CLASSIFICATION OF RIEMANN SURFACES

By Mitsuru 0ZAVWA

§1. 1Introduction.

Does there exist a function harmo-
nic or analytic and satisfying a pre-
seribed condition on.a given Riemann
surface? This question is a princi-
pal leading idea in the recent func-
tion-theory, especially in the theory
of classification, and it leads us
to the various deep and important
results as well as new notions.
Moreover it brings to the various ex-
tremal problems to be sclved. In
this tendency several authors above
all Finnish colleagues have contri-
buted to the theory. although this
theory is gained in a great success,
there remain many important and un-
solved prcblemns.

In the present paper we shall ex-
plain a method to classify the Riemann
surface, It is directed by the fol=-
lowing leading idea: Under what con-
ditions does there exlst a solution
of a partial differential equation
of elliptic type Au=Pu on a
glven Riemann surface? Although we
have succeeded to establish a classi-
filcation theory to a certain extent,
there remain many problems unsolved,
and we have found yet no application
to the function-theory,

We first give a more precise expla-
nation on our Riemann surface and
differential equation to be consider-
ed,

Riemann surface F means here the
one in the sense of Weyl-Radd. Its
ideal boundary is denoted by [~ ,
and we restrict ourselves to the
Riemann surface of int'inite genus
save when the contrary is explicitly
mentioned.

Differential equation considered
here is the tollowing type:

(A) 25wy + }u(z,:}) =P 3 wx.g)

<t

where 2 = x+iy is a local unifor-
mizing parameter at a point $ on

F P, 4) is a real holomor-
phic function of (x. ¥) being po-
sitive except at a countable set of
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zero-points with accumulation points

lying only on the ideal boundery [ .

We assume moreover that if we change

the local parameter Z to zZz’ , then
P () changes as follows:

P(oy = Pan | 24"

For this type of differential equa-
tion (A) we can prove the existence
ot the so=-called kernel function and
Green functions under various boundary
conditions, for instance, the (reen
function with ordinary, i.e. vanishing
boundary values or the Neumann func-
tion, i.e. the one with vanishing
normal derivative along the boundary,
and also the solvabllity ot the first
boundary value problem. Moreover the
maximum or minimum principle and
Harnack's convergence theorem are
valid with a slight modification.
These racts will be shortly explained
but the precise proof's will be omitted
orf. For the precise iormulations
one can refer to the S.Bergman's book
(1] and S.Bergman-M.Schiffer ({1,2].
For other ways of formulations cf.
R.Courant-D.Hilbert [1], £.Picard
[1 2], L.Lichtenstein [1,2] , R.
Nevanlinna [1] and D.Hilbert [1].

82, Det'initions and General
Considerations,

Let [fo] #=0.,1,2, . be an
exhaustion of F° in the ordinary
sense, that is,

1) F, s a compact connected
analytic subregion of F' , that is,
Fa 1s connected and the closure of
F. F; say, 1s compact and its
boundary consists of a finite number
of simple closed analytic curves

W)(V—l ‘:m) , [-—\ Z: [—1(V)

Especially F' is supposed to be a
simply- ccnnected compact analytic
subregion of [ ;

11) Fau € Fae (=00 -2);
1) b F

M- oa
Definition 2,1, Dirichlet integral
Dlu) and mixed Dirichlet integral
Diw,v):



Dp tww) - (4323535 + Puv)esdy,
DF' (“l"’) = DF("') .

By the Green's formula, we see that
if Au w , then Dp (wv)=f vi-ds
for any v , where 2/9¥ denotes the
differentiation in the direction of
outer normal.

Definition 2.2, If wu 1is a solu-
tion of (A) and satisfy DF (w) < o
then we call we [*(F,)

Obviously by (Fn) forms a real
Hilbert space with respect to the

inner product
(w1 = Dg (wr), wve LFL.

b

Definition 2.3. Kernel function

Kalz, 24 of L(F.) : 1f K, (=20
€ L) has the, reproducing
property for any '’ -integra-

ble solution w of (A):

w(zy) = DF“( wizy, K, (x,20),

then we call K, (% z.)
ducing kernel function of

the repro-
L*(F.)

We explain here the existence of
Ka (=, 20) . According to N,
Aronszajn [1] , in a locally uniform-
ly bounded Hilbert space, there exists
one and only one reproducing kernel
function X, (%, z,) of L¥F.)
and hence we have only to prove the
locally uniformly boundedness. Since
Riemann surface 1s of locally Eucli-
dean character, we may discuss the
problem in a Euclidean small disc.

-

’

Let wu(%) be an arbitrary solution

of (A) with Dg () < M , then
A{u*) 20 . In tact, we have

L 2,

A(w") = 24 Au +2.(—’—z—) *17«}')

2 MW \2

= 2[Pu? «(32) "(ﬁ) ].
Let BR 2 denote a ring domain
bounded by CR_ (lz-z,1=R) agg C,
en

’

(lz-z,l=¢, ¢ < R)

we jhave L}(
-f b

0.

R
Iz~ z. |z -2, t)ds

A: +§c‘u -——-L}(

A(w) dxdg

2-2,

A

Letting £ tend to zero, we have

an
2nR w(z,) £ S w'R de
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and integrating with respect to R
rrom ¥ to o< r <R we
have

x u¥(z,) (R*-r*) € ‘f w'dxdy

’ 2

R,€
£ —r:'gf iPu d.:ld.g s = Dg (%)
<l.m
P,
where P, r‘:‘f' <R P and f, >0
Z= 2,4

in view of the isolatedness of the
zero-points of P(x) Thus w(z)
is locally uniformly bounded, what
leads to the existence ot K, (z,z,) .

