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ON THE EXISTENCE OF ANALYTIC MAPPINGS

BY MITSURU OZAWA AND NOBUYUKI SUITA

1. Let R be an ultrahyperelliptic surface defined by y2=G(x) where G(x) is
an entire function having only an infinite number of simple zeros. Let S be a
similar surface defined by y*—g(x) with a similar g(x) as G(x). We already dis-
cussed the existence problem of non-trivial analytic mappings of R into S [4].
The following theorem is central theorem in the existence problem of non-trival
analytic mappings.

THEOREM A. Suppose that there is a non-trivial analytic mapping of R into S.
Then there are entire h(z) and meromorphic f(z) satisfying g°h(z)=f*(z)G(z) and
vice versa.

Hiromi and Muto [2] proved the following

THEOREM B. Suppose that the order of N(r, 0, G) is finite and the one of
N(r, 0, G) is finite positive and that there is a non-trivial analytic mapping of R
into S. Then the corresponding h(z) is a polynomial of degree ordA/"(r, 0, G)

In this paper we shall prove the following

THEOREM 1. Suppose that the assumptions of Theorem B are satisfied and
further that G is an entire periodic function of finite order. Then the existence of
a non-trivial analytic mapping of R into S gives the following relation

f 1,2 if ordG^2,
ord G=v ord N(r, 0, g) y= \

11,2,3,4,6 if ordG=2.

There are examples which show the occurence of all the possible cases. In
order to prove the above theorem we need several lemmas on number theory.

We shall give an application of Theorem 1.

THEOREM 2. Besides the assumptions of Theorem 1 assume that g is also
periodic. Then every non-trivial analytic mapping of R into S reduces to a con-
formal mapping of R onto S.

Our results do not depend on any representations of R and S. We can for-
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mulate them in an intrinsic manner. There are lots of related results. If G(x) is
(eHW-γ)(eH^-§) with a polynomial H(x) and γd(γ—d)ΦQ, then 0<ordg<oo and
the existence of non-trivial analytic mappings of R into S imply ordG=uordg,
v = l or 2 [5]. Renyi [6] proved that g°h(z) with periodic G(z) and a polynomial
h(z) implies degA=l or 2. In this tendency we can extend the Renyi's result.

THEOREM 3. Let G(z) be an entire periodic function, g(z) a non-constant entire
function and p(z), Q(z) polynomials. If g°P(z)=Q(z)G(z), then

THEORE 4. Let G(z) be an entire periodic function of finite order and with
only simple zeros. Let g(z) be an entire function of non-zero finite order and with
only simple zeros. Let f(z) be an entire function of order less than G. If g°P(z)
=f(z)2G(z) with entire P(z), then P(z) is a polynomial of degree less than 3.

2. Lemmas on number theory

LEMMA 1. The cyclotomic equation is irreducible over the rational number field.

LEMMA 2. The degree of the cyclotomic equation, which corresponds to the pri-
mitive nth roots of unity, is larger than 2, unless ^ = 1,2,3,4,6.

Lemma 2 is very easy to prove by using the so-called Euler's function ψ(n).
See [3], [7] for Lemmas 1 and 2.

LEMMA 3. Let η be exp(2;rt/«). If ^^1,2,3,4,6, then there are infinitely many
triples of integers p, q, r such that

for any given ε>0.

Proof of Lemma 3. Assume that

Then

Since η and η are nih primitive roots of unity,

2π
-- hi
n

should be a factor of the cyclotomic equation. By Lemmas 1 and 2 n should be
1,2,3,4,6 in this case. Hence for ^1,2,3,4,6
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for any non-zero triple (p, q, r). Since cos(2π/n) is irrational for «^1,2,3,4,6,
we have

0<
2ττ _ 2ττ . 2ττ

q sin h 2r cos — sm —
n n n

for an infinite number of pairs (q, r). Take p=r. Then

0<
2π ,

COS h?" COS
2

Thus for an infinite number of triples (p, q> r), p=r

3. Proof of Theorem 1. We may start from

Here we may take q as the canonical product of its zeros. By Hiromi-Muto's
theorem B h(z) is a polynomial of degree n such that

ord N(r, 0, G)=n ord N(r, 0, g).

