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SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE VECTOR
OF A EUCLIDEAN SPACE OR A SPHERE

By KENTARO YANO

§0. Introduction.

Liebmann [11] and Siiss [19] proved that the only convex hypersurface with
constant mean curvature in a Euclidean space is a sphere. To prove this theorem,
we need integral formulas of Minkowski in which the so-called position vector
plays a very important role.

Recently various attempts have been done to generalize this theorem of
Liebmann and Siiss to the case of hypersurfaces in a Riemannian manifold. See,
for example, Hsiung [3], Katsurada [4, 5], Koyanagi [10], Otsuki [17], Tani [20, 26],
Yano [21, 22, 26]. In these papers, authors assume the existence of a vector field in
the Riemannian manifold or that of a vector field along the hypersurface which
plays the role of the position vector in the case of hypersurfaces in a Euclidean
space and prove that, under certain conditions, the hypersurface under consideration
is umbilical.

When the ambient Riemannian manifold is a general one, it is almost impossible
to give conditions under which the hypersurface is isometric to a sphere, but when
the ambient Riemannian manifold admits a scalar function » such that Fliv=f(v)g,
where ¢ is the Riemannian metric and F the Riemannian connection, we can give
conditions under which the hypersurface under consideration is isometric to a
sphere. (See Yano [22]).

The attempts have recently been started to generalize the above results to the
cases of general submanifolds in a Riemannian manifold by Katsurada [6, 7, 8],
Kojyo [7] and Nagai [8, 12]. They assume that the ambient Riemannian manifold
admits a conformal Killing vector field and that this vector field is contained in
the linear space spanned by the mean curvature vector of the submanifold and the
tangent space of the submanifold.

The present author [24] studied similar problems under conditions a little bit
weaker than those of Katsurada, Kojyé and Nagai.

The main purpose of the present paper is to determine all the submanifolds
in a Euclidean space or in a sphere which satisfy the conditions imposed by the
present author in [24].
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§1. Preliminaries [9].

Let E™ be an m-dimensional Euclidean space in which an orthogonal coordinate
system is introduced. A point P of E™ is represented by the so-called position
vector X from the origin O to the point P.

Let M™ (1<n<m) be an n-dimensional differentiable submanifold covered by
a system of coordinate neighborhoods {U;#®} and imbedded differentiably in E™
by a vector equation

11 X=X (u"),

where here and in the sequel the indices a, b, ¢, d, e run over the range {1, 2, -, n}.
We put

(1. 2) Xb =abX; 81, =6/6u"

The X, are # linearly independent vectors tangent to the submanifold M™.
Assuming M™ to be orientable, we choose m—#» mutually orthogonal local unit
vectors C, normal to M™ in such a way that Xj, ---, X,,, Cp41, --+, Cs, form a positive
orientation of E™, where here and in the sequel the indices x,%,z run over the
range {n+1,---, m}.

We put

1.3) geoo=2Xc* X,

where the dot denotes the inner product of vectors in E™ and denote by {%}, V.,
and Ky»® the Christoffel symbols formed with g, the operator of covariant differ-
entiation with respect to {.%}, and the curvature tensor of the submanifold M"
respectively.

Then the equations of Gauss of M™ in E™ are

a

1. 4 Vch=ach~{c \

] Xu = H;bxczy

where He”=H," are components of the second fundamental tensors with respect
to the normals C, and those of Weingarten of M™ in E™ are

1.5) VeCy=0.Cy=—H.*yXo+ Ley)"Cy,
where
(1. 6) Hp,=H"=H,Vg",

¢*® being contravariant components of the metric tensor and
€mn Ley®=—Ls"

are components of the third fundamental tensor.
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Now, equations of Gauss, Codazzi and Ricci of M™ in E™ are respectively

(L. 8) Kae®=Hi":Ho" — H:Ha",

(1.9 VaH,"y—VeHs" + Ha" Loy — H"sLay" =0,

and

(1. 10) VaLey® —VeLay® 4 La:® Ley? — Lex® Lay* + Ha% Heoo™ — H,%, Hyo®™ =0.