Definition 2.4. Green function
of (A). Green function 4%,(%. 2.)
(the ordinary one) is a fundamental
solution of (A) in F,. and &, (2.2,
=0 on f'... » that 18) 43- ‘E?ﬁ
for = (#z,) € Fu and %, (z, %
—Alz, z,)}?{i/tz %dl) is a holomor-
phic sofution o1 (A) where A (z,z.)
is also a holomorphic tunction satis-
fying 2sz, AlZ.Z0) = 1 and more-
over ¢ = o on T,

Once the existence of the kernel
function and a fundamental solution
having been established, we obtain
the existence and the expression of
Green function in the following way:
Let S(z, x4) and K, (z, z,) be
a fundamental solution and the kernel
function in [ , respectively. If
we put o (zo,w)= DF( «(z:2:), S(z,,W)) |
then we see that

S(z, w) - o (z, w)

s

is the desired Green function, a fact
following from the consideration of
uniqueness of ¥« Wwhich is easily
proved from the assumption. For the
existence of a fundamental solution
of (A) one can refer to the Hilbert's
book [1] and E.Holmgren [1] .

Obviously we have an inequality

{%3,,(:,1,!-;:;—}“(2..,:.), <M lz_:’l’

and, by means of the Green's rormula,
the Poisson integral representation

w(z,) = ~ [ « (z) ——-—————’};‘(’z'z") ds ,
M
where U (z,) € L."(F.‘) « Thus we

can conclude that the so-called
Harnack's convergence theorem remains
valid in a slight modified form in
our case.



Definition 2.5. Neumsnn function
of (A). Neumann function Ne (%, %)
is a fundamental solution of (A) in

Fo ana aNa(xz)/ =0 on IO .

The existence of N (2, 2,) is
easily proved. “‘urthermore, its ex~
pliclt expression is given by

No(z20) = 2 K, (2 2) + §, (2.%,) .

For our kernel runction
we have

1) Ku(zz)= Kanlze,2) and K (z,2)20;

1i1) If asm , then
K, (2320 2 Ko (20,2 . 2 €Fu

111) 1t {f(n) ,v=12,
is a complete orthonormal systen in
L (F« ’ E.hen

K, (x20= 23§, 9,2,

Ky lz. 20,

These facts are obtained in morse
abstract way in the Hilbert space
with a reproducing kernel function;
cfs NeAronszajn ([1] Especially
in our case we have

K,(z,2) 20.

This is proved by S.Bergman-M.Schif-
rer [1] .

iv)

Here we shall explain two lemmata
o' which we shall often make use in
later.

Lermma 2.1, If 4 and v are two
solutions of (A) and y z v on [
then wugzwv on Fo - ’

Proof. lLet Y= % -V , then

=PY . Let D be a point-
sef satisiy*ng Y <o , then a
connectec component Dy or D is a

F. and Th. D=0 .,
is superharmonic on D

0> Y224l Y(2) =

is the boundary e

subregion of

Now V¥
and hence
where (Dy)

Thus Dy and hence D
empty set. Therefore
F"R. . Q.e.d,

Y(Z) =3,
D, .
also is an

Yizy 2 o

on

Lemma 2.2, If w and v satisfy
the equation 4w =0 and Av=Pwv,
respectively, and w3 v & 0 on

. , thenm u 2v on

Proof.
on Fw ,
then ¥ 1is superharmonic on Fa.

" .

By Lerma <.l, we have v Zo
and hence if we put ¥=u-v,
and

2 0 on I’'w . Therefore we
have Y 2 O on’ [, and hence
wz v on Fg.

To solve the first boundary value
problem, we can also make use of the
so-called Schwarz's alternating pro-
cess and the method of successive
approximation used by E.Pigard [1,2].
Or more directly we can prove the
solvability and expression named
Poisson integral formula by meking
use o the kernel function or Green
function. And the uniqueness of the
solution can be deduced by Lemma 2.1,

The following Lemma is a precision
of Lemma 2.2.

Lemma 2.3, Let % Dbe a solution
of (A) on F, satisfying on
, thenm 0 u <1 in Fa ;
*he right hand inequality being of
the strict sense, that is, the equality
sign being excluded.

Prcof. By Lerma 2.2, 0 € w &1
18 obtained, If wulxz,)= 1 for
a point z.,€eF, , &', , then
2
¥, - Y, and Auwlz,) & 0

On the other hand Au(zs)=PlZ)u(z)20,
and thus we have Pl(ze) =0 .

Hence w{(z) % 1 for any point

z € Fp such that P(z) > o .

By the isolatedness of the zero-points
of P (z) , we have P(z) % 0

for 0<13~2,] £ ¢ , where ¢

is a sufficiently small positive num-

ber. Thus, for such a point %2 ,

w(z) § 1 « On the other hand,
the subharmonicity of w(z) im-
plies that

1 2K .
“.(za) —ZEC s wu(z) ¢ de .

Hence L = ut(z,) % 1 , which
is absurd. Thus we have the desired
result.,

Definition 2.6,

Fo - Fo )

of (A) in
tically 1 on

Let wp(z, T..,
be the finite solution
Fn - F, , being iden-
| and O on r, .

Derinition 2.7. Let &hnl(z Tu, Fy)
be the rinite solution of (A4) in Fi ,
and be identically 1 on T

By Lemma 2.1, we have, for mgzmn
12 W, & M, Fa-Fo) 2 w,, &, [, Fe = Fo)
20,
z € FoFo,

s

and hence the limit
b @ (2,00, FF) = wl(z T F-F)

R->a0



exists, Similarly, there exists
L O @0, ) = 6EF).
nso0 W

Feol,
©(zr, F-F) =0 -

Definition 2.9. F € Og, means
that Lz, [, F) =0 .

That these classes are determined
independ of a special cholse of Fj
and the process of exhaustion, can
be proved analogously to the harmonic
case,

Derinition 2.8. means

that

Definition 2.10, It there 1s no
non-constant bounded solution of (A)
on F , then we call f € Og .«

Definition 2.,11. 1If there 1is no
non-constant solution of (A) on F ,
having finite Dirichlet integral

Dg (u) , then we write Fe Op -

From Lemma 2.1, we have for m zZn ,

Oé &“(z)zo)é&“(z,z%) , Z € F'q\,,

and hence the limiting tunction

S 22 = §(zz0)
Detinition 2.12. (&) If there is
a point 2z € F , 2 %+ %o , such

that (2, Ze) = o° for a fixed
point z, € F , then we write

F € OG-(zo) .

(b) F € Oq means that there
is at least one point Zo , such
that F & Og(ze) ; namely, F‘QOG_
means that there is no point =z, |,
such that F € Og(z, .

