.-F.) 2 ω

m
 (pt, Γ», F-- F.)

2 0,

and hence the limit



exists. Similarly, there exists

Derinltion 2.8. F ^ 0
ω
 means

that co(x. Γ, F-F ) β O

Definition 2.9. F * ° Λ means

that Λ (z, Γ, F ) « O

That these classes are determined
independ of a special choise of F\
and the process of exhaustion, can
be proved analogously to the harmonic
case.

Definition tf lO If there is no
non-constant bounded solution of (A)
on P , then we call p* € O^

Definition 2.11. If there is no
non-constant solution of (A) on F ,
having finite Dirichlet integral
T>F (u ) > then we write F6 0 D

Prom Lemma 2.1, we have for **ι S

and hence the limiting function

ί
Definition 2.12. (a) If there is

a point z * F , * +
 %
o , such

that J- (*̂  *β ) = °° for a fixed
point z

0
 β F , then we write

Γ e Oq.
(
z

β
)

(b) F £ 0 q- means that there
is at least one point *o , such
that F 6 O(χiz

0
) namely, F^O

means that there is no point z-
o
 ,

such that p" 6 O

§3. , 0
ω
 , 0

B

and

Since K
n
 (

z
o

;
 *•) is non-nega-

tive ana decreases as n increases,
the limit i*-̂  K^ l**,**) « K (*•,*•) £ o
exists.

Definition 2.13. F 6 0
K
 means

that K. (z,z) Ξ o for any point

It is to be noticed that there is
no constant solution of (A) except
the vanishing one.

We shall often make use of also
fcne quantities and definitions with
respect to the harmonic case. To
avoid the confusion we shall distin-
guish the harmonic case by the upper
index <*' , for example, harmonic
measure is denoted by cu

(
*
)
 , Green

function of ΛU. = 0 is denoted
by <j_C*>

 9
 etc.

In this section we shall prove
that

Theorem 3.1. If F έ 0 ^
 t

 then
F € 0 B > and vice versa.

Proof. If VL(Z) is a bounded
solution of (A) vanishing not identi-
cally, then, by Lemma 2.1,

where K β S t t
P

Letting u tend to oo , we have

If F6 O Λ , then Ω.U.Γ, F)
and therefore u(Z) is identically
zero. This contradicts α(x) φ O

 #

Conversely, if we assume
then Λ,U, Γ, F ) is a bounded
solution of (A) and φ 0 .

Theorem 3.2. If IF € 0^. 9 then
F € Ou, .

Proof. In order to prove the
theorem, we need some lemmata:

Lemma 3.1.

Lemma 3.2.

Lemma 3.3.

Proof of Ler imata 3.1 and 3.2. βy
she Lemma 2.2, we have

and

from which we obtain the desired re-
sult.

Lemma 3.3 is a well-known result.

Thus we have OL C 0^. » 0* C Qo
q.e.d. ***

By Lemma 3.2, we deduce the follow-
ing property: If the boundary of
contains a continuum, then F φ OQ.

Remark. The Definition 2.12 (a)
is very artificial in the sense that
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the fact Pφ 0<τ(z0) may depend upon
the choice of the point . z<» ̂
In the harmonic case, F* 4 f̂r(*<o i s

equivalent to F $ 0$? > b u t i n C U Γ

case" we can not yet conclude whether
F*ί 0Q 0COJ is equivalent to
F $ Oή- or not. Here we shall

explain a sufficient condition in
order that F $ O$.(cc > implies

F $ O

I f

plies

£!.(*) ε > O
then F

for all points

0 $.(*•) Im-

Proof, Let Γo surround a compact
connected analytic subregion F* ,
such that z o, Z-ό e F« . Then we
can choose two points fv , fC
on P

o
 , such that

Proof oi Lemma 3.4. βy Green's
formula, we have

If 0 j> and k b £X , t h e n
—» 0 , and hence "a^-m/dy -"*• o

^ Γ . W e may assume t h a t Λ ^ C ^
O and £ l ( z « ) 4 0 > and t h u s
(.?**• χ 0 ) —^ oβ o Therefore

J \ — ΛO f o r a

Proof or Lemma 3.5. Let φ \
then X ̂  1 is evident, and thus
we shall prove X Ξ i . For ze fr̂
we shall consider the function
J