Let S™! be a sphere in E™ with centre at the origin and with radius » and
we denote the parametric representation of S™-! by

(1. 11) X=Xz,

where here and in the sequel, 4,1i,7, £ run over the range {1,2, ---, m—1}.
We put

1.12) X, =0;X, Gji =Xj‘X1,, 0;=0/0x",

and denote by F, the operator of covariant differentiation with respect to Christoffel
symbols {;*;} formed with G;. Then equations of Gauss and Weingarten of S™!
in E™ are respectively

(1. 13) V,}(L:a,)g—{jhi}xﬁ—c@ic
and

(1.14) 7, C=0,C=cX,,

where ¢=1/r and

(1. 15) C=cX

is the unit normal to the sphere S™1,
We take an arbitrary fixed unit vector V in E™ and put

. 16) v="-X,

then we have

Vo=V-X,
Vilo=V-V,X,=V-(—cG;C),
that is,
1.17) Vil o=—c*Gjy

by virtue of C=cX, [14]. In the sequel, we put
1.18) v;=Vw, v =0,G*,
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then we have
1. 19) Vit =—c?vol.

We consider an n-dimensional differentiable submanifold M® of S™-! covered
by a system of coordinate neighborhoods {U;#% and imbedded differentiably in
Sm-1, We represent it by

(1. 20) zh=xMu®).
We put
1. 21) By =0pz™

and denote by C,* m—1—n mutually orthogonal local unit vectors normal to M™"
in S™1 where here and in the sequel #,»,w run over the range {n+1, ., m—1}.
Then the metric g, of M™ induced from that of S™! is given by

(1. 22) 96 =G j: B By'.
The equations of Gauss and Weingarten of M™ in S™ ! are respectively
h N a
VeBy'=0.By* +1 . . BByt —B,*
ji cbd
(1. 23)
=he"Cu",

he™ being components of the second fundamental tensor of M™ with respect to the
normals C,* and

h
ji
= hcauBah + lcuvcvh':

Vccuh = acCuh + { } Bcjcull'

(1. 24)

..’ being components of the third fundamental tensors of M™ with respect to the

normals C,*.
The equations of Gauss, Codazzi, and Ricci of M™ in S™-! are respectively

(1. 25) Koy =c*(039c0—0¢ gav) +ha"uheo” —heuhav”,

(1. 26) Vahevo—Vehaso—lav" Fevu+lev™ havu=0,

and

1. 27) Vale® —Velan® +lawles” —lew™lan” +Ra"olica™ —he"vhaa® =0.

Now we regard the submanifold M" of S™! as a submanifold of the Euclidean
space E™, then we have

(1. 28) X=X(x"u")),
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(1.29) Xy =By X,
and consequently

VeXo=(VeBy") X0+ B/ ByV, X,
or
(1. 30) VeXo =hep"Cu? Xs—cgesC

by virtue of (1.13), (1.22) and (1. 23).
If we regard

(1. 31) C.=CtX,, and Cp=C=cX
as normals to M™ in E™, we have, comparing (1. 4) with (1. 30),
1. 32) Hy"=he", Hy™=—cgep.
From the first equation of (1. 31), we have
VeCu=(FC) Xs+ B CuiV, X,

or
VeCu=(—h"uBa* +1ea"Co) X,
that is,
(1. 33) VeCu=—h"uXa~+1cu’Co.
Comparing (1. 5) in which y=# with (1. 33), we find
(1. 34) Hw=h, Lo’ =1, Ley™=0.
From the second equation of (1.31), we have
(1. 35) VeCn=cX..

Comparing (1. 5) in which y=m, that is,
VeCn=—HnXo+Len"Cs
with (1. 35), we find
(1. 36) Hp=—cé, L»"=0.
Thus, equations of Gauss and Weingarten of M" in S™! in E™ are respectively
(1.37) Ve Xy =hep"Cu—cgerC,
(1. 38) VeCu=—h"uXa+1:4"Co,
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1. 39) VC=cX.,

g, her” and I, being respectively the first, second and third fundamental tensors
of M" in S™1,

§2. Mean curvature vectors of M" with respect to E™ and S™ .

The mean curvature vector of M™ with respect to E™ is defined to be
1 1
2.1 =g Xy = — H,*°C.
n ”n

Thus the mean curvature vector of M™ with respect to E™ is an intrinsic normal
to M". If this mean curvature vector vanishes identically M™ is said to be
minimal in E™.

