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SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE VECTOR
OF A EUCLIDEAN SPACE OR A SPHERE

BY KENTARO YANO

§ 0. Introduction.

Liebmann [11] and Sίiss [19] proved that the only convex hypersurface with
constant mean curvature in a Euclidean space is a sphere. To prove this theorem,
we need integral formulas of Minkowski in which the so-called position vector
plays a very important role.

Recently various attempts have been done to generalize this theorem of
Liebmann and Suss to the case of hypersurfaces in a Riemannian manifold. See,
for example, Hsiung [3], Katsurada [4, 5], Koyanagi [10], Otsuki [17], Tani [20, 26],
Yano [21, 22, 26]. In these papers, authors assume the existence of a vector field in
the Riemannian manifold or that of a vector field along the hypersurface which
plays the role of the position vector in the case of hypersurfaces in a Euclidean
space and prove that, under certain conditions, the hypersurface under consideration
is umbilical.

When the ambient Riemannian manifold is a general one, it is almost impossible
to give conditions under which the hypersurface is isometric to a sphere, but when
the ambient Riemannian manifold admits a scalar function v such that ΫΫv=f(v)g,
where g is the Riemannian metric and V the Riemannian connection, we can give
conditions under which the hypersurface under consideration is isometric to a
sphere. (See Yano [22]).

The attempts have recently been started to generalize the above results to the
cases of general submanifolds in a Riemannian manifold by Katsurada [6, 7, 8],
Kόjyό [7] and Nagai [8, 12]. They assume that the ambient Riemannian manifold
admits a conformal Killing vector field and that this vector field is contained in
the linear space spanned by the mean curvature vector of the submanifold and the
tangent space of the submanifold.

The present author [24] studied similar problems under conditions a little bit
weaker than those of Katsurada, Kδjyδ and Nagai.

The main purpose of the present paper is to determine all the submanifolds
in a Euclidean space or in a sphere which satisfy the conditions imposed by the
present author in [24].
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§1. Preliminaries [9].

Let Em be an ra-dimensional Euclidean space in which an orthogonal coordinate
system is introduced. A point P of Em is represented by the so-called position
vector X from the origin 0 to the point P.

Let Mn (l<n<m) be an ^-dimensional differentiate submanifold covered by
a system of coordinate neighborhoods {U',ua} and imbedded differentiably in Em

by a vector equation

(1.1) X=XW,

where here and in the sequel the indices a, b, c, d, e run over the range {1,2, •••, n}.
We put

(1.2) Xb=dbX, db=d/dub.

The Xt> are n linearly independent vectors tangent to the submanifold Mn.
Assuming Mn to be orientable, we choose m—n mutually orthogonal local unit
vectors Cx normal to Mn in such a way that Xlf ~,Xn, Cn+ι, '~,Cm form a positive
orientation of Em, where here and in the sequel the indices x,y,z run over the
range {»+!, —,m}.

We put

(l 3) gCb=XC'Xb,

where the dot denotes the inner product of vectors in Em and denote by {Λ,}, Fc,
and Kdcba the Christoffel symbols formed with gcδ, the operator of covariant differ-
entiation with respect to {Λ}, and the curvature tensor of the submanifold Mn

respectively.
Then the equations of Gauss of Mn in Em are

(1. 4) ΓcXb=dcXb

where HCb
x=ffbcx are components of the second fundamental tensors with respect

to the normals Cx and those of Weingarten of Mn in Em are

(1.5) ΓcCy=dcCy = -Hc

ayXa+Lcy*Cx,

where

α β\ ττ a rr ay rr y ba
• Ό) fie y — lie —n.cb Q >

gba being contravariant components of the metric tensor and

(1.7) Lcy* = -Lc/

are components of the third fundamental tensor.
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Now, equations of Gauss, Codazzi and Ricci of Mn in Em are respectively

O- 8) Kdct? = HdaχffcbX — Hc

aχHdbXι

(l 9) PdHc

ay—VcHda

y + H(iaχLcyX — Hca'χLcLyX = §,

and

(l lU) vdLcy —VcLdy ~\~Ldz LcyZ— LCZ -L^dy ~\Ήd yffca —HC yUda ==0.