Since K, (2o, 2,) is non-nega-
tive ana decreases as n irncreases,
the 1imit Lm K, (2,,2) = K (2,.%,) Z 0

exists. nae
Definition 2.13. F € Ok  means
that K (z.2) = o for any point
z e f .

It is to be noticed that there is
no constant solution of (A) except
the vanishing one,

We shall of'ten make use orf also
tne quantities and definitions with
respect to the harmonic case. To
avold the coniusion we shall distin-
gulsh the harmonic case by the upper

index M) pop example, }}”armonic
measure is denoted by w‘™) | Green
function of 4w = 0 is denoted
by gt | ete,

§30 O&L, Ow » OB 0(-"- .

In this section we shall prove
that

and

OG'C Ow = o‘_(z. = OB .
Theorem 3,1. Ir F € Ogq, , then

F e Og , and vice versa,

Proof. Ir w(2z) is a bounded
solution of (A) vanishing not identi-
cally, then, by Lerma 2.1,

an(z,[_',,,F“)_f_ * (%) é mﬂn(z'r”’ F‘)I

where M= swp a(z) ,m=imd w(m)
F F
, we have

Letting m tend tc o

IN

mQ&RF) s uw(z) s MOGEMF) .

Ir F€Oqa , then L0(z.[LF)
and therefore u(%z) is identically
zero. This contradicts «(z) % 0

Conversely, if we assume £¢04,,
then &L (z.C, F) is a bounded
solution of (A) and % 0 .

Theorem 3,2, If F € Og , then
FFéE€ Ouw -

Proof. 1In order to prove the
theoren, we need some lemmata:
KR)

Lerma 3.1, F € 0, — F e Ow .
k)
Lerma 3.2, F € Og — [ ¢ OG'.

R *R)
Lerma 3.3. [ € Of.,)l—_—’ B e oq-.

Proof of Lermata 3.1 and 3.2. By
she Lemma 2.2, we have

w, (0T, Fu-F,) & 0z, 1, Fy-F,)

and

}“(z, %) 3 J:‘)(z'zﬁ))

from which we obtain the desired re-
sult.

Lemma 3,3 is a well-known result.

0, coF. o®co,.

w

Thus we have
q.e.d.

By Lemma 3.2, we deduce the follow=-
ing property: If the boundary of
contains a continuum, then [’ & Og -

Remark., The Definition 2.12 (a)
is very artificial in the sense that



the fact Fé§ Og(zq)
the cholce of the point Za(_&) .
In the harmonic case, Fé O¢r,y 1s
equivalent to [ § 0‘2,’ , but in cur
case; we can not yet conclude whether
F‘é O6zo) is equivalent to
Fé¢ Og or not. Here we shall
explain a suificient condition in
order that Fé¢ Ogza implies

Fé¢ 0og -

1r Q@2e >0
on f , then
F‘¢ O¢

Proof. Let [%
connected analytic subregion
such that z,, %X € F, .
can choose two points P, ,
on [, , such that

z {im-

plies

F & Ogwza

Fo

Then we
P

..z
( z,)= LT DL (%o
gm Pa, o) —j 2w, (2) ds

[
and
2T Qm (Z«.’)

)
2 wpylr) ds :

AN
-s.

because, by Green's formula, we have

—S f ez onmds = 20 () (%2,

o
Thus we have

& P, Zo)
£, (2e)

S (Pe, 20)
£, 120

from which we get the desired result.

Theorer 3.3, 1f F € Qgq, , then

Fe 0, and vice versa.

Proof. Necessity. By Lemma 2.1,
we have

0,&rWF)2 0, (&M ,FF), 2€FuFo,

thus, by n » »
necessity,

, we conclude the

In order to prove the sufficiency,
we need some preperatory lermmata,

1t Fé Oq

N then F‘G OG .
Lerma 3.5. If F & Oq ,
sup iz, F) =t .

Lerma 3.6, 1r Fe OF
Fe Oq .

Lerma 3.4,
€ 0,

and

, then

may depend upon

tor all points

surround a compact
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Proof o1 Lerma 3.4.
rormula, we have

By Green's

2 ZEQ,, (z4)
&o(Pa,2) = (o ma
~ = w_ (2)ds
I3 -
ﬁ 24
1t Fé Ow and ¢ O , then
w0, — © , and hence ?2®wm/3y ~7 0
on [ . We may assume that on 2,
o and £L(z.) ¥ 0 , and thus
(P, Zo) —> ©° » Therelore
g:?zh;“)o,_. 00 for a point =z ¥%Z, o

Proof of Lemma 3.5. Let Dz Fl=x,
then A%t 1 is evident, and thus
we shall prove X 21 . For ze [, ,
we shall consider the function

9o l2) = ho (2, Fa) s.;,.ﬂ,(z, F) -&u(z, F)
then A4¢u(z) = P Fa. (2) for ze Fa
and P () 2 0 on [, . Therefore,
from Lemma 2,1, we have %, (2) 20
on F. , and hence

Q. (7 Fa) S;V—Q(%F) 2 Q@M

’

on Fw . Letting = —w ,

2 Qe F) 2 LEF) (Zo,#%0),

from which XA Z |1 .

Since {L(z. F) 1s a bounded
non-negative solution of (A) on F
we have

sw Q. (z, F) = Q@rF),
op L (2 F)= g

q.e. d.

>

where R 1s an arbitrary compact
analytic subregion of F‘y .

Proof of Lemma 3.6,
does not«Belong to

belongs to O , then we have, by
Lerma 3.5,

sop &L (z F) = il L (= 7
=1 , and Ry m“(Jk-“F.,: =0
Let Pa®) = Q) — wg Az, Fu-F.)

ror zefu-F, , then a9, (2
= PLL 2. F)2p,and hence 3, )
eir, I

Suppose that
On , but

= § (z) . the &
F;utF. ?w On the other

hand, 3a(z) =0 on Tau and
20 on s , but #% o on
Oy +» Thus

S S = S g0 = sur Q= F,),

or
)
Bz, R

L Fa) $ sep Q&R +w



Letting = — o , ®e ha
= F)s i;:f Qdz, 7 ¢ J”(z/ F-F),

and thersfore

Sap Qoiz 7Y = ;_-E-Kl(z, F)

4)
& sap Sl F) o+ s o (x F-F),
Mo f-Fe
Considering our tirst assumptions,
we have

{ ¢ sy Qi F),
Mo

which contradicts Lemma 2.3 and the
monotone decreasing property of
n(z, 7)), that is, o0& L, (2. Fa)
£ 1 and, for w zm |,
Do (%, F) & £y (2, F) and hence
s‘:p Q(z, F) $1 , which is absurd.
°

qe€eda

Suftleclency proof of Theorem 3.3.
Suppose that F &€ O and
Fé Oa , then by Lemma 3.4
e Og and ’pence, by Lemmata 3.2
and 3.3, F e o™

Thus F € O by Lemma 3.6,
which is & contradiction. g.e.de

84, Subregions and O .

