ON CONVOLUTION OF POWER SERIES

BY YÛSAKU KOMATU

1. In their recent paper [3] Pólya and Schoenberg have stated a conjecture on power series mapping a circle onto a convex domain. Let \Re be the class of analytic functions which are regular in the unit circle and map it univalently onto convex domains. They then state

CONJECTURE. If both functions

$$f(z) = \sum_{n=1}^{\infty} a_n z^n \quad and \quad g(z) = \sum_{n=1}^{\infty} b_n z^n$$

belong to \Re , also the function defined by

$$h(z) = \sum_{n=1}^{\infty} a_n b_n z^n$$

belongs to \Re .

In the present note, considering a related class, it will be shown that an analogous proposition is affirmatively verified. Let \Re be the class of analytic functions $\Phi(z)$ regular in the unit circle and characterized by

 $\Re \Phi(z) > 0$ for |z| < 1 and $\Phi(0) = 1$.

We will then establish the following

THEOREM 1. If both functions

$$f(z) = 1 + 2\sum_{n=1}^{\infty} a_n z^n$$
 and $g(z) = 1 + 2\sum_{n=1}^{\infty} b_n z^n$

belong to \Re , also the function defined by

$$h(z) = 1 + 2\sum_{n=1}^{\infty} a_n b_n z^n$$

belongs to \Re .

Proof. Based on the integral representation valid for the class \Re , we may put

$$g(z) = \int_{-\pi}^{\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} d\mu(\theta)$$

where $\mu(\theta)$ is a real-valued function defined for $-\pi < \theta \leq \pi$ which is increasing and has the total variation equal to unity; cf. e.g. [1]. Consequently,

Received September 18, 1958.

the coefficients in the expansion of g(z) are represented by

$$b_n = \int_{-\pi}^{\pi} e^{-in\theta} d\mu(\theta).$$

Hence, for |z| < 1, we have

$$h(z) = 1 + 2\sum_{n=1}^{\infty} a_n z^n \int_{-\pi}^{\pi} e^{-in\theta} d\mu(\theta) = \int_{-\pi}^{\pi} f(z e^{-i\theta}) d\mu(\theta),$$

whence follows

$$\Re h(z) = \int_{-\pi}^{\pi} \Re f(ze^{-i\theta}) \, d\mu(\theta) > 0 \qquad (|z| < 1).$$

It may be noted by the way that if we substitute also the integral representation of a_n the function h(z) can be written in the form

$$h(z) = \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{e^{i(\varphi+\psi)} + z}{e^{i(\varphi+\psi)} - z} d\lambda(\varphi) \, d\mu(\psi)$$

where $\lambda(\theta)$ is such a function associated to f(z) as $\mu(\theta)$ to g(z). It is further transformed into

$$h(z) = \int_{-\pi}^{\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} d
ho(heta)$$

with

$$\rho(\theta) = \int_{-\pi}^{\pi} \lambda(\theta - \psi) \, d\mu(\psi)$$

where $\lambda(\varphi)$ is regarded to be continued beyond the original interval of definition in such a manner that $\lambda(\varphi) - \varphi/(2\pi)$ has the period 2π . Since $\rho(\theta)$ is an increasing function with the total variation equal to unity, the last expression of h(z) gives its proper representation as a member of \Re .

2. As an evident consequence of theorem 1 we can formulate the following

THEOREM 2. If functions f(z) and g(z) defined by

$$\lg f'(z) = 2\sum_{n=1}^{\infty} \frac{a_n}{n} z^n \quad and \quad \lg g'(z) = 2\sum_{n=1}^{\infty} \frac{b_n}{n} z^n$$

belong to \Re , also the function h(z) defined by

$$\lg h'(z) = 2\sum_{n=1}^{\infty} \frac{a_n b_n}{n} z^n$$

belongs to \Re .