Let Sm~l be a sphere in Em with centre at the origin and with radius r and
we denote the parametric representation of Sm-1 by

(1.11) X=X(xh\

where here and in the sequel, h,i,j,k run over the range {1,2, •••,m—1}.
We put

(1.12) Xt=diX, Gji=Xj Xτ, di=3ldx\

and denote by V% the operator of covariant differentiation with respect to Christoffel
symbols {/J formed with G#. Then equations of Gauss and Weingarten of Sm~l

in Em are respectively

(1.13)

and

(1.14) PjC=djC=cXj,

where c=ljr and

(1.15) C=cX

is the unit normal to the sphere Sm~1.
We take an arbitrary fixed unit vector V in Em and put

(1.16) v=V X,

then we have

that is,

(1.17) Wv = -

by virtue of C=cJζ [14]. In the sequel, we put

(1.18) Vi = PiV,
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then we have

(1.19) PJv
h = -c*vδ).

We consider an ^-dimensional differentiate submanifold Mn of S™-1 covered
by a system of coordinate neighborhoods {U;ua} and imbedded differentiably in
S™-1. We represent it by

(1.20) xh=x\ua\

We put

(1. 21) Bύ

h=dύx
h

and denote by Cu

h m—l—n mutually orthogonal local unit vectors normal to Mn

in S™'1, where here and in the sequel u, v, w run over the range {n+l, •••, m— 1}.
Then the metric gcb of Mn induced from that of S771"1 is given by

(1.22) g

The equations of Gauss and Weingarten of Mn in Sm~l are respectively

[J ^
(1. 23)

— h ^UΓ h

— rlcb ^u j

hcbu being components of the second fundamental tensor of Mn with respect to the
normals Cu

h and

UC h — Ά C h-l-\ \1R 3Γ iV&-SU — Oc^U ~T 1 . - \J->C ^U

[j Λ
(1. 24)

_ h a p Λ i / v/** h
— rlc u Da "T^cu <-*"u >

leu being components of the third fundamental tensors of Mn with respect to the
normals Cu

h.
The equations of Gauss, Codazzi, and Ricci of Mn in S™"1 are respectively

(1. 25) Kdcb

a=c2(da

dgcb-dfgdb)+hd

a

uhcb

u-hc

auhdb

u,

(1. 26) ΓdAc6t,-FcAd6t,-/dt,
ttAcδtt+/w

ttAd6tt=0,

and

(1.27) rjeO»-rj*vu+idwuicvw-icwuid*w+^^
Now we regard the submanifold Mw of Sm~1 as a submanifold of the Euclidean

space Em, then we have

(1. 28) X=X(χ\ua)\
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(1.29) Xb=Bb»Xh,

and consequently

or

(1. 30) ϊ7cXb=hcb

uCu^Xί-cgcbC

by virtue of (1. 13), (1. 22) and (1. 23).
If we regard

(1.31) C«=C,ΛX;, and Cm=C=cX

as normals to Mn in Em

y we have, comparing (1. 4) with (1. 30),

(1. 32) Hcb

u=hc,
u, Hcb

m=-cgcb.

From the first equation of (1. 31), we have

or

that is,

(1. 33) VCCU = - hca

uXa + ίcuvCυ.

Comparing (1. 5) in which y=u with (1. 33), we find

(1. 34) Hc

au—hcau, Lcu

v=lcuv, Lcy

m=Q.

From the second equation of (1. 31), we have

(1.35) PcCm=cXc.

Comparing (1. 5) in which y—m, that is,

17 r* _ _ TTO, V " _ ι _ r xr*
Vc^m — Π-c mΆ aT -L^cm ^x

with (1. 35), we find

(1.36) Hc

a

m=-cdf, Lcm*=0.

Thus, equations of Gauss and Weingarten of M n in S™-1 in Em are respectively

(1. 37) FcXb =hcb

uCu-cgcbC,

(1.38) Wu^-hfuXa+lcSCv,
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(1. 39) FcC=cXc,

Ocb, kcbu and lcu
v being respectively the first, second and third fundamental tensors

of Mn in S™-1.

§ 2. Mean curvature vectors of Mn with respect to Em and S™-1.