Let G be a non-compact conmected
subregion, and its relative boundary
C consist of a finite number of
analytic curves. Supposing that

Fm b, m=0,1, - is an exhaus-
tion of B , we introduce the nota-
tions: G, = Fun G , yn= PPNIC
and Co =1, o C R

Definition 4,1. Let w,(% Ga)

Wz, Gu) and wg (%, Gu) be
the solutions of (A) on G, , &~
tisfying the following boundary oon-
ditions:

’

o oan C
w’(t, G’.,‘) = } "
1 on Uy
,Q,ﬂ(z, G“)n 1 on C,‘-tl',;
d
an ) o on y”,
W (%, G,) =i
1 o% Cq’
respectively.

Evidently we nave :Q.,‘(Z,G*F W, iz, &, )

+ w) (%, G.) , and, from Lemma 2.1,
we have the rollowing momotonsity:

Ior m A R

mﬂ,(z’/ GM) é w»n (“' Gﬁ) )

D, 64 $ O,k 6)

and

i
wy (z,G,)

nw

wy (z, G,)

Hence, from tne uniform boundedness
of these quantities, the limits

e w (26,

®->o00

fo 0,6k 6,)

il

w(z,G),

L= 6).

and

bu 0, (26) = o'z &)

n->00

exist, and moreover we have L(z G)
= w(z,G)+w(zG).

Definition 4.2. G € SO., means
that w(z2,G) =0 .

Evidently G € SQw 1is equivalent
to AL(%.G) = w'(x, &) -

If w(%) is a bounded non-
«constant solution ot (4), being con-
tinuous on G+ C and a(z)=
fconst.) on ¢ , then we ge¢

&0 -Mwiz,G)S wu(z)
$%£ =G+ Mw(z.G),

where M =2P1 we -2LL(z. @ |
This is easily verified by means of
Lemma 2,1 for G . Let m
tend to oo .

Irf wx,G) = o , then atz)
=kfu(x, G) . Even if w(z,G) =0 .
there is at least a bounded non-
constant solution 4 (%) of (A),
satisfying the condition «4@) =
const. (% 0) on C , but, indeed,
essentially only one, that is,

L(z, G) . If w(z.G) %0 ,
then there is at least two bounded
non-constant solutions () of
(A), satisfying the condition w(z)=
const. (¥ ©) on C , and being
lineaprly independent, t'or example,

i.ﬁ,zz,G) and &L (z, G)
+Mw(z,G) .

Theorem 4,1, G ¢ SO is
equivalent that there is only one
linearly independent solution £(z G)
of (A) bounded ron-constant in G
and satisfying the condition f)(zG)
={ on C . GeSO0, is equi-



valent that there 1s no bounded non-
constant solution of (A) vanishing
identically on C

Theorem 4.2. In order to &€& Og
it 1s necessary and surticient that
there is at least a non-compact con-
nected subregion (+ which does not

belong to S04 .

Proof. Sufficiency. Let u, (%)
be a finite solution of (A) on F,
such that

{l on )’,‘, R
“w =
"“lo on Tu-ty,
then O % uUy(2) &1 on F, , by
Lemma 2,1,

Uy (%) being uniformly bounded,
we can select a subsequence |, (¥}
of iu‘ (%) which converges to
a bounded solution w(2) of (A4)

on & . For the sake of simplicity
we shall retain the original sulfices.,

By Lemma 2,1, we have uw,()zwe(z &)
on (. . Let m tend to oo s
we have wix)¥wW(xG) , By the as-
sumption G ¢ SOQuw , wz.Gl¥ o .
Hence there exists a point Z, on

G , at which w(z,,G) >0 .
Thus  w(z.,) > O . Hence u(z)%0
and is not constant.

By the definition of

F ¢ Os , there is a bounded
non-constent solution w(x) of

(A) on F . Then there exists a
point 2, on F at which «u&)¥F+ 0 .

(a) If u(%Z) > 0 , then we take
as the point-set on which
wr) > w(Zo) .

(b) Ir u(®) <o , then we take
as the point-set on which
w(x < % (2e) .

Necessity.

We shall treat here only the case (a),
since the case (b) is similar.

If &G has a compact connected
component G, , %(2) is sub-
harmonic in G, , thus by Lemma
2.1 S5 ulz) -sé\f u(z) > O , Where

Cv A

C, is the boundary of G’,; . On
the other hand Sé‘f w(z) = w(z,) s
v

which is absurd. Thus &G must have
a non-compact connected subreglon.
Obviously we have w(2) # u(z.)-
iz G) on G , and u(z) is a
bounded solution of (A) on &G , with
constant boundary value 4w (Ze) on

C . By Theorem 4.1, G¢ SOw -
q.e.d.
Theorem 4,3, (i) Ir & 1is a
connected subregion of [, having
Jordan relative boundary , and

@ (z) is a solution of' (A) con-
tinuous on G+ C . Suppose that
e 0g and  wu(z) is boun-

ded, non-negative and non-constant
on G , then the maximum principle
holds, that 1is,

Sur wz) = Sup u(z),
G c

(11) I w(=) is8 non-posi-
tive and the above assumptions remain
valid, then the minimum principle

holds, that is,
woulz) = wWow(x)
d &

Proof, We shall prove the first
part ol the theoren, as remaining
part can be proved similarly.

