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ON THE PREIMAGE SETS OF ENTIRE FUNCTIONS

BY GARY G. GUNDERSEN AND CHUNG-CHUN YANG

1. Introduction.

From the classical Weierstrass factorization theorem we know that for any

given sequence {an} of complex numbers that has no finite limit point, there

exists an entire function / such that the sequence {an} is precisely the zeros of

/ (counted by multiplicities). A natural question to ask is: given a sequence

{an} that has no finite limit point, does there exist an entire function / such

that the sequence {an} is precisely the zeros and one-points of / ? A similar

but more restrictive question was posed by Rubel and Yang [14, p. 289]. The

answer to the question here, in general, is no.

Gross [4] made the following general definition.

DEFINITION. A countable discrete set Ω is defined to be a nontrivial preimage

set (NPS) if there exists a nonlinear entire function / and a set S of distinct

complex values with 2 ^ | S | < o o {\S\ denotes the cardinality of S) such that

f~λ{S)-=Ω, where multiplicities are counted accordingly (thus the elements in Ω

need not be distinct).

The problem arises to try to completely characterize the set of entire functions

{/} associated with an NPS Ω. Gross and Yang [7] exhibited some nontrivial

preimage sets {Ω} that are unique in the sense that if Ω=f~\S1)^=g~1(S2) for

entire functions / , g and corresponding finite sets Slf S2, then f=ag+b for

constants aΦO, b. We will prove the following result which completely charac-

terizes the set of entire functions associated with a " simple periodic" NPS
Ω={b, b±a, b±2a, •••} where aΦO and b are constants.

T H E O R E M 1. // / is an entire function for the NPS Ω— {0, ±π, ±2π, •••},

then f necessarily has one of the following forms {up to a linear transformation):

1. f{z)=exp(-^—) or /(z)=expf — J where m is a positive integer.

o /•/ \ . (z π . mπ\ , . . . o , .
2. f(z)—sm{ \-——I ) where n is an even integer ^ z and m is an integer.

\ n /Ln n '

3. /(z)=sinί 1 ) where n is an odd integer ^ 3 and m is an integer.
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[ / 2iz \iwι+i
exρί± —J —1 and

[ e x p ( ± 2 ^ ) - l ] e x p ( ± - 2 ^ ) = : j Γ e x p ( ± - 2 ' - ) l m - l } e x p ( ± ^ ) ; thus Ω is an NPS

for each function / in case 1 of Theorem 1. It can be deduced from the proof
of Theorem 1 that these are essentially the only situations that can occur in
case 1. Ω is also an NPS for each function / in cases 2 and 3 from the well-
known multiple angle formulas specifically, for each such / we can find a
polynomial P{z) so that s'm z=P(f(z)), and P is necessarily unique and of degree
n. Thus Theorem 1 is an optimal result.

Two of the open questions that were posed in [4], [7] are:

1. For any given NPS Ω, does there exist some finite nonempty set Ωo (i.e.,
I^ | i2 0 |<co) so that Ω\JΩO or Ω-Ωo is also an NPS? (in the case Ω-Ωo

it is required that ΩodΩ).
2. Does there exist an infinite NPS Ω such that for any finite nonempty set

Ωo, ΩuΩ0 and Ω—Ωo are nontrivial preimage sets ?

The answer to question 1 is no by the following result.

THEOREM 2. Given the NPS Ω={b, b±a, b±2a, •••} where aΦO and b are
constants. Suppose that we either {A) add a finite set of points to Ω, or (B)
remove a finite set of points from Ω. Then the resulting set will not be an NPS.

Examples 1 and 2 in § 3 show that there exist nontrivial preimage sets that
will remain nontrivial preimage sets after we add or remove some particular
finite set of points. We suspect that the answer to question 2 is no also.

In this paper we will assume that the reader is familiar with the standard
notations and fundamental results of Nevanlinna's theory of meromorphic functions
[9], [10].

In § 2 we will prove Theorem 1, plus make some remarks and pose some
questions about functions associated with the same NPS.

In § 3 we will prove Theorem 2, give the above-mentioned Examples 1 and
2, and pose some questions about when an NPS is " changed slightly ".

In § 4 we will exhibit several classes of countable discrete sets that are not
nontrivial preimage sets.

We would like to thank the referee for an observation that made an improve-
ment in this paper.

2. The functions associated with the same NPS.

We will now prove Theorem 1.

LEMMA 1. // Ω is an NPS for the entire function f, then the order of f
is equal to the exponent of convergence of Ω.
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Lemma 1 follows immediately from the classical theorem of Borel.

Proof of Theorem 1. By combining the hypothesis of Theorem 1 with
Lemma 1 we obtain that

where c is some constant and p(z) = A(z—a1) ••• (z—an) is a polynomial with n ^ 2
distinct zeros aly •••, an.

From a result of Ritt [13] it follows from (1) that / is necessarily an ex-
ponential polynomial that is

( 2 ) f(z) = A0+ Σ Ak exp(Bkz)
k = l

where the Ak's are constants {AkΦθ for l^k^m) and the Bk'$ are distinct
nonzero constants.

Suppose 772=1. Then from (1), (2), and the Borel identity theorem [10, p. 113]
it follows that we have one of the following four cases: c=0 and nB1—2iy

c — —2i and nB1 =—2i, c — Bx and {n — l)B1=2i, or c = B1—2i and {n—\)Bί——2i.
This is case 1 in Theorem 1.

Now suppose 772^2. Set Bk^