Λ
U) = n»U/F ) SjfβU, F) -Λ(*, F)

then Δf*(») = ? J* (») i
%or z e F

-
and Ϊ^C*)^ 0 on Γ

Λ
 . Therefore,

from Lemma 2.1, we have % (*> ̂  o
on Kt , and hence

a n d

— \ 3- CO [%) AS

U

because, by Green's formula, we have

Thus we have

on Letting

from which λ Z i . .̂« <i'

Since Λ ( Ϊ , F ) is a bounded
non-negative solution of (A) on F ,
we have

from which we get the desired result*

Theorem 3.3. If F 6 0
Λ t

 then
F

1
 ̂  0

ω
 and vice versa.

Proof. Necessity. By Lemma 2«1,
we have

,F.-FJ , *« Γ -F.,

thus, by n -> » , we conclude the
necessity.

In order to prove the sufficiency,
we need some preparatory lemmata.

O a andLemma 3.4. If
6 0 ω , then

Lemma 3.5. If

s*f Λ(», F) -i
A)

Lemma 3.6. If F e 0^, , then

0
Λ

# then

where R̂  is an arbitrary compact
analytic subregion of F

Proof of Lemma 3.6« Suppose that
F"

1
 does not^elong to 0 ^ , but
ngs to 0 then we hbelongs to 0

Lemma 3.5, -.
sp* Λ(sup

a'nd F-F.

for z* Fi - F

on
Thus

hand,

sup

, then we have, by

, then Δf^ C»)
hence S α f , <x ( χ )

Γ" ^Γ
. On the* o t h e r

on
, but

^ ^ and
o on

nU, F J ,
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Letting n

i C

ana
z, F)

eft),

r;
Considering our Γirst assumptions,
we have

1 < β-f *Ω («, F) ,

which contradicts Lemma 2.3 and the
monotone decreasing property of
^n(z> F) , that is, 0 4 IVj*, RO
^ 1 and, for m fc Ή. ,

w
( * , F O % &*(*,fs») and hence

supΛU p ) ^ ! , which is absurd,

q.e.d

Sufficiency proof of Theorem 3.3.
Suppose that F̂  € 0 to and
F^ O Λ , then by Lemma 3.4
F* € O Δ and,hence

y
 by Lemmata 3 2

and 3.37 F 6 O™ .

Thus F £ 0,0, by Lemma 3.6,
which is a contradiction, q.e d*

§ 4* Subregions and Oβ

Let G be a non-compact conπBcteύ
sHibregion, and its relative boundary
C consist of a finite number of

analytic curves. Supposing that
{ PV )> ̂ ~o,t, ... is an exhaus-
tion of p , we introduce the nota-
tions: Q^ «. F«.

 π
 & > ί«

a
 F r>Sr

LetDefinition 4.1.
Λttl*. <J n) and ω« (».&«) be

the solutions of (A) on (Ĵ
 r
 sra-

tisfying the following boundary con-
ditions:

w L,

*%

and

«s pβct i ve iy.

Evidently we nave Ώ.*(*/&•*)
+ (oί(*;^) , and, from Lemma 2.1,
we have the following moΛotoaβity:
i'or rx ̂  ̂  ,

and

Hence, from the uniform boundedness
of these quantities, the limits

.= ω (z,

and

exist, and moreover we have Xl(*, G )

Definition 4«2. <ϊ ̂  S θ w means
that co (x^ Q ) m o

Evidently G ^ S O ω i s equivalent
to Λ(«.(5 ) * tt/ζt, <Sr)

If %(fc) is a bounded non-
^coίistant solution of (A)# being con-
f̂cinuous on ^ t C end α(») « ft

4«const.) on ^ , then «β gat

where M-§pl *W-*&(*'<?> t
This is easily verified by means of
Lemma 2,1 for Gr*, . Let *ι
tend to oo

If ω ( χ , 5 ) Ξ O , then
= £*ίL(x, G ) . Even if eo(z, G ) β 6 .
there is at least a bounded non-
constant solution u(fc) of (A),
satisfying the condition «-(*) «
const.(4 o) on C » but, indeed,
essentially only one, that is,
«Q(fc, Q) . If co(x,(τ) + 0 ,
then there is at least two bounded
non-constant solutions *•(.*) of
(A), satisfying the condition α(*) -
const, (t °) on C , and being
linearly independent, for example,

