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ON A LEARNING NETWORK

BY YASUICHI HORIBE

1. Introduction.

It has been recognized that the adaptive threshold (logic) elements or the thre-
shold elements with variable parameters can be used as basic building blocks in
pattern classifying learning system. The learning machine of simple perceptron
type [2] which essentially consists of a single adaptive threshold element is an
important example, having as input stimuli or patterns, finite binary vectors in full
generality. The set of all possible stimuli is supposed to be pre-dichotomized into
two classes for simplicity, and the state of this system is regarded as the set of
variable parameters of the threshold element. Now by learning of the system we
mean the change of the state based upon input stimuli presented to and their cor-
responding output responses of the system, so that the system may eventually
correctly answer to which class the current stimulus belongs. Convergence of the
state in finite number of steps to a desired state under a suitable learning algorithm
is one of the principal results of the learning system of this type [1]. To assure
this convergence, however, we necessarily have to put a rather strong assumption
of linear separability of the stimulus classes.

In this paper we consider some aspects of a learning network with adaptive
threshold elements and with a majority decision logic element. This system may
be regarded as a generalized version of the above system with a single adaptive
threshold element, to the effect that the former removes the condition of linear
separability of stimulus classes and needs only that the stimulus classes are dis-
joint.

2. Formulation and definitions.

Consider a system (or an organ) which accepts as stimulus world, a subset F
of the set Qn of all binary sequences of length n, i.e. Qn=Qx-~xQ for ζ?={0,1}.

The set F is pre-dichotomized into positive class F+ and negative class F~ i.e.
F=F+\JF~ and F + n F ~ = 0 (empty set).

The problem is to construct a system which can "learn" for any given
stimulus feF whether feF+ or f$F~. (/ will be considered a column vector from
now on.) For this learning system we shall consider the following network using
N (odd) adaptive threshold elements which are called neurons only for simplicity,
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and a single majority decision element. These elements are interconnected as in
the figure, where all adaptive threshold elements are to accept stimulus / simul-
taneously.

maj. decision
element

f-
neuron N

input output
level level

Suppose that each neuron j , j=l, 2, •••, N, which has ^-dimensional variable
weight (column) vector w3 and variable threshold value θ3 behaves by the follow-
ing rule:

ί®l ί>l
outputs <̂ > if w\f) \ W for input

ίθJ UJ
ί ® ] ί = l

outputs \ \ if tuJ(f) \ \θ3 for input feF~

iθJ 1<J
where wj(f) is the inner product of vectors w3 and /.

If we denote by π(A), the number of elements in finite set A, then system
output when stimulus / is presented to it is defined by the following majority
decision rule:

iV+1
output 0 if π{j; input / causes neuron j to output 0 } ^

output 0 if π{j; input / causes neuron j to output θ } ^

2 '

N+l
2 '

The system's output 0 (0) for input / will be regarded as the system's decision
that /€F+ (/€F-).

We have now that the system gives correct output response for /eF if and
only if

for

and
Λ7U-1

for
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The above statement may be simplified if we use the following "transformed"
set of stimuli and the combination of weights and threshold value:

HCM
lw3\

G - G + U G - , and v> = ( , ; = 1 , 2, ••-, N.

Then a mapping (one-to-one) φ: F—>G is defined by

¥>(/)=( W for

and

?(/)=( W for

By this notation we see that the system gives correct output for / e F if and only
if π{j; v^g)>0}^(N+l)/2 where g=φ(f). The 0 of G will be also called stimulus.

Suppose that at each of the discrete time points t=0, 1, 2, ••• a stimulus g is
presented to the system, taken from G in a certain manner, and stimulus at time
t is denoted by gt. The system's state at time t will be defined as the matrix

Then the problem cited above at the beginning of the section reads as follows: by
a suitable learning (or training) algorithm which properly changes the state of the
system, whether it is possible to lead the system to a state F ί o for some to such
that at any time satisfying t^t0 we-have π(/ί)^(A/'+l)/2, where It={j', v{(gt)>0}.

3. Consistency.

Let us call classification, a pair of sets (F+, F~) such that F+aQn, F~czQn,
and F + n F ~ = 0 , and suppose that a certain classification C=(F+, F~) forms the
set of all stimuli acceptable by the system.