It G 1s a compact subregion, the
theorem 18 evident. Thus we shall
confine ourselves to & non-compact
subregion. If we suppose that 3(*_:;7 w(z)
+sé"‘f u(z) then there is a positive

»

number M , such that

0S5 ulzr) < ™M < sup u(z).
C G

Let H be a point-set on which
wz) > M holds, and H, be a
connected component of H .
is a connected subregion with a non-
compact closure., This fact 1s shown

by Lerma 2.1, Now_ulx)> M in
Hy and & Lu(z HY) , since
MLOGEH) & ™M in

H, .
Hence, by Theorer 4,1, w(z, H) ¥ 0

By Theorem 4.2, F & Og , which
is absurd.

Theorem 4,3'. If fF~ &G 1is com-
pact, then the converse ot the Theorem
4.3 holds.

Proof. Let w«(2) be a boundea

non-negative sclution of (A) on F .
ir we suppose Sap w(z) = sar w(x) )
then SC‘_."_-P w (%) is attained on
C « Thus
defined on T
F-G .
Thus w(z) = o

wiz) , as a function

, has its maximum con
This is contradictory.
, that is, F € 08 .

Theorem 4.4. Let G be a non-
compact connected subregion, having



a Jordan relative boundary C. ., Then
G & SO is a necessary and

sul'ficlent condition in order that

the maximum principle does not hold

on .

Proof. Sufficlency was already
proved in the Theorenm 4,3.

Necessity. Suppose that G‘¢50u
and the maximur principle holds. Then
w(z, G) is a bounded non-con-
stant solution of (A) on G . Thus

o w(z,G) = r w(zG) =0,

and hence @ (2.&)=E0 on G ,
which is absurd.

§5. subregions, Op and Ok .
Theorem 5.1, O‘i’; & O .
Theorem 5.1

"Proof. We first show that Ok
—~+ Op . Suppose that F & Op ,
then there is a function 9(x)
€eL(F) and 9% 0 . Let
t?m , % €Fy.,

«®n =
(2) - z e F- Fu,

then we may assume that ®(2,) % O
where 2, 1s a fixed point on Fwm .
By the reproducing property of the
kernel and the Schwarz's inequality,
we have

0§ lwza " & DFn(K‘(t,z,))’DF;(u(z))

= K, (%, 2:) Dg_(u)

Let ™ tend to o , then we have

0§ P@|*% K(ze2) D (§2),

Thus K (2., Z,) ¥ 0
F¢é Ok -

We_next show that Op ~» Oy

,» Which shows

Let W& Ok , then we can choose
a point z,€ F such that K (ze,%e)
¥0, ¥+ , that is, we have oe

SM > Ko(%,2)>8 >0 for a suf-

ficlently large integer m , ™M and
4 being independent of m . Now

the limit fa, K, (2e,%) = K (%o, 2o)

exists. Lvidently Dg (K. (%,%0)

=K, (l5,2)<M . Thus K@z)e L(F) .

Corollary., Let EE be a compact
set on [, , being itself a compact
subregion of F , and 9(%) be
an arbitrary Dirichlet-tinite solution
of (A) in B, -E . Then a neces-
sary and suificient condition in
order that %(z) is prolongable

onto § in the sense of (4) is that
Kp-g (22) = Kg@z),

For later usages we shall explain
an extremal property of the sclution
of (4).

Let R be & compact connected
subregion of , surrcunded by com-
pact analytic curves C . Ir wm(z)
satist'ies the following properties,
then we write w(z)e¢ Q‘ :

R

1) u(@) is a continuous dif-
ferentiable function in R ,

2) w(%) has a given boundary
function P (z) being continuous-
1y differentiable on ( except only
at a inlte number of points.

Lerma 5.1, If V(2) is a sclu-
tion of (A) with the boundary value
9(x) , then D (v) < Dpg (w)
for any we R °

Proof. We put u@)=uv@)r §(z.) ,
then P (z) vanishes everywhere
on C , and is continuously difteren-
tiable on G+ C , except only
at a finite number of boundary points.
Thus we have from the Green's formula

DJ%@P{@%%’“%.

#Hence we have Dp(w) = D) +RU(E)ZTR ¥,
q.e.d.

Let G be a non-compact connected
subregion of F° with an analytic,
but not necessarily compact, relative
boundary C . Notations G, ,

w » Ywm and others are the
sare as those defined in the preced-
ing section.,

Lemm& 5.2, There exists a funda-

mental solution wlZ.%X) of

(A), such that R _(z.x)= O on
C. and ¥y N_(.x) = o on
Xw A

Proof, We may assume that G
is any canonical domain, lor example,
- consists of a rinite number
of segments on the real axis, because
P(2) has the covariance character
and hence Dirichlet integral, Green

function, ete. with regard to the
differential equation (A) remain in-
variant by conformal mapping,

~ ~r
Let Gw and % be the inver-

sions of G. &and Z with respect
to Ywu , respectively. And then
we identify (.. and w by all
ccrresponding segments Yw , such
a domain is denoted by &..

shat 18, G.= 6.V C.Y Ym .+ ¥ore-



over we define that P(®')= Ft2)
for T e Go when we construct
the following solution ot (A):

A ~
Nu“”‘”az‘f""“?gi""’ , %€Ga,

A
Then Na (2 %) is a desired solu-
tion of (A). In ract, we have evi-
dently

}E.“(z, x) = 3,&”(:,1))
and hence N
N (= %) = N 2,%) = N-(ZN"‘).

Thus
-:—iN (z,2) =0 loz=% on V.
A
On the other hand, we have Na(Zz%)
= 0 on Cp and -l %) 18
a fundamental selution of (A) on
-~ .

Uniqueness can be proved as fol-
lows:

A
Let L and N be }wo desired

functions, then L, -N=9 is
a finite solution of (A) satisiying
the condition: § =0 Cwm
and &9 =o on Y...,. By
Green's formula we have
3 .
Dg_p=-f 3§37 adolerrrlicyy

Coat ¥m .,

=0.
Thus ,§ = O on Gum , that
ts, T=1W . q.e.d.

Let Gw (2. %) be the Green
tfunction of (A) on G , then
by, $u (%) % o tor z(¢¥x)€ &
was proved in § 3. This will be
nade use ol in later Lemma 5.4.