Suppose that M™ is a submanifold of a sphere S™! in E™, then the mean
curvature vector of M™ with respect to S™! is defined to be

1 1
(2. 2) ; QCchBoh= Z ha’aucuh'

Thus the mean curvature vector of M™ with respect to S™! is an intrinsic normal
to M™. If this mean curvature vector vanishes identically M™ is said to be minimal
in S™1,

Now, for a submanifold M™ of S™! in E™, we have

Xo=By"Xs
and consequently

@3) %gcmxﬁ(%gc%&h)xh—czx

Thus we have

LemMA 2.1. Let M"™ be a submanifold of a sphere S™*' in E™. Then the
difference of the mean curvature vector of M™ with respect to E™ and that with
respect to S™* is in the direction of the radius vector of S™ .

LemMA 2.2. Let M™ be a submanifold of a sphere S™ ' in E™. A mecessary
and sufficient condition for M™ to be minimal in S™* is that the mean curvature
vector of M™ with respect to E™ lies in the direction of the radius vector of S™!
[1, 2, 13, 18].

We now assume that the mean curvature vector of M™ with respect to E™
never vanishes and choose the last normal C, in the direction of the mean curva-
ture vector. We then put
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(2 4) Cm = C, lq.;:bm = H—cb, Lcmx = Lc‘l‘-

Then from

l QCb Vch = "];‘Haazca:
n n

= HCot - HLFC,
we find
(2.5) H,**=0,
and
(2.6) -3;— gV X = —};HJC.

Thus if the mean curvature vector is parallel with respect to the connection
induced in the normal bundle, that is, if the covariant derivative of the mean
curvature vector

7, (% HJ’C) - %(VCH;’)CJF %Ha“(—Hc”XmLLc”Cx)

is tangent to M", then we have
2.7 H,*=const.=x0, Lo=0

by virtue of L,™=L»™=0.

We next assume that the mean curvature vector of M™ with respect to Sm-!
never vanishes and choose the last normal C,_,* in the direction of the mean
curvature vector. We put

(2~ 8) Cm—lhzc/h’ [{cb m—1 zhcby lc m—1u=lcu-
Then, from
l cb h — l au( h
7 g Ve By = " hq Cu
— l Do C, __1_ haC'™,
n n

we find
(2. 9) haf":O

and
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l_ ch h_l ah
(2. 10) 0By = ha'C,

where here and in the sequel 7,s,¢ run over the range {n+1, ---, m—2}.

Thus if the mean curvature vector of M™ with respect to S™! is parallel with
respect to the connection induced in the normal bundle of M™ in S™!, that is, if
the covariant derivative of the mean curvature vector

Ve (l hooC’ ") 1 Peha®)C'™ + 1 ha®(—hl By +1:"Cy")
” 7 »

is tangent to M™, then we have
2.11) heo®=const.=0, I."=0

by virtue of /,»1=0.

§ 3. Integral formulas.
Let M™ be a submanifold in E™ We put
3.1 X=X*+Cra®
and differentiate this covariantly along M". Then we obtain

Xe=(Ha"Co)v* + XoV e +(— H" s Xo+ Lea' Ca® + Colead®,

from which

3.2 Pev® =08 + H" za®
and

3.3) Vea® = — Hep"v® — Ley®a?,
from which

3.4 Vav® =n+Hy"za”.

Assuming M™ to be compact and orientable and integrating, we have from
equation (3. 4)

(3. 5) S (4 Hy%a™)dS=0,
M
where dS is the surface element of M™.
On the other hand, we have
Vol Hp™v?) = (Vo I, )" + EL (08, + [0 5ar™)
=V "W+ Ho*+ Hop H ya®
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by virtue of (3.2), from which, by integration,
3.6) [ (PB4 Hot+ o205 =0.
Mn

If we assume that the mean curvature vector of M"™ in E™ is parallel with
respect to the connection induced in the normal bundle, we have (2.7) and conse-
quently we have from (1.9)