The linearly separable classification is a classification such that there exists a
vector v satisfying v(φ(f))>0 for any /€F + UF~. Geometrically, this condition is
equivalent to the existence of a hyperplane strictly separating two sets F+ and F~.

It is obviously necessary, when considering the proposed problem, that the
following statement (C) holds for the given classification C=(F+ , F~), since, if not,
we can not find any state where the system gives correct response for each
stimulus.

(C) There exists a state of the system Ϋ=[ϋ\ - ,vN] such that π(ϊg)^(N+l)/2
for any gsG where ϊg={j;
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The next theorem shows, however, that the system is "universal" for any
classification, if it can have suitable number of neurons.

THEOREM 1. For two arbitrary subsets F+, F~ of Qn there exists a state V
satisfying (C) described above with suitably chosen number N of neurons, if and
only if F+nF~=0.

Proof. Necessity.

Suppose that F+ and F~ are not disjoint. Put g=\ \ for some feF+\jF~,

then geG and -gεG, and also π(ϊg)^(N+l)l2 and π(ϊ-g)^(N+l)l2. Since

ϊ-g={j; vK-

where /={1, 2, •••, N}, we have

π(I,g)^N-π(Ig)^N — = —^ 1< —γ~ ,

a contradiction.

Sufficiency.

Suppose that F+ΓiF~=0. If F+ and F~ are linearly separable, then it is clear
that there exists a state V such that π(ϊg)=N^(N+l)/2 for any gtG.

Remark here that for any fcQn, classification (Qn— {/}, {/}) is linearly separable.
We therefore see that the classification (F+\jF~— {/}, {/}), feF~, for the given

general not necessarily linearly separable classification (F + , F~) is linearly separable,
hence has a state satisfying (C). Using mathematical induction, the only thing to
be proved is that for an arbitrary classification C = ( F + , F~) having a state (with
N neurons) satisfying (C), if we choose suitable number of neurons, we can have
a state satisfying (C) for the classification C'=(F+{J {/}, F~-{/}), feF~.

Now suppose that for the classification C, there exists a state V=[v1, -~,ϋN]

such that ίr(/g)^(iV+l)/2 for any gcG. Putting _ \=g as usual, then —g€G",

since fsF~. We have that φ(F+[jF-)=(G+\J {g})U(G~-{-g}).
Assume for this g, π(ϊg)=(N+l)/2,-s. If 5=0, then it is clear that the state

V satisfies (C) for the classification O, hence 5 assumes 1, 2, •••, (N+l)/2.
Now add 25 number of neurons newly to the system with N number of neurons

having the state Ϋ satisfying (C). We shall show that there is a state V=[v1, •••,
vN+2S] satisfying (C) for the classification C. Since there exists a hyperplane which
has the set F+\J {/} in one of the half spaces determined by it, we can put

such that for any hεG+\J{g} we have Vί(h)>0.
vSince also there exists a hyperplane which separates the two sets F~— {/} and

{/}, we can put
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such that for any h€G~— {—g} we have #2(A)>0, and v2(g)>0.
Finally put

Then the following relations are immediate consequences of the above argument:

¥ + 1 , N'+l , , _
-K— +s= — s — for ^ G + ,

Δ Δι

N+l \ , , N' + l r
-s }+s+s = — ^ — for g,2 7 ' - ' - 2

for«v- Λ /= 2 2

where N'=N+2s, ϊn={j; vj(h)>0}. q.e.d.

4. On number of neurons.

The proof of the theorem 1 gives a suggestion for an enumeration of number
of neurons that are necessary for assuring the existence of a state which satisfies
(C). For instance, if we know only π(F+) and π(F~), a rough upper bound of
neuron number which may guarantee the existence of a state satisfying (C), for
any classification (F + , F~) with given values π(F+) and π(F~\ will be readily
calculated as follows:

Assume that π(F+)^π(F~)=q. Denote a sufficient number of neurons by Nr

for the classification

where {/Ί,-,/r}cF-.
It is clear that JVi=l, since Cx is linearly separable. If we take maximum

(N+l) 12 for 5 in the proof of the theorem 1, then the following relation is readily
seen:

Therefore we have Nr==2r—1, and when r=π(F~) we can reach our first classifica-
tion (F+, F~), hence 2 f f-l.