& J 2 > C x , < 3 ) and ί£LL*,Gr)
+ Π CA> ( a , GΓ )

Theorem 4.1. G- € SOco is
equivalent that there is only one
linearly independent solution Ώ^iZyQ )
of (A) bounded non-constant in G
and satisfying the condition ifl(*/0r)
5= I on C £r€ SOco is equi-
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valent that there is no bounded non-
constant solution of (A) vanishing
identically on C

Theorem 4.^. In order to F 6 0
B

it is necessary and sufficient that
there is at least a non-compact con-
nected subregion Q- which does not
belong to 50*,

Proof. Sufficiency. Let u
n
 (*)

be a finite solution of (A) on p ^
such that

Γ. 0* ^ ,

on Πι - In

then 0 •£

Lemma 2.1
O

V , by

tt
Λ
 (*) being uniformly bounded,

we can select a subsequence ί
1
**^**}

of \ u^ (z) J which converges to
a bounded solution u,(z) of (A)
on G- . For the sake of simplicity
we shall retain the original suffices.

By Lemma 2.1, we have
o n
 Qa Let n tend to oo

 f

we have tt(*)* ω(*, G-) . By the as-
sumption & 4 S 0

w
 , cυCx, <J)φ o .

Hence there exists a point z
0
 on

<χ , at whl ch ω c*
o
 , G ) > O

Thus u(fc ) >• O . Hence u.(z) % o
and is not constant.

Necessity. By the definition of
F φ Og , there is a bounded

non-constant solution t»-C*) of
(A) on F* « Then there exists a
point x

β
 on IT at which ΊΛ(*

6
) Φ O

 β

(a) If \l(z*) > 0 , then we take

GJ as the point-set on which

> t*)

(b) If u(*
β
) < o , then we take

Q- as the point-set on which

We shall treat here only the case (a),
since the case (b) is similar.

If Q has a compact connected
component G>> , <*• (x) is sub-
harmonic in GΓV , thus by Lemma
2.1 Suf u(«) • ̂ f u(α) > O , where

C
v
 is the boundary of

the other hand S«φ u(z) =
On

which is absurd. Thus Q- must have
a non-compact connected subregion.
Obviously we have α(x) % <*,(*•)•
iQ.f̂ ir) on Q- , and tι(%) is a
bounded solution of (A) on Q- , with
constant boundary value α(

2
o) on

C
q.e.d.

By Theorem 4.1, SOt

Theorem 4.3
<>
 (i) If §• is a

connected subregion of F* , having
Jordan relative boundary CL , and
it(fe) is a solution of (A) con-

tinuous on (Jt C Suppose that

P 6 O 3 and u(*) is boun-
ded, non-negative and non-constant
on Gr , then the maximum principle
holds, that is,

{ίί} If tL(x) is non-posi-
tive and the above assumptions remain
valid, then the minimum principle
holds, that is,

X»J 14.

C
(Jt) ,

Proof. We shall prove the first

part of the theorem, as remaining

part can be proved similarly.

If Q is a compact subregion, the
theorem is evident. Thus we shall
confine ourselves to a non-compact
subregion. If we suppose that s«*p u-lz)

+ sαp u(fc)
 f

 then there is a positive

number ML , such that

0 1 Sif tx(x) < Π < s«
C

Let H be a point-set on which
llta) > H holds, and H

v
 be a

connected component of H . Hμ
is a connected subregion with a non-
compact closure* This fact is shown
by Lemma 2.1. Now «.(*) > ϊΛ in

Hy and φ M.Ai(a, H
w
) , since

KΛ(^H
V
) < Π in H

v
 .

Hence, by Theorβn 4.1, ω(z, H) *? O
By Theorem 4.2, F φ O

θ
 , which

is absurd.

Theorem 4
T
3

f
. If p - (r is com-

pact, then the converse of the Theorem
4.3 holds.

Proof. Let tt (a) be a boundeα
non-negative solution of \A) on F
If we suppose Slip α(fc) * s*f «.(*.) ,

then **f ^C«) is attained on

C • Thus itU)
 y

 as a function

defined on F
1
 , has its maximum on

P - Gc . This is contradictory.