Proof. It is well known that a function F(z) defined by

$$\lg F'(z) = 2\sum_{n=1}^{\infty} \frac{A_n}{n} z^n$$

142

belongs to \Re if and only if the function

$$\varPhi(z) \equiv 1 + rac{z F''(z)}{F'(z)} = 1 + 2\sum_{n=1}^{\infty} A_n z^n$$

belongs to R. Hence, theorem 2 results readily from theorem 1.

A proposition equivalent to theorem 2 may be formulated in terms of star-like mapping. Let St be the class of analytic functions vanishing at the origin which are regular in unit circle and map it univalently onto domains star-like with respect to the origin. We then have

THEOREM 3. If functions f(z) and g(z) defined by

$$\lg \frac{f(z)}{z} = 2 \sum_{n=1}^{\infty} \frac{a_n}{n} z^n \quad and \quad \lg \frac{g(z)}{z} = 2 \sum_{n=1}^{\infty} \frac{b_n}{n} z^n$$

belong to St, also the function h(z) defined by

$$\lg \frac{h(z)}{z} = 2 \sum_{n=1}^{\infty} \frac{a_n b_n}{n} z^n$$

belongs to St.

Proof. In general, $f(z) \in \mathfrak{S}t$ is equivalent to $\int^{z} (f(z)/z) dz \in \mathfrak{R}$ or also to $zf'(z)/f(z) \in \mathfrak{R}$.

3. In a previous paper [2] we have dealt with mean distortions for the class $\Re = \{ \Phi(z) \}$ of analytic functions which are single-valued and of positive real part in an annulus (0 <) q < |z| < 1 and further normalized by the conditions

$$\Re \varPhi(z) = 1 ext{ along } |z| = q ext{ and } rac{1}{2\pi} \int_{-\pi}^{\pi} \varPhi(q e^{i \theta}) d\theta = 1.$$

We can now establish an analogue of theorem 1 for Laurent expansions of functions of this class.

THEOREM 4. If both functions

$$f(z) = 1 + 2\sum_{n = -\infty}^{\infty} \frac{a_n}{1 - q^{2n}} z^n \quad and \quad g(z) = 1 + 2\sum_{n = -\infty}^{\infty} \frac{b_n}{1 - q^{2n}} z^n$$

belong to \Re , also the function defined by

$$h(z) = 1 + 2\sum_{n=-\infty}^{\infty} \frac{a_n b_n}{1 - q^{2n}} z^n$$

belongs to \Re . Here the prime means that the summand with n = 0 is to be omitted.

Proof. We can proceed quite similarly as in the proof of theorem 1. In

fact, we have only to replace the Poisson kernel

$$\frac{e^{i\theta} + z}{e^{i\theta} - z} = 1 + 2\sum_{n=1}^{\infty} z^n e^{-in\theta} \qquad (|z| < 1)$$

by the Villat kernel

$$\frac{2}{i} \left(\zeta(i \lg z + \theta) - \frac{\eta_1}{\pi} (i \lg z + \theta) \right) = 1 + 2 \sum_{n = -\infty}^{\infty} \frac{z^n e^{-in\theta}}{1 - q^{2n}} \quad (q \le |z| < 1)$$

in which the notations on elliptic functions concern the Weierstrassian theory constructed with the primitive periods $2\omega_1 = 2\pi$ and $2\omega_3 = -2i \lg q$; cf. [2].

References

- [1] KOMATU, Y., On analytic functions with positive real part in a circle. Kōdai Math. Sem. Rep. 10 (1958), 64-83.
- [2] KOMATU, Y., On analytic functions with positive real part in an annulus. Kōdai Math. Sem. Rep. 10 (1958), 84-100.
- [3] PÓLYA, G., AND I. J. SCHOENBERG, Remarks on de la Vallée Poussin means and convex conformal maps of the circle. Pacific Journ. Math. 8 (1958), 295– 334.

TOKYO INSTITUTE OF TECHNOLOGY.