THEOREM 2. Fw <z/2y classification (F + , F~) MJ#Λ yz^J values π(F+) and π(F~),
we have as a sufficient number of neurons which assures the existence of a state
satisfying (C), the number 2q—\ at most, where #=min(π(F+), π(F~)).
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A more efficient way for enumeration of neuron number may be as follows.
Form the set C of all classifications (E+, E~) each of which satisfies that E+czF+,
E~czF~, and such that

-, (F'-E-)UE+)

is linearly separable. If we put

min (π(E+)+π(E-))=q0,

then 2«°—1 neurons are sufficient for (F+, F~).

5. A convergence theorem.

Suppose now that a system is given such that it has as stimulus world, a
classification (F+, F~), and has the existence of a state V=[vι, •••, vN] (with TV
neurons) satisfying (C). Hence supposing that

φ(F+) = G+={gi1 .-, gk], φ(F-) = G-={gk+1, •••, gk+ι},

(Notations gt and gt may not confusing.) we have π(Ii)^(N+l)/2 for any i=l, •••,
k+l, where

Note that if nJiί/i^O, then there exists a neuron j such that tf%*)>0 for any
f=l , •••, k+l, hence (F + , F") is linearly separable for which a single neuron (N—l)
is sufficient.

It is obvious that the sequence of sets {It}, i=l, •••, k+l, such that there is a
state V satisfying (C), is not unique, for the given neuron number N and the
given classification (F + , F~). Observe that the order of the arrangement of neurons
is a trifle.

If we know one such sequence of sets {/»}, ί = l , •••, k+l, then the following
learning algorithm (A) may be adopted for the system.

(A) Let the initial state i.e. the state at time t=0 be

Fo=[O,. .,O].

The system in state Vt~[v\, ~',vfl at time t is presented stimulus g&G.

If π(It)^(N+l)/2, set Vt+i=Vt for the state at time t+1.
If π(It)<(N+l)/2, then choose an arbitrary set Jt of (N+l)/2—π(It) neurons

out of the set I—It such that Jtdgi={j\ 0%t)>O}, and "correct" the neurons in
Jt as:

for i€/f.
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THEOREM 3. When a sequence of sets {/J, ί = l , •••, k-\-l, such that there is a
state V satisfying (C) is known, then by the learning algorithm (A) the system
" learns" the classification (F+, F~) with finite number of corrections. In this
case the stimulus sequence {gt} may be arbitrary.

Proof. It is sufficient to assume that the sequence of times t=0,1,2, ••• (which
may be finite or infinite) are those times when a correction is performed to the
system, i.e. at least one neuron in the system is corrected.

Suppose that this sequence of times is infinite. Then we have a infinite
sequence of sets {/«}, £=0,1, •••. Now since UΓ=o/ίC/ and / i s finite set, there
must exist some neuron j and a infinite subsequence {tv} of {t} such that at any
time in {ί} — {tv} the neuron j is never corrected and /e/ ίy, y=l , 2, •••. Therefore
we have vίv+1=viv+gh, v=l, 2, •••. Put tv+1=v+l for simplicity, then

(1) vϊ+i=υl+gv.

Now the excellent proof of Novikoff for the simple perceptron convergence theorem
[3] will be performed to complete our proof more succinctly.

If vJ is multiplied to the both sides of (1), we have

(2) i>i+i(P')=vl(?J)+WQu).

Since ftdϊgt for any t, we have vi(gv)>0. If we put mingv£{gv}VJ(g1J)=m) then m>0.
It follows from (2) that

and hence

( 3 ) vl+l(vj)^vm, since ^ = 0 .

On the other hand, from (1) we have

(4) \\vU\*=\\vψ+2v{{gv)+U\\2

Since the neuron j is corrected at time v, we have v{(gv)^0. If we put
\\g\\2=M\

then ίl^+1||
2

hence

( 5 ) \\vϊ+1\\2^vM2, since ι^=0.

From (3), (5), and the inequality

we have, putting | | ^ | | = ίr,

vm=cM\/ v .



102 YASUICHI HORIBE

which does not hold for large v, a contradiction. q.e.d.

COROLLARY. In the theorem 3, if each stimulus in G is to be presented to the
system infinitely many times in the stimulus sequence {gt}, then in finite number
of stimulus presentations the system can reach a state which satisfies (C).

The author is indebted to Professor K. Kunisawa for his encouragements and
suggestions.
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