Thus u(ίt) s O , that is, F € Og .

Theorem 4.4. Let ir be a non-
compact connected subregion, having
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a Jordan relative boundary C Then
Gc $ SOα> is a necessary and

sufficient condition in order that
the maximum principle does not hold
on <J .

Proof. Sufficiency was already
proved in the Theorem 4.3.

Necessity. Suppose that fr φ 5 0 ^
and the maximum principle holds. Then
CJ (*, Gr) is a bounded non-con-

stant solution of (A) on Q- . Thus

0- ' C *° *'

and hence ω(3,(τ)sθ on Q- ,

which is absurd«

§5. Subregions, Op and Oχ .

onto in the sense of (A) is that

Theorem 5.1
0

0* .

'Proof, We f i r s t show that O κ

—* Op . Suppose that F ^ Op ,
then there i s a function £(*)
' T * / C M and J # O . Let

•I"
then we nay assume that *(

2
©) + o

where %
0
 is a fixed point on F w

By the reproducing property of the
kernel and the Schwarz's inequality,
we have

Let tend to β» , then we have

Thus K (*»,*») + 0

^ 0
κ

which shows

We next show that 0
Ό
 —• 0

K #

Let F^p Ov\ , then we can choose
a point *

0
* F such that K (*«>**>

^ 0 ^ + o Q
 9

 that is, we have *>
>H > K^(a:

o
,«o)>δ > o for a suf-

ficiently large integer u , £1 and
8 being independent of u . Now

the limit fofc *«,(*.,*.) * K {*•,*.)
exists. Evidently D

F
 (K*(*.,*•>)

l < > Λ ) < M Thus "K.(*,*.)€ Lλ
C

Corollary* Let E be a compact
set on ρ\ , being itself a compact
subregion or p , and $(*) be
an arbitrary Dirichlet-finite solutioΛ
of (A) in ψ[ - E . Then a neces-
sary and sufficient condition in
order that JOO is prolongβble

R
 p

For later usages we shall explain
an extremal property of the solution
of (A).

Let H be a compact connected
subregion of f

1
 , surrounded by com-

pact analytic curves O . If t* (fc)
satisfies the following properties,
then we write tt(«.) q Qj

1) U(z ) is a continuous dif-
ferentiable function in fC ,

2) wl*) has a given boundary
function <ftz) being continuous-
ly differentiable on C except only
at a finite number of points.

Lemma 5.1 If ^C^) is a solu-
tion of (A) with the boundary value

JCx) , then D^(ir) % Ό
K
L»)

for any it e ϋj.

Proof. He put )
then ίf(fc) vanishes everywhere
on C 9 and is continuously differen-
tiable on (xtC t except only
at a finite number of boundary points.
Thus we have from the Greenes formula

ffenσe we have
q.e d

Let & be a non-compact connected
subregion of f* with an analytic,
but not necessarily compact, relative
boundary C Notations Gp̂ , ,
Cws , ViΛ, and others are the

same as those defined in the preced-
ing section.

Lemma 5 2« There exists a funda-
>nental solution N,*ί*-

χ
) of

(A), such that ft^ (*, K ) « o on
C^ and -Ĵ  N^U, x) « o

 o n

Proof. We may assume that G*-̂
is any canonical domain, for example,
ζm, consists of a finite number

of segments on the real axis, because
P(z) has the covariance character

and hence Dirichlet integral, Green
function, ete. with regard to the
differential equation (A) remain in-
variant by conformal mapping»

?? ~
Let Cx^ and * be the inver-

sions of <τ«* and z with respect
to y ^ , respectively. And then
we identify (J^ and 3Cv by all
corresponding aegments yU^

 t
 such

a donain is denoted by <J* >
that iβ, %

m
τG

m
!

u
ΦJ

J
ϊ<m. «



over we define that
for 'SΓ €. ίfCi. when we construct
the following solution of (A):

Then N~<*' *> is a desired solu-
tion of (A) In fact, we have evi-
dently

and hence

Thus

Lemma 5 3.
for a fixed x

2 O on £^

Proof Prom the manner of con-
struction of N«*(x, x) , this
proposition is evident, but we shall
explain another proof, being similar
to that in a Bergman-Schiffer

f
s

paper [2] Suppose that, for a
fixed -xe <x*v , N~(*, x> is
negative somewhere in Q ̂