The mean curvature vector of Mn with respect to Em is defined to be

(2.1) n n

Thus the mean curvature vector of Mn with respect to Em is an intrinsic normal
to Mn. If this mean curvature vector vanishes identically Mn is said to be
minimal in Em.

Suppose that Mn is a submanifold of a sphere Sm~1 in Em, then the mean
curvature vector of Mn with respect to S™"1 is defined to be

(2. 2) ^grtpcBb
h= -ha

auCu\n n

Thus the mean curvature vector of M n with respect to Sm~l is an intrinsic normal
to Mn. If this mean curvature vector vanishes identically Mn is said to be minimal
in S771-1.

Now, for a submanifold Mn of Sm~l in Em, we have

and consequently

(2. 3) -n

Thus we have

LEMMA 2. 1. Let Mn be a submanifold of a sphere S™-1 in Em. Then the
difference of the mean curvature vector of Mn with respect to Em and that with
respect to S771"1 is in the direction of the radius vector of S™-1.

LEMMA 2. 2. Let Mn be a submanifold of a sphere Sm~l in Em. A necessary
and sufficient condition for Mn to be minimal in Sm~l is that the mean curvature
vector of Mn with respect to Em lies in the direction of the radius vector of Sm~l

[1, 2, 13, 18].

We now assume that the mean curvature vector of Mn with respect to Em

never vanishes and choose the last normal Cm in the direction of the mean curva-
ture vector. We then put
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(2. 4) Cm = C, Hcbm=ffcb, L

Then from

_. •*• o- αwf i EJ αp
— — -Ήα ^w~t -- tla ^jn n

we find

(2. 5) tfα

αM=0,

and

(2.6) ~gc^cXb = -Ha

aC.
f l %

Thus if the mean curvature vector is parallel with respect to the connection
induced in the normal bundle, that is, if the covariant derivative of the mean
curvature vector

-Hc?C\ = -(PcHaa)C+ -Ha

a(-Hc*Xύ+Lc*Cx)n J n n

is tangent to Mn, then we have

(2. 7) Ha

a = const. ̂  0, L/ = 0

by virtue of Lc

m=Lcm

m=0.
We next assume that the mean curvature vector of Mn with respect to Sm~l

never vanishes and choose the last normal Cm-ιh in the direction of the mean
curvature vector. We put

(9 X\ C h — Cfh τj _/, / u_τu
W O; t-'m-l — ̂  > flcbm-l — f^cbt h m-l — ̂ c

Then, from

— g°ΨcBn

1
< h I* auΓ* h

n

~ n r fιn
we find

(2.9)

and
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where here and in the sequel r,s,t run over the range {n+1, •••, m—2}.
Thus if the mean curvature vector of Mn with respect to S™'1 is parallel with

respect to the connection induced in the normal bundle of Mn in Sm-1, that is, if
the covariant derivative of the mean curvature vector

1 a f \ l 1

n a ) n n

is tangent to Mn, then we have

(2.11) ha

a=const. ̂  0, lc

r = 0

by virtue of /c

m-1=0.

§ 3. Integral formulas.

Let Mn be a submanifold in Em. We put

and differentiate this covariantly along Mn. Then we obtain

Xc = (Hcb

xCx)vb+XJcv
a+(- Hc

a

aXa+Lcx

yCy)ax+Cx Vca
x,

from which

(3.2) Γcv
a

and

(3.3) Fcα* = -

from which

(3.4) Fav
a

Assuming Mn to be compact and orientable and integrating, we have from
equation (3. 4)

(3. 5) ( (n+Ha

a

xa
x)dS=0,

where dS is the surface element of Mn.
On the other hand, we have

- (FaPIb

a)υb+Ha

a
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by virtue of (3. 2), from which, by integration,

(3. 6) ( {(!7aHb

a)v»+Haa+HcbH
c\ax)}dS=0.