Further since G and g have only simple zeros f(z) is entire and has a finite
number of zeros. We may assume that

Let τ be the period of G. The assumption apφQ leads us to a contradiction. This
is our first aim. Let z3 be the /th roots of h(z]—w. If w is sufficiently large,
then ZjΦzk for jΦk. Further

Let φ(zj be ^2 and φ"1(zz) = zί. Consider

φ-\φ(φ-\φ(zl + r) + r) - r) - r) =

Then with η=exp(2πiln)

= ^2 ^ 37-37^^ 1 gp,! y-yP 1 / 1
η n ηp+2 z^-P-1 n ηv+1 z2

n'p \02

w-p h l

and
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n η

^ 1
^ n-*~ n-*-1 n~*+ln η

Assume z^ — z^kτ is a zero of GO). Then L(zι) is also a zero of G(z) satisfying

Hence L(zι) is a zero of G(z) being very close to Zi. Hence around z0 there is an
infinite number of zeros of G. In order to prove this we make L(zQ+kpτ), p=I,2, -
and reduce them around z0 by subtracting kpτ. Then they are different and are
close to z0. This is a contradiction. Hence ap must be zero and hence

We next prove #=1,2,3,4,6. Let z be a zero of G. Then {z+kτ}, k=Q, ±1,
is a set of zeros of G(z). Further #(^-1(z) + ̂ r) = z+^3τr and φ\φ-\z) + mτ} = z

are also sets of zeros of G(z). Therefore there are three vectors τ, ητ, rfτ
such that z+pτ+qητ+rrfτ indicates a set of zeros of G for any triple of integers
p, q, r. If #=£1,2,3,4,6, then Lemma 3 gives a cluster point of zeros of G, which
is a contradiction. Thus we have # = 1,2,3,4,6.

Next we prove that if #=3, 4 or 6 then

ordN(r, 0, G)=2.

In order to do it we pick up a zero z of G. Then we have zeros of G by z+kQτ
with integral coefficient k0. Further φ(z) = ηz is a zero of G and hence {ηz+ktf} is
a set of zeros of G. Then returning back to z by φ~l(z) we have a set {z+η^kiτ}
of zeros of G. Repeat this process for ηp,p=l,2, •••,#—!. Then v e have a set
of zeros of G, whose form is {z+η~pkvτ}. This set with />=0, 1, •••,#—!; &p=0,
±1, ±2, ••• is called the zero point lattice jC(z) attached to z. We construct lat-
tices for all zeros of G. X(z^ may coincide with £(zt) for mφβ. This occurs if
and only if zg€j?(zm). If there are infinitely many different lattices, then in any
fundamental parallelogram P with vertices a, a-\-η~lτ, a+η~~lτ+τ, a+τ there appear
infinitely many zeros of G. Of course we consider P as a torus. This is a con-
tradiction. Each X(zm) has Λmr2 points in \z\^r with a positive constant Am if

Thus N(rβ, G)—Ar2 with a positive constant A. Therefore orάN(r, 0, G)=2.

We prove ordN(r, 0, G)=λ. orάG^λ is trivial. Assume that ordG>Λ. Then
by ordG<oo G(z) has the form

where E(z, am) is the Weierstrass prime factor
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and Π is taken over all zeros of G excepting #m=0, y=0 or 1. Since ordΠ
=ordN(r, 0, G)=λ,

We put H(z)=aμz
μ+aμ-ιzμ-l i ----- hfli*, aμ^Q, μ^[λ\ + l. Then the asymptotic be-

havior of eH™ around 2=00 is well known. It has

Thus on putting aμ=\aμ eiβf

Cθ

controlls the asymptotic behavior of eHw. If cos(θμ+2μπ)>Q, then £HC2)->oo as

|0#(z)| ̂ 0|α|r

If it is negative, then £H(2°->0 as

G is uniformly bounded for the τ-direction, that is, G is bounded along any curve
z=z0+fr, t>0, t-+oo and \z*\^M. On the other hand |Π|^^+e, ε>0 for r^r0.
Further we can use the the following estimation [1, p. 73]: For every ζ>0, ξ >0
there is a K(p, ζ, 6) such that

\og\U(reiθ)\>-K(p,ζ,ξ)AV(r)

for ζR^r^R, except perhaps in circles the sum of whose radii is at most ζR,
provided that R>R0(ζ,ξ). Here A is a constant and V(r)=rp^ with the Lindelδf
proximate order p(r) of Π. Of course p(r)<λ+ε for every ε>0 if ri^r0 Hence in
any sector in which eH-+oo G is not bounded. Further in any sector in which
eH-*ΰ G tends to zero as z->>oo. But G does not tend to zero for the τ-direction.
Thus the τ-direction should be a direction defined by cos(#Aί+2μτr)=0. Since μi^U]
+ 1, there are ιf"'τ9 ^/4τ-directions such that ιf"Φ±l9 rf^φ±\ and G-»0 uniformly
as z->oo along these two directions. These directions along which G-»0 as 2->oo
are equally spaced around 2=0. Hence we may take them so that ?f/4τ, τf'*τ lie in
the opposite side with respect to the τ-direction. Hence G(z) is bounded in any
half period strip by the periodicity of G and so in the plane. This is a contradic-
tion. Thus we have

This completes the proof of Theorem 1.