 β Λ
 Let

Q^ be a point-set on which N^< o ,
and t" be its boundary; evidently
QZ. ί-

s a
 subregion of G m , b*~

consists either of smooth arcs of
C* + Ϋ^, on which fL. fr N» s o
or,of smooth level curves β^(«, s)
β o • Then P ^ C N ^ I ^ * ) ) ^ exists,
because the pole x of N

w
(t, x)

does not lie in Q^ , and evidently
> o . B y the Green

1
s formula, we

have

we h
» 0 on C^, and S

#
l*,χ) is

a fundamental solution of (A) on
G

Uniqueness can be proved as fol-
lows:

Λ A

Let L and fJ
 A
be Jwo desired

functions, then L - W «β S is
a finite solution of (A) satisfying
the condition: J * o on C ~
and -^r ? = 0 on y*v , By
Green*s formula we have

<vhich is absurd.
on y^ + C ^ + G

f

Thus N^l*.x)S 0
On the other

hand, fv(*'*U=o on Ϊ ^ C
and therefore κU(*, %) - K*(fc,x) ̂  0
on V«w -f C^u , and hence, by Lemma
2.1, we have

o.

Thus
is

r*v , that
q.e d

Let £v» (z. x) be the Green
function of (A) on G\» , then

was proved in S 3 , This will be
made use of in later Lemma 5,4.

By the Green's formula we have
V*J*>r~) * 0 and D ^ ( w ( t )
β^(x, x) ) s 2,τ tL( x) , where
is an arbitrary Diricjilet finite
Solution of (A) on G-^ with conti-
nuous boundary values, such that
viC*)"* 0 on C*w This family

is denoted by L ί < G ~)
the function

is the
t
rβproducing kernel function

of L
#
 ( <K~ ) is an immediate con-

sequence of the above two relations.

on Vί^ + <w~ i <f ̂ .

Lemma 5.4 Let Gf be a non-com-
pact connected subregion of F with
an analytic relative boundary C
If there exists a non-constant solu-
tion -M. c*0 of (A) on the closure
$ of <r , such that P<5r(«O < «>

and >u(x) =r o on C , then there
exists a non-constant bounded non-
negative and Dirichlet-finite solu-
tion V U ) of (A) on G + C ,
such that ir(χ) s o on C

Proof. This is an analogue of
Mori's Lemma (lJ , stating the same
fact as in the harmonic case. Let
«,(z) belong to Lo ^ ) >

and be non-constant. Evidently
Thus
• Moreover
therefore we

have

= K »(*.



For

and hence

, we obtain points * ( + * ) € (r . Let Π

be an analytic compact curve In f ,
surrounding a compact domain

 A
£r

o
 ,

in which the point X lies. M^ {z, a)
is of non-negative value on Y,*, and
is also on <$•„- <τ

o
 On the

other hand, on Y ™.
Λ

thus

= K _(*.*•) -2.

Thus, for

Λ

and hence

exists. Thus

K

because, if
on

*) /v
 ΰ a s i t s

then l^^ t* , *)

as a function on Gv - G
o
 V

a maximuin at an inner point on Cr^
- 5 , which contradicts the sub-
haπaoniclty of isί̂  (z, x) , where
5 is the union of two domains
Q
t
 and <£ , §; being the inver-

sion domain of G
o
 with respect to

"t^ . Since N
m
(*, *) s o on

, , from the subharmonicity of
O

x
'

 x )
 on <τ̂  - ̂o we

have
 A A

and simultaneously

Thus, for 6 Qv> -

Thus

* o

t.

exists and is equal to *t(*)

we choose a point x such that

^ 0 f then we have

if

Λ

Thus *>> K(*,x) > O . p
r
om

this and the Schwarz's inequality,
we see that J^ K^ί^x) exists
on a compact subregion of Cr
Moreover, from

we see that D Q . ( K ( Z , *)) < •© ^
 a n d

hence j< (*,χ) 6 L^ ί^^ and f 0 ,

and moreover is bounded uniformly
in Q in a wider sense.