VoHy* =V, H,*=0.
Thus (3. 6) becomes

3.7) S (Ha®+ HopH30")dS =0.
Mn
Now subtracting (3. 5)x (1/n)H,® from (3. 7), we obtain
@3.8) S <chHc”xa’— 1 Hb”Ha“za”)dS=0.
un ”n

Let M™ be a submanifold of a sphere S™*! in E™. We put
3.9 v*=BM*+-Clra”
and differentiate this covariantly along M". Then we obtain
— 0B =(hea " Cu)0° + B Vv +(—he®u B + e’ CoM )™ + Cu Ve,

from which

(3.10) Vv = — 063 + huo™
and

(3.11) Voo = —ho v —1"a’,
from which

(3.12) Vet® = —nc*v+houa®.

Assuming M™ to be compact and orientable and integrating, we have from
equation (3. 12)

3. 13) S (— 1620+ ha®ue®)dS=0.
Mn
On the other hand, we have
Va(ls"0°) = (Palto™)0° + b ™(— c200%, + halua™)
= (Vahba)ﬂb — C2U}laa + hcbhwuau)
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by virtue of (3.12), from which by integration
(3.14) S {(Pabis®0? — c*0ho® + hephua™}dS=0.
Mn

If we assume that the mean curvature vector of M™ in S™! is parallel with
respect to the connection induced in the normal bundle, we have (2. 11) and conse-
quently we have from (1. 26)

Valo® =Voha® =0.
Thus (3. 14) becomes

(3. 15) S (— e+ el ua)dS=0.
M7
Now subtracting (3. 13)x (1/n)4.* from (3. 15), we find

(3. 16) S (hcb/lcbuau— lm%nm) 4S=0.
M7 n

§4. Applications of integral formulas.

Let M™ be a compact and orientable submanifold of £™ whose mean curvature
vector is parallel with respect to the connection induced in the normal bundle.
We assume that

4.1 Hypza® =Hpa,  (Hon=Hsp, a™=a)

that is,

4.2 Hep 1@ oo+ Hop yora™ 1 =0,
Since

Ve Xo=Hx"C: and  X=Xu*+Cua®,
the assumption (4. 1) is equivalent to
4. 3) PeXp): X=Hepar.
If the assumption (4. 1) is satisfied, then integral formula (3. 8) reduces to
[ a(fmo— %Hfﬂ;‘) d5=0,

or to

. 4 S a (ch _ lHecgd.) (ch Ly gcb) dS=0.
M n n
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Thus, if « has a fixed sign, we have

1
(4- 5) Hy= ;Hddgcb
or

1
(4 6) H;b = 7 Jeby

2 being a constant, that is, the submanifold M™ is umbilical with respect to the
mean curvature normal, or M" is pseudo-umbilical.
Since

H’ca=ll5g', LcIZO)

we have, from equation (1. 5) of Weingarten,

1
VC=— TXC’
from which
1 1
C=— T X+ ¥ A
or
4.7 X—A=-IC,

A being a constant vector, which shows that the submanifold M™ lies on a sphere
Sm-1 with centre at A and radius [2]. Thus we have

THEOREM 4.1. Suppose that the mean curvature vector of a compact and
orientable submanifold M"™ of a Euclidean space E™ does not vanish and that we
take the last unit normal C, to M™ in the direction of the mean curvature vector.
If the mean curvature vector is parallel with vespect to the commection induced in
the normal bundle of M"™ in E™, Heza®=Hpa, and « has a fixed sign, then the
submanifold M™ lies on a sphere S™ 1.

The assumption
Hypoo™ =Hpa
or
Hog s+ oot Hog g™ =0

is satisfied if
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(A) a"1=0, ., @"1=0
or
(B) chn+1=0> Tty chm—1=0

is satisfied.
We first assume that condition (A) is satisfied. Then we have

(4‘ 8) X= Xava+Ca,

that is, the position vector X is in the linear space spanned by the tangent plane
to M™ and the mean curvature vector of M"™ with respect to E™. This is the
condition assumed by Katsurada [6, 7, 8], Ko6jyo [7] and Nagai [8] in their study
of submanifolds with parallel mean curvature vector.