4. We shall show that theorem 1 is best possible. For y=l, it is trivial. For
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y=2, take g=cos<Jw, h=z2, f=l and G=cosz. For y=3 set

cos2π(z+nω)\ 8φ(z)=
COS 4τmω )'

It is easy to verify the convergence of the infinite product in the right hand side.
Let M(R) be maxιz\=R\φ(z)\. Since ψ(z) has period 1, M(R) is taken by ψ at a
point on the arc \z\=R, |9te!^l/2. Further ψ is even. So we evaluate \ψ(z)\ for
z=x+iy, I Λ? I ̂ 1/2, y>0. We have

\Φ(*)\£\l-

and

where Π7 indicates the product omitting n=0. Hence for large ?/

and

2/8 + ̂ 25vj) lθg (1+ e**«^+-e-*™π™}

Since ^/~^ for large y, we have ord0^2. On the other hand ψ has double zeros
at z=3nω and simple zeros at z=(3n+l)ω, (3n+2)ω. Considering the periodicity
of φ, we see that the convergence exponent of its zeros is equal to 2. Hence
ord^=2. We define G as

Let αv be the images of the points n+mω under w=z*. Set

and

Thus a solution is constructed.

For y=6 we put
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Γ( } = (ψ(2z)ψ(2z+ω)φ(2z+2ω)γ^
^ ' (ψ(z}φ(z+ω)φ(z+2ω}Y'ί

and replace the «„ by the images of zeros of G under w=z*. Set

and

Thus a solution is constructed.

For v=4 set

)=π ι+ cosh

and

By taking av in the expression of g as the images of zeros of G under w=z* and
h = z\ we get a solution.

5. Proof of Theorem 2. By Theorem 1

1,2 if ordG^2,
ord G = u ord Λf(r, 0,

' 1,2,3,4,6 if ordG=2.

Every periodic function is of order 1̂. Hence ord g^l. Further ord g=orάN(r, 0, g)
by the proof of Theorem 1, since g has a zero and hence oo>ord N(r, 0, 0)^1 by
its periodicity. If ordG=2, then v should be 1 or 2. Hence in any case v should
be 1 or 2. If v=l, then we have the desired result. Assume v=2, that is the
degree of h(z) is equal to 2. Then we put

We have

Since g(^) is periodic with period 5 and f(z) has only a finite number of zeros,

are two zeros of G(z) if g(wo)=Q. Hence
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1

By the periodicity of G(z) we have a cluster point of zeros of G, which is a con-
tradiction. Thus we have the desired result.

6. Proof of Theorem 3. In order to prove Theorem 3 we again need the
following fact: Let τ be the period of G. The ±τ directions divide the plane into
two sides. If G(z) is bounded in a half period strip, then this is true in a half
plane lying in one side which contains the half period strip.

Let if be the degree of P(z). We may assume that

Consider the equation P(z) =P(zύ + kτ\ k: integer >0. If k is sufficiently large,
then there are υ solutions z^k, ^=0, 1, •••, u — 1, z0tk=Zo+kτ. Then

Then

This means that G(^) is bounded uniformly for a direction

τe2*u/v.

If ι^^3, then ^=1 and ^=y—1 give two directions which are not parallel to ±τ
and lie in the opposite side with respect to the τ-direction. Hence G(z) is bounded
in both of half period strips. This is a contradiction.

7. Proof of Theorem 4. Evidently f(z) has a finite number of zeros. If f(z)
is a polynomial, then theorem 2 gives the result. Hence f2(z)=Q(z)eH<z\ degH
<ordG. Q is a polynomial. Let H(z) be

hNzN-\

q=άegQ. Then

If p^3, then
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Thus by the periodicity of G(z) in any direction

log G(z)=O(zN] uniformly.

Hence

m(z, G)=O(rN).

Since JV<ordG, this implies a contradiction.
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