Remaining part of the Lemma is
that K(z, -TC) is a bounded solution
of (A) on £r To prove this we
remark that ^fe, *) Φ °° for all

< oo

Λ

Thus N (*

Q - Gr o

<$
o
 . Tnerefore

bounded on £
o
 and

hence on (J-
 #

 1-

is boundeα on
On tne other hand,

is bounded on
isκ(z, x))
and

Theorem 5,1, Let Q be a non-
compact connected subregion of F
with an analytic relative boundary

C If there exists a non-constant
solution l/(χ) of (A) on <J+ C
such that U s* O C

Conversely, if p
we can find such a

a solution (J (*)

)
on C and
then F ί O

D

0
D
 >

 tnen

omain Q and
of (A).

Proof. By the Lemma 5,4, we may
assume that 0 S [/(z) ί l in
cr , and **> (J(χ)

 a
[ . L e t

VC
χ
) b e ^ solution of (A), such

that V(») * t/fa) on (5- , = o
on F - Gr V ί ^ ) is continu-
ous on fΓ and has piecewise conti-
nuous partial derivatives, and
D(V)!>ltr)

72 ~



Let **"w.(fc) be a solution
of (A) on F W , sucn that iΛ̂ (z-)
3
V(«) on ΓV , « Since ^t^(x)
is uniformly bounded solution of (A)

s

we may assume that ^ ^ ( Ό con-
verges to a solution >tc (<£) uni-
formly in the wider eanse on ίΓ *

For *ι 2
Lemma 5.1,

, we have, by the

F
J«~μ. ΌpJO i ΌpJV) 1 O

F
(V).

Letting first **• tend to
next ^ to oo , we have

and

Let H be a subregion of 6r ,
on which U (x) > Vk H has
non-cornpact connected component H

H U( •/* thIn Hv
U(z) + £ (

Theorem 4 . 1 , H

in F~ and Z x

d c
•/*/ > thus

^ . Hence, by
S0<o , that
. Since *^(£

on t l H ) H
we have, by Lemma 2.1

 f
 on

l
H
v

is,

Hence, for ° , we have

Thus n U ) ^ O and hence ΛJL(S)
is non-constant Dirichlet-finite
solution of (A) on p , that is,

Op ,Conversely, if we assume $
then it happens only two cases:
either 1) there exists at least two
linearly independent solutions of
(A), being non-constant and Dirichlet-
finite on ρ~ , or 2) such a function-
al space is one dimensional.

If the case 1) happens, then we
shall treat the problem in the fol-
lowing way. Let ^

t
 (*) and 4*Ja:)

be two linearly independent solutions
of (A), being non-constant and Diri-
chlet-finite on p , then there are
a number «*s and a point ^o € F ,
such that u,^) a <>». u^C**) and

k . Let UM
. ^ X , then C7(x) is

a non-constant Dirichlet-finite solu-
tion of (A), being U(

χ
o) ~ o

Without loss ox
1
 generality, we may

assume that LΓ(&) >• 0 for a
point * G> P . Then, as the de-
sired non-compact connected subregion
5* of (Γ , we can take a connected

component of a point-set on which
DΎ*) * Uί*o) * O . Then

ana UL
z
) S O

of fr )•
on £. (boundary

Suppose that G + t * Q is
compact, then we can find such a do
main 0^ that G-, is compact and
Q^-2 Q and that C does not
touch the boundary C

L
 of Qi

 o

Obviously U(x) € V CG ,) , and
there exists the reproducing kernel
function K^( (*, x) defined in
Definition 2.3 on Gt . Thus «e
have

κSirice Ĉr
(
 C*i/

 z
ι)

 i s
 uniformly

bounded for Zj 6 Gr̂  LΓ(z
(
) i

s
 a

finite solution of (A) on Q- , being

UsM s o on C This implies
that t/(i) Ϊ 0 on Q- , which is
absurd. Thus Q is: non-compact
connected subregion of f and U
is the desired solution of (A) on