By the Green's formula we have

D v fw) = O and Dg_ (w (%) ’
N (2.2) ) = 2x w(x) , Where w(x)
is an arbitrary Dirighlet finite
solution of (4) on « With conti-
nuous boundary values, such that
w(z)= o on Ca o« This family
is denoted by LI(Gw) . That
the function

A 1 A
K.zx)= (N z2) - }“ts,z))
is the reproducing kernel function

of T_ (G is an immediate con-
sequence oi the above two relations.

A
Lerma 5.3. K.(22) 2 o on G
for a fixed = .

Proof. Frop the manner ot con-
struction of N.(z, x) , this
proposition is evident, but we shall
explain another proof, being similar
to that in a Bergman-Schiffer's
paper (2] . Supposg that, for a
fixed K€ G , Ne (2, %) is
negative somewhere in G. A Let
G,. be a point-set on which N.< © ,
and b~ be its boundary; evidently

G. 1s a subregion of G , b
consists either of smooth ercs of
Cw + Yw oOn which .,,VN,,..O
or, of smooth level, curves (_(z, %)

= o . Then Pgz (Na(zx)) exists,
because the pole =x of Nul(z, x)
does not lie in G_ , and evidently
>0 . By the Green's rormula, we
have

o $ DG:(?Q“(!, x))

A A
__S N, (22 2 N () ds
)
= 0)

A
shich is absurd, Thus N_(zx)2 0
on Y+ Cop + Gan . On the other
hand, &, (z, %), =0 on Yur C
and therefore N w(z. %)~ 9 (2,2) 2 0
on Ym+ C. , and hence, by Lemma
2.1, we have

A A
X, (z.%) = _1_1‘_ ( N“(z,x) —3'«».(‘/7‘))
20

on G,,,* C..,. + Y,.._

Lerma 5.4, Let & be a non-com-
pact connected subregion of & with
an analytic relative boundary C .
Il there exists a non-constant solu-

tion w(2) of (A) on the closure
G of & , such that Dg(x)< e
and u(z) = o on , then there

exists a non-constant bounded non-
negative and Dirichlet-finite solu-
tion v(Z) of (A) on G+ C ,
such that vz = 0 on C .

Proof. This is an analogue of
Mori's Lemma (1] , stating the same
ract as in the harmonic gase. Let

% (2) belong to L3(G) ,
and be non-constant. Evidently

wiz) € Lo(Gw) . Thus
Dé (w(%), (= x)) = w(x), Moreover
K_,,,(z, x) € I_, (G.) » thererore we

D (K-(z %), K (z, x))= (. T),



For mzn , we obtain

DGW(QW(ZIX), ﬁw(z, ) = F\fw (),

and hence

0¢D, (K.-K.,)

A

A A
= Dy (Ko) -2D5 (Rw,Ka) + Dy (K

A N A
¢Ds (K -2B (Ru k) + Rule)

A - A N
= Ko ) 2K _(x.x) + K (x,x)

A A
= K, (x) = KaGex)

Thus, for m zZ = s

A A
0f K, (x=) g K,,\,(’»’C))

and hence
A

L Ko ixw) = Q (x.x), (zo)

m-—>oo

exists. Thus

f Dp(Re-ke) =0

m>Nn—>e

and sirultaneously

A n
L. Dq,n(%[z), Kolz2 - Kz, x)) =0,

™ >M->00

Thus
ray
L D (vw,K,(zwn)

M~beo w

exists and is equal to w(x) . Ir
we choose a point x  such that
w(x) ,}; 0 , then we have

2 A A
[#e[ Kyt x) D (0) € K (e, 0 Da)

A
Thus => K(x,x) >0

we see that ML,’-; Ky(z, %)
on a compact subregion of
Moreover, from

D&”(,I\(“Lm, ) = Qw (x,x),

From
this and the Schwarz's inequality,

A
we see that Dg (K (zx)) < e

hence 12 (z.x) € L: (&)

and moreover is bounded uniformly

in &G in & wider sense.

and

exists

, and
¥ 0

Remaining part of the Lerma 1is
that Kz, x) is a bounded sclution
of (A) on & . To prove this we

remark that g—ﬂ(z,x) #+ oo

for all
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points z (#2) € G . Let I,
be an analytic compact curve in G ,
surrouvnding a compact domain ,&, ,
in which the point =X 1lies. Nu(z, %)
1s of non-negative value on Y. and
is also on G.-Go . On the
other hand, on  Yw

A

thus

A N
s N, (0 x) > mam Nolzx),
Q.-G Y
A
because, it N (% %) A has its
Sup_ on Y. , then N, (z, %) ,
a-a, AR
as a function on @, — G, , has
o maximum at an irmer point on &
— & , which cgntradicts the sub-
har-r_?onicity of Na. (2. %) , Where

G is the_union_of two domains
G‘: and ’G}", , G, being the inver-
sioon domain of . Wwith respect to

¥ o Since Wz, x) = O on
, trom the subharmonicity of
"z, %) on  Gw - G we
have

A
Sup ﬁm(z,z) - nn;;:t N, f.2),

- 0

Thus, for =z € G, - &, ’
N
)/ ﬁ“(z,x)_s_,&.. Sup N (z, %)
P 0O r"’

™ -ps0

=L Aup (ax Q,,(z,t) —a—_”(z,x))

pry 8] r.
< oo,

A
Thus N (z. %) is boundec on
G-&G, . Un tne other hand,

N(z x) (z,x) A 1s bounded on
&, <« Therelore K (%, x) is
bounded on &, and G - G, , and

hence on @& . q.ed.

Theorem 5.1. Let ( be a non-
compact connected subregion of F
with an analytic relative boundary

. If there exists a non-constant
solution U () of (A) on G+C
such that U = © on C and
Dq.(U)( [ , then F‘_¢ OD .
Conversely, it F' ¢ Qp , then
we can find such a domain G and
a solution [J (=) of (4).

’

Proof. By the Lemma 5.4, we may
assume that 0% [J(z) €1 in
, and  sup U) =1 . Let
V (=) be G solution of (A), such
that V(=) = U (@) on G , =
on [ -G . V(%) is continu-
ous on F° and has piecewise conti-
nuous partial derivatives, and

DF(V) = DQ-(U) <teo,



Let Wy (2) be a solution
of (A) on P, , sucn that w,.()
=V &) on [ , Since M. (x)

is uniformly bounded solution of (A),
we may assume that (=) con-
verges to a solution w (2) uni-
formly in the wider sense on F .
, we have,

For wm 2 »m by the

Lerma 5,1,

Dp, () () 3 D (V) = DelV).

tend to o and

we have

Letting first m
next m to e 5

DF(M s Dp(V)<re .