Jπn

If we assume that the mean curvature vector of Mn in Em is parallel with
respect to the connection induced in the normal bundle, we have (2. 7) and conse-
quently we have from (1. 9)

Thus (3. 6) becomes

(3. 7) ( (Haa+HcbH<*xa*)dS=Q.
JM™

Now subtracting (3. 5) x (lln)Hb

b from (3. 7), we obtain

(3. 8) ( (HcύH
cύ

xa
x- — Hb

bHaa

xa
x\dS=^

J j m \ n )

Let Mn be a submanifold of a sphere Sm~l in Em. We put

(3. 9) vh=Bahva+Cu

hau

and differentiate this covariantly along Mn. Then we obtain

-A>fiβΛ=(AβδuCu^

from which

(3. 10) Fcv
a = - c*vda

c + hc\au

and

(3. 11) Fcα
u= -AC&V-/CΛΛ

from which

(3. 12) FX = - zΛ + Λα

α«αtt.

Assuming Mn to be compact and orientable and integrating, we have from
equation (3. 12)

(3. 13) ( (-nc*v+ha

a

ua
u)dS=Q.

JMK

On the other hand, we have

Γα(A6 V) = (Pahl>a)Vb + hb\ - C2Vδb

a + h^u^)

ba)v* - c2vha

a
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by virtue of (3. 12), from which by integration

(3.14) ( {(P7

ahb

a)vύ-c2vhaa+hcbh
cb

ua
u}dS=0.

JMK

If we assume that the mean curvature vector of Mn in S771"1 is parallel with
respect to the connection induced in the normal bundle, we have (2.11) and conse-
quently we have from (1. 26)

Thus (3.14) becomes

(3.15) ( (-c2vha

a+hcbh
cb

ua
u)dS=Q.

JMK

Now subtracting (3.13)x(l/w)Aα

α from (3.15), we find

(3. 16) ( (hcbh
c\au-—hb

bha

a

ua
u}dS=Q.

JMΠ \ U ]

§4. Applications of integral formulas.

Let Mn be a compact and orientable submanifold of Em whose mean curvature
vector is parallel with respect to the connection induced in the normal bundle.
We assume that

(4. 1) Hcbxa
x=Hcba, (Hcbm=Hcb, am=ά)

that is,

(4.2) Hcbn+1a
n+1 + '"+Hcbm-1a

m-1=0.

Since

PcXb=Hcb

xCx and

the assumption (4.1) is equivalent to

(4.3) (PeXύ X=

If the assumption (4.1) is satisfied, then integral formula (3. 8) reduces to

Γ / 1
\ a[HcbH

cb .
jMn \ H

or to

(4.4)
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Thus, if a has a fixed sign, we have

(4.5) Hcb=λHddgcbn

or

(4.6) Hcb= — gcτ>,

λ being a constant, that is, the submanifold Mn is umbilical with respect to the
mean curvature normal, or Mn is pseudo-umbilical.

Since

we have, from equation (1. 5) of Weingarten,

^cC— -- — Xct
Λ

from which

C=~ΊX+ΊΛ

or

(4.7) X-A=-λC9

A being a constant vector, which shows that the submanifold Mn lies on a sphere
Sm~l with centre at A and radius \λ\. Thus we have

THEOREM 4. 1. Suppose that the mean curvature vector of a compact and
orientable submanifold Mn of a Euclidean space Em does not vanish and that we
take the last unit normal Cm to Mn in the direction of the mean curvature vector.
If the mean curvature vector is parallel with respect to the connection induced in
the normal bundle of Mn in Em, H^χax^Hcbaί and a has a fixed sign, then the
submanifold Mn lies on a sphere Sm~l.

The assumption

or

is satisfied if
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(A) α^-O, .-, am-l=Q

or

(B) /2"c&tt-fi = 0, ••-, Hc&m-l — 0

is satisfied.
We first assume that condition (A) is satisfied. Then we have

(4.8) X=Xav
a+Ca,

that is, the position vector X is in the linear space spanned by the tangent plane
to Mn and the mean curvature vector of Mn with respect to Em. This is the
condition assumed by Katsurada [6, 7, 8], Kόjyό [7] and Nagai [8] in their study
of submanifolds with parallel mean curvature vector.

On the other hand, we have, from (1. 37),

(4.9) ^VcX^^haauCu~eX

and consequently, comparing (4. 8) with (4. 9) we find

(4. 10) va=Q, ha

ar=b,

which mean that the position vector X is in the direction of the mean curvature
vector of Mn with respect to Em and the submanifold Mn is a minimal submani-
fold of the sphere S™"1.