In the case 2), we have

where <f(*) β Uif) , Dp
and is non-constant. Suppose that

z, e p holds, even if *we choose
two points $i and £

z
 (e p) what-

soever, where **, is a constant,
then we have

Since ζ
ή
 and ^^ are arbitrary,

we have Ή^ - ± 1 , but m̂, * -l
does not arise for Kp(*-/£.) ^ O
Thus <n\, τz 1 , and hence y(χ) s
constant, which is absurd. Thus
there are two points $

±
 and ^ ^

such that

and

for a suitable point
Thus, if we put

and if we choose a non-compact con-
nected subregion Q- of p which
is a connected component or a point-
set satisfying [/(

x
) > ^ , then we

can conclude that Q and Ifί*) are



the desired domain and function as
in the case 1). q.e.d

§6. 0

Theorem

and

and p
κ

If V

then F €

Proof. Obviously we have

Hence we get

u > M

U < 0- 0 if X € V\/λ

Then we have Όpίp ^ Dp(-u.) < 00
and PpCJ, u) > 0 > since

1|

and

^iί,*) = o

Thus, by the Schwarz's inequality,
we have

By the assumption of theorem, right
hand side vanish tfhen î  tends to
Oo . Thus, F^ Oil •%.••*•

Theorem 6.3« Γf F 6 O 5 ,

then F e O
 D

Proof, Suppose that F"€: O 5
and F £ O D > then, by Theorem
5.1, there exists a pair (Gr, U w )
such that Q- is non-compact connected
analytic subregion of F" and ttC2)
is a non-constant Dirichet-finite
solution of (A) and U(χ) * 0 on
C Then on Q- tnere exists a

non-constant bounded Dirichlet-finite
solution 1ΓC*) of (A) being Vfr)s 0
on C by Lemma 5.4. Therefore, by
Theorem 4.1, Q- 4 S O co and hence,
by Theorem 4.2, fΓ ̂

 0
& , which

is absurd. q.e.d.

Alternative proof of Theorem 6.2.

Suppose that F"φ O
p %

 then
there exists a non-constant Dirichlet-
finltβ solution u of (A) on ψ^ .
Without loss of generality w© may
assume that the point-set on which

it > o is not empty, since WΘ may
consider the function —u. if
necessary. Let W be a compact sub-
region of p , on which ΛJL >o ,
and M be equal to S*Φ *<,(*) "P* Ow
We construct a continuous piecewise
continuously differentiate function
•f as follows:

Let L/
such that

CJ-n. is
then { U
sequence
a subsequence of
&~ U - U exists

is a
{ U*, J
nce, a

be a continuous function
U ^ a j" on F*~F"<n. and
solution of (A) on F*̂  ,

ί
 3 a
 uniformly bounded

nd hence we can select
}

ce we
it/*}
it

such
and U

that
is a

bounded solution of (A). For simpli-
city^ sake we shall retain the ori-
ginal suffices. By Lemma 5.1, we
have, for τ*s y^* ̂

Thus, ί^*^ Pp-(U^) exists and is of

finite value Dp- (U) . On the
other hand, Ό

F
 (IΛ-, l/w C4) * o

for HI > Λi thusfor -HI > thus

from which we may conclude that XJ^
converges in a stronger sense. Since
p(u)< 00 , we have the so-called
weakly convergent property:

On the other hand, we have

t'") f °

And hence we have

Thus \J is not identically zero.
Thus we obtain the desired result:
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implies F

q e d

Remark l We can arrange our re-
sults in the following schema:

2. For any admissible Pfc) we
obtain the above schema, but it
seems to us that we need a special
choice of Pίz) in order to
bring more precise results. If
there exists a single-valued Dirich-
let-finite non-constant harmonic func-
tion Jv(xO on fΓ , then we have

# "
 W θ c h o o s e

as p(s) **. Proof is easily per-
formed by considering the fact:

is equi-

valent to D
F
(t.1)-J

r
EA*

i
»'<

β
*

In this view-point we may say that
a pair ( ψ", p") consisting of a given
Riemann surface F* and an admissible
function P t*) has been classi-
fied, and thus we may write OrpCF)

 f

where T
 i s

 ί or w or K

3. For a non-linear partial dif-
ferential equation of elliptic type
we shall discuss the results elsewhere.
In this case the arguments and results
must be modified,,

4. if &<*> , (,
are two admissible functions in our
original case, then we have the fol
lowing results:

i) <V.CPf) P OfrίP ) ,

ii) 0«{Pi)CθωίPJ /

l ϋ ) oκ(Pt) C O

These results were obtained already
by Bergman-Schiffer 12} without con-
siderations of null-boundary. They
considered only the case of planar
schlicht compact analytic domains,
but their proofs remain valid also
in case of Riemann surfaces.