Let H be a subregion of &G ,
on which U= > Yz . H has a
non-compact connected component H. .
In H, ,St z U > VY2 , thus
U@ * £ 8L H,y) . Hence, by
Theorem 4.1, Hy ¢ SOw , that is,
w(z, Hy) £ 0 | . Since «,(2)z0
in F. 8nd Z 7 on Yn((':))’Hn M,
we have, by Lemma 2.1, on H ™5 H,n Fa,
wnl® 2 £ walz, H)
Hence, for m - oo ,

w(® X + w(=zH,) ¥ 0.

we have

Thus 4 & ¥ O and hence (%)
is non-constant Dirichlet-trinite
solution ot (A) on F' , that is,

Fé Op -

Conversely, if we assume F ¢ Op ,
then it happens only two cases:
either 1) there exists at least two
linearly independent solutions of
(A), being non-constant and Dirichlet-
finite on F , or 2) such a function-
al space is one dimensional,

It the case 1) happens, then we
shall treat the problem in the fol-
lowing way. Let WU (<) and  U,(z)
be two linearly independent solutions
of (4), being non-constant and Diri-
chlet-finite on F , then there are
a number m and a point Z, € F |

such that u«,(z)== W,(z,) and
M) owmoug () . Let U
= U, (2) ~ m Uy () , then [Ulz) is

a non-constant Dirichlet-rinite solu-
tion of (A}, being [U(z,) = o .
Without loss oI generality, we may
assume that Ul >0 for a
point =z & F . Then, as the de-
sired non-compact connected subregion
G orf [ , we can take a connected
component ot a point-set on which

U@E)> Ulz,) =0 . Then
Dg(U®) = D (U)

7z

ana U@ =zo on  (boundary

of G ).

Suppose that G+C = .G is
compact, then we can find such a do-

main &, that G, 1is compact and
G>G and that C does not
touch the boundary C, or Gy .
Obviously U € 17(G,) , and
there exists the reproducing kernel

function Kg (2, ) defined in
Derinition 2.3 on Gy . Thus we
have

U(zl) = DG—‘ (U(z); KG.l (z; z'l))
Dy, (U) Kg, (=1, 20).

Since K(r, (=, =) is uniformly
bounded for zy €&, Uz is a
finite solution of (A) on G , being
“w(z) = 0 on C . This implies
that U® =0 on G , which is
absurd. Thus G 1s8: non-compact
connected subregion of F and Uk)
is the desired solution of (A) on

°

A

In the case 2), we have

KF(z,S) =¢@ 9,

2,
where ()€ L(F), Dely) =1
and is non-constant. Suppose that
KF(ZI;I)  m KF (z, 82) I'or any
ze F holds, even if we choose
two points &y and &, (€ F) what-
soever, where = 1s a constant,
then we have

9Biy=m ?(51).

Since Ty and S2
we have m =1zx1 , but am =-g

does not arise for Kp(z,;) Z0 o
Thus m =1 , and hence ¥(=x) =
constant, which is absurd. Thus
there are two points %, and S
such that

Ke (2 %) #m Kz (2 22)
and

are arbitrary,

KF(zoa ) = m KF (z"; %)

for a suitable point X, on oo,
Thus, 1f we put

U(Z.) = K-F(Z/;]) - m KF (Z,_;L) y

and if we choose a non~compact con-
nected subregion G of [ which
is a connected component oi a point-
set satisfying [U(=) > O , then we
can conclude that G and [J{2) are



the desired domain and function as . .
in the case 1). g.e.d. f=M ‘LZGW, on which w>M

S6. OB and Op - = 0 1{ zeW, on which « <0,
Theorem 6.1, If DeltN= LPdid}(w = w \{ zeW,; omwhih osws™M,
and F € Ox ., then F € 0Q .
Proof'. Obviously we have Then we have DF(T) D (u) < 00 ,
Q (z,Fn) = ,Q,”Lz (e, Fe) and Dg(f, » ; o , since
m
__1
=- Yr“” Ju (3.2) ds, o> Dy (§,u)=M ﬁwll’udxd};
Ka(2) = 2L (NG, 2 - 3.(3,2) Dw,lf,w) =0 ;
d
— N“(QZ) =0 on r'v-v. o
co)Dwa(j’,'u.) = Dwa(u,u)

Hence we get

QM(Z'/ F‘bﬁ) = Sr“% Km (S,Z) ASS

[\

Dw (u.,u.) Z 0.

Let Uw be a continuous function

= DF“(L K (S’z’))g . such that [, = § on F-Fm and
Uaw 1s a_solution of (A) on

then { U.} 1s a uniformly bounded

Thus, by the Schwarz's inequality, sequence, and hence we_ can select
we have aLiubsequence of {Uﬁ} such that
: = exlsts and is a
0¢8) (e Fo) (Kule) *p (1. 0) teUn,= U U
bounded solution of (A). For simpli-
By the assumptlon.of theoren., right city's sake we shall retain the ogi-
hand sidihvanish whenom tends t;) ginal surfices. By Lemma 5.1, we
o .« Thus, Fe 00 . q.e.4. have, for wm >
Be (Uw) € D tumy ¢ D (f) <eco.
! 6.3. If FeO w F F
woorer: 6.9, B Thus, L. D (Un) exists and is of