Conversely, suppose that the submanifold Mn lies on a sphere Sm~1 and the
raxlius vector X of Sm~l is in the direction of the mean curvature vector of Mn

with respect to Em, then we have

(4.11) X=rC

r being the radius of S™-1, and consequently

(4.12) FCC= — Xc,

which shows that the mean curvature vector of Mn with respect to Em is parallel
with respect to the connection induced in the normal bundle of Mn. Equation
(4.11) shows that the condition (A) is satisfied and a=r has a fixed sign. Thus
we have

THEOREM 4. 2. In order that a submanifold Mn satisfying the conditions given
in Theorem 4.1 satisfies the additional condition (A), it is necessary and sufficient
that Mn lies on a sphere Sm~l and the radius vector of Sm~l is in the direction of
the mean curvature vector of Mn with respect to Em. In this case the submanifold
Mn is minimal in Sm~1.

We next assume that the condition (B) is satisfied. In this case, equations of
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Gauss become

(4. 13) PcXb=HcύC

and equations of Weingarten become

(4. 14) FcCu=Lcu

υCυ

and

(4.15) PcC=-Hc

aXa.

Equation (4. 14) gives

(4. 16) FdLcvH — PcLdv -+-Ldw Lev —

which shows that we can assume that the Lcυ

u vanish and consequently that

(4. 17) FCCW=0,

that is, the unit normals Cu are constant vectors. Since

—

that is

CU X= const.,

the submanifold Mn is on an ( z+1) -dimensional plane En+1 in Em.
Since HCb=λgcb, λ being a constant, we have, from (4. 13) and (4. 15),

Fc-Xi = λhcbC and FCC - - λXc

respectively, where X can be regarded as the position vector in an (^+l)-dimensional
Euclidean space, thus, from the second equation above, we have

from which

C+λX=λB,

B being a constant vector and consequently the submanifold Mn is a sphere Sn

lying in an (^H-l)-dimensional Euclidean space En+1.
Conversely, a sphere Sn in Em satisfies all the conditions stated in Theorem

4. 1 and (B). Thus we have

THEOREM 4. 3. In order that a submanifold Mn satisfying the conditions given
in Theorem 4. 1 satisfies the additional condition (B), it is necessary and sufficient
that the submanifold is an n-dimensional sphere.

Next, let Mn be a compact and orientable submanifold of a sphere Sm~l in Em.
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We assume that

(4.18) hcbu(xu=hcb(x)

that is,

(4.19) hcbn+ιan+1 + ~ +!ιcbm-2a
m-2=Q.

Since

ΓcBb

h=hcb

uCu

h and

the assumption (4.18) is equivalent to

(4.20) Gji(PeBbW

If the assumption (4.18) is satisfied, then integral formula (3.16) reduces to

{ a (hcbh
cb - —hJht

jMn \ H

or to

(4.21) ( a(hcb--heegcb}(h<*--hd

dgcb}dS=0.
jπn \ n /\ n I

Thus, if a has a fixed sign, we obtain

(4.22) hcb=-hd

dgcb,

or

(4.23) hcb=—gcb,
Λ

λ being a constant, that is, Mn is pseudo-umbilical in Sm~1.
Since

h a— ήa ϊ u — 0He, — - OQ t I'c — U,

we have, from equation (1. 33) of Weingarten

(4.24) FcC^- ί**
A

from which

that is,
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V being a constant vector, which shows that the submanifold Mn lies on the

sphere with centre at V and with radius \λ\. Thus we have

THEOREM 4. 4. Suppose that the mean curvature vector of a compact and

orientable submanifold Mn of a sphere Sm-1 does not vanish and that we take the

last unit normal Cm-\h in the direction of the mean curvature vector of Mn in Sm~l.

If the mean curvature vector of Mn in Sm~l is parallel with respect to the connec-

tion induced in the normal bundle of Mn in Sm~l, hc^uoLu —h^a. and a has a fixed

sign, then the submanifold Mn lies on a sphere Sm~2.
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