5. In a schlicht domain we may
take P(x) without the conformal-
ly covariant property: P(z)*ffc') H i p ,
for example, constant feOfO) In
these cases our arguments remain
valid with some exceptions, but our
main results, that is,

also remain valid. Moreover we can
define other several Hubert spaces
with the various different metrics,
and we can define other several cor-
responding kernel functions and hence
other sorts of null-set. Cf M.
Schiffer ζl] , Bergman-Schiffer C2j .

§ 7. Riemann Surfaces of Finite
Genus.

Lemma 7.1. Let E be a compact
set on F| , being compact subre-
gion of fΓ , and Φ (x) be an ar-
bitrary bounded solution of (A) in
PJ — E A necessary and suf-

ficient condition in order that ψt*)
is prolongable on £Γ in the sense
of (A) is that Co (x, E, F

t
)

 s
 O

Proof. Sufficiency. Let Γ be
a finite number of Jordan curves,
surrounding E , and belonging to
ψ\ with boundary C > and F^ be
Fι ~ Fp » where pp. is the do-

main bounded by Γ . Then ωi^B^Ft)
Ξ 0 means that co(z, p

/
 Fc)< %

for any Γ sufficiently near to
E Let *f

0
 (z) be a solution

of (A) in Fi , coinciding with
ίU ) on C If we introduce

the function A(**
C
/_FΊ) , then

we have, from Lemma 2.1, | <f
0
 (x) |

' ' " ^ ̂
 x
 where K -Vp |<f l*)| .

W , the.n

-
 in

 Fc,
Therefore if we put__ U « $(z,)ti,.-

vv
, ,

c//

then U" ̂ O in PJ, thus φ(χ)
2 -2,H coC

2
-) ̂ -2M6 and hence φ (z) ̂ o

Similarly if we consiαer the func-
tion V * 3-lϊicό , then $(x)
£2.M α>(») in F;- F

Γ
_ * and

hence $(χ) ̂  O in f<
t
 - ^

Thereiore ?(z) s O in PJ-E .
Thus, if we define f (x) "%&)
in β and J W

β
f W in (Γ-g ,

then y^
2
") ^

s
 bounded and satis-

fies AJ = f y in g"

Necessity. There is at least a
point it in Ft ~ E > such that
^fc/β/Fΐ-Ξ) ̂ O

 O n
 the other

hand, co (Zj E > Fi **ε ) is bounded in
fΓJ - 5 , and therefore, by the
assumption, cofo E, F

t
 - £ ) must

be prolongable on E? and of finite
value. On the other hand, <Ό Έ. 0
on C, Since f**̂  is a compact
subregion of jΓ , co s O on
p*

t
 , which contradicts CA>TΌ

q.e.d.

The following theorem yields an-
other sufficiency proof of Theorem
5

β
3 in the case of Riemann surface of

finite genus.

Let



Theorem 7.1. Let p be a Kiemann
surface oί* finite genus, and E
a compact subset of p

 β
 Then

F - E 6 θ c o implies /Γ-£: e Oft
and vice versa*

Proof. If p- E 6 Oto and if
AXs{pC) is an arbitrary bounded non-

constant solution of (A) on the nei-

ghbourhood F*
L
 of 6 , then from

Theorem 7.1 we see that M. tz) is

prolongable on £ with regard to

(A) and is of finite value on E «
On the other hand, Sh fa, E)
*Jfe*>ίl(z,ΠH,,Fv) is a bounded solution
of (A) on hi , therefore <£l(z,£)
is prolongable on B and is of finite
value on E" . Thus SI (z, S) is
a fi-iite non-negativa solution of
(A) on the whole F , and hence from
the subharmonicity of £h (z,, E)

 $

it reduces to a constant, that is,
zero, This shows that f - E 6 O

&
 .

The converse is immediately obtain-
ed by the necessity parts of Theorem
3.3 and Theorem 3.1. q.e.d.
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