then FC‘.OD o

Proof. Suppose that F&O t'inite value D ‘U) . OUn the

other hand, D,,-(U,..,U.,. U.) =

and F € QOp then, by Theorem
5.1, there exists a pair (G, U=) for am>m » thus D (
such that (G- 1s non-compact connected -U.) =D U, U,) ~ UM u
analytic subregion of F and w(z) DF(U"‘ U-) F( V) Ft e ”>/
is a non-constant Dirichet-finite
solution of (A) and u(z) 0 on from which we may conclude that U
. Then on ( tnere exists a converges in a stronger sense. Since
non-constant bounded Dirichlet-finite D(u)< & , we have the so-called
.soluéion (=) of (A) belng VUz)=0 weakly convergent property:
on by Lerma 5.4. Therefore, b
Theorem 4.1, G € SOw and h;ncg, L. D (U, ) = DF(U,u.) <oo,
by Theorem 4.2, "f ¢ Og , wkich Mmoo
i1s absurd, qe€.d,
ALt On the other hand, we have
ernative proof of Theorem 6.2,
DF(Un,ﬂ)t DF' (Un)“)*DF_F(TIu)
Suppose that F ¢ Op , then hod
there exists a non-constant Dirichlet- =D w) + D w
finite solution w of (A) on F, . F"(r' ) F-F, (T )
Without loss of generality we may
assure that the point-set on which =D (f 1") +°'
“w 7o 1s not empty, since we may
consider the function -—u if
necessary. Let W be a compact sub- And hence we have
region of F , on which w>o , .
and M be equal to S“;f w(z) >0 . (Ul“') $o0,
We construct a continuous plecewlse
continuously dirferentiable function thus [J 1is not identically zero.
as follows: Thus we obtain the desired result:
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implies

F ¢ Og .

geeeds

F¢ Op

Remark 1. We can arrange our re-
sults in the following schema:

0,0 0¥c0,=0,=0,C0p = 0,

2. For any admissible P(z) we
obtain the above schema, but it
seems to us _that we need a special
choice ot P(2) in order to
bring more precise results. If
there exists a single-valued Dirich-
let-t'inite non-constant harmonic func-
tion ﬁJzJ on [ , then we have

if we choose
(1% 3h
%: « Proof is easily per-
formed by conQidering the fact:

“F'( ( a))d'xd‘é <& 15 equi-

valent to Dp(”) “ ded’-(w .
In this view-point we nay say that
g pair (F, P) consisting of a given
Riemann surface ¥ and an-admissible

function P & has been classi-
fied, and thus we may write Or(E) |
where T 1is or w or K .

3. For a non-linear partial dif-
fsrential equation of elliptic type
we shall discuss the results elsewhere.
In this case the arguments and results
rust be modified,

4., It P () 2, (B =P @)
are two admissible functions in our
original case, then we have the fol-
lowing results:

1) O@-(Pt) 2 O&(P&),
11) 0, (B)YC 0u(B),
111) Oy (P)) C O (P,),

These results were obtained already
by Bergman-Schiffer [2] without con-
siderations of null-boundary. They
considered only the case of planar
schlicht compact analytic domains,
but their proofs remain valid also
in case of Rlemann surfaces.

5. In a schlicht domain we may

take P(z) without the conto drryal-
1y covariant property: F[@=P&’) |§%E ,
for exarple, constant % (¥0) . In

these cases our arguments remain
valid with some exceptions, but our
main results, that is,

OQCOmz Q_n_= OB C OD = OK

also remain valid. Moreover we can
def'ine other several Hilbert spaces
with the various different metrics,
and we can detf'ine other several cor-
responding kernel functions and hence
other sorts of null-set. Cf. M.
Schirfer [1], Bergman-Schiffer [2]

§ 7. Riemann Surfaces of Finite

Genus,

Let B be a compact
, being compact subre-

Lerma 7.1.
set on Py

gion of w , and (=) be an ar-
bitrary bounded solution of (A) in
(B E « A necessary and suf-

r'icient condition in order that ?(z)
is prolongable on [ 1in the sense
of (A) is that w(z, E, ) =0 -

Proof. Sufficiency. Let [T ve
a finite number of Jordan curves,
surrounding E , and belonging to
‘F; with boundary C , and f be
, where [ is the do-
1n bounded by [T . Then w(zER)
= 0 means that w(z, 7, F )< ¢t
for any [ sufficlently near to
€E . Let 9,(z) be a solution
of (a) in F; , coinciding with
$(z) on C, . Il we intrcduce
the function £ (z, C, /) ,
we have I‘rom Lemma 2.1, [9o@]
(z, , where M. Aﬁrl(f(zﬂ »
Let (2= TC‘) P th.gn ,Q(Z)l
sM+rM@ e 2M in
Therefore if we put_ U= Q(Z)o-zﬂw(z I'J")
then U 20 in F, ; thus &(z)
Z2-2M@(=) Z-2M& and hence F@zo
in g,-E -

Similarly if we consiaer the tunc-
tion V= gf-2Mw , then &(z)
£2M w(x) in F - Fp , and
hence &(z) €0 in Fp - € .

Thereiore P& = in f-E .
Thug, if we define
in & and P@=P(z)

then ¢ (=) is bounded and satis-
fles 49 =F¢ in E .
Necessity. There is at least a

point 2 in f, -E
w(z,E,f- E) 70 . On the other
hand, q;(z,E is bounded in
h E R an& therefore, by the
assumption, «wl(z, E, F - must
be prolongable on E and of finite
value., On the other hand, «w =0
on C . Since Fy 1s a compact
subregion of R w =0 on
Ft » which contradicts
qQe8ode

, such that

w>o

The following theorem yields an-
other surticiency proof of Theorem
5.3 in the case of' Riemann surrace of
tinite genus.



Theorem 7.,1. Let F be a Riemann
E

surfece of r'inite genus, and
a compact subset of F ., Then

F-E€Ow implies [F-g € Op

and vice versa.

Proof., Ir F - Ec¢ O‘O and if
4 (z) 1s an arbitrary bounded non-
constant solution of (A) on the nei-
ghbourhood T, of , then from
Theorem 7.1 we see that . (z) is
prolongable on = with regard to

(A) and is of finite value on &

On the other hand, L=z, E)

=i £ (z,7n,Fn) 18 & bounded solution

of (A) on F; , therefore ,.Q.(z,g)

is prolongable on E and is ot finite
value on E . Thus ) (z, &) is
a riaite non-negative solution of

(A) on the whole F' , and hence from
the subharmonicity of £ (z, E)
it reduces to a constant, that is,
zero, This shows that F-E€ Op .

The converse is immediately obtain-
ed by the necessity parts of Theorem
3.3 and Theoren 3,1. g.e.d.
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