On the other hand, we have, from (1. 37),

“4.9) 1 gV X = 1 A Cy—c2X
n n

and consequently, comparing (4. 8) with (4. 9) we find
(4. 10) v*=0, A =0,

which mean that the position vector X is in the direction of the mean curvature
vector of M™ with respect to E™ and the submanifold M" is a minimal submani-
fold of the sphere S™-1,

Conversely, suppose that the submanifold M™ lies on a sphere S™! and the
radius vector X of S™! is in the direction of the mean curvature vector of M"
with respect to £™, then we have

(4.11) X=rC
7 being the radius of S™-!, and consequently

4.12) r.C= %X

which shows that the mean curvature vector of M™ with respect to E™ is parallel
with respect to the connection induced in the normal bundle of M". Equation
(4. 11) shows that the condition (A) is satisfied and a=7 has a fixed sign. Thus
we have

THEOREM 4. 2. In order that a submanifold M" satisfying the conditions given
in Theovem 4.1 satisfies the additional condition (A), it is necessary and sufficient
that M™ lies on a sphere S™*' and the radius vector of S™' is in the divection of
the mean curvature vector of M™ with respect to E™. In this case the submanifold
M™ is minimal in S™ 1.

We next assume that the condition (B) is satisfied. In this case, equations of
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Gauss become

(4. 13) Ve Xy=HuC
and equations of Weingarten become

4. 14) VeCu=L"Co
and

(4. 15) VeC=—H"X.

Equation (4. 14) gives
4. 16) VaLeo* —VeLa" + Law"Leo” — Lew"Lav® =0,
which shows that we can assume that the L.,* vanish and consequently that
4.17) r.C.=0,
that is, the unit normals C, are constant vectors. Since
Ve(Cu+ X)=0,
that is
Cu- X=const.,

the submanifold M™ is on an (z+1)-dimensional plane E"*! in E™.
Since H. =19, A being a constant, we have, from (4. 13) and (4. 15),

‘7CX1; =2hch and VcC = —LX}

respectively, where X can be regarded as the position vector in an (#+1)-dimensional
Euclidean space, thus, from the second equation above, we have

V(C+2X)=0,

from which
C+21X=aB,

B being a constant vector and consequently the submanifold M™ is a sphere S”
lying in an (#+1)-dimensional Euclidean space E"*1,

Conversely, a sphere S” in E™ satisfies all the conditions stated in Theorem
4.1 and (B). Thus we have

THEOREM 4. 3. In order that a submanifold M™ satisfyiug the conditions given
in Theorem 4.1 satisfies the additional condition (B), it is necessary and sufficient
that the submanifold is an n-dimensional sphere.

Next, let M™ be a compact and orientable submanifold of a sphere S™-! in E™.
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We assume that

(4.18) hevuc® =hepe,

that is,

(4.19) Biey msa@® 1+ o By mesa™2 =0,
Since

V.By*=he"Cu® and v =B+ Cla",
the assumption (4. 18) is equivalent to

(4. 20) Gu(Ve.By v =hga.

157

If the assumption (4. 18) is satisfied, then integral formula (3. 16) reduces to

S a (hcbh”’ _ lhbbha“) 4S=0,
M7 n
or to
1 1
@. 21 S a<hcb— —h:gcb> <h”’— —hddgcb>d5=o.
MR n n

Thus, if « has a fixed sign, we obtain

4. 22) hao= %kddgcb»
or

1
(4. 23) hey= 7 Jcdy

A being a constant, that is, M™ is pseudo-umbilical in S™1,
Since

hcaz%agy cu=0’

we have, from equation (1. 33) of Weingarten

. 24) P =— %X

from which
7.(2C"+ X)=0,
that is,
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0+X=V,

V being a constant vector, which shows that the submanifold M" lies on the
sphere with centre at 7 and with radius |2]. Thus we have

THEOREM 4. 4. Suppose that the mean curvature vector of a compact and
orientable submanifold M™ of a sphere S™ ' does not vanish and that we iake the
last unit normal Cy_1" in the divection of the mean curvature vector of M" in S™ 1.
If the mean curvature vector of M™ in S™ is pavallel with vespect to the connec-
tion induced in the normal bundle of M™ in S™ ', hew”=heoa and « has a fixed
sign, then the submanifold M™ lies on a sphere S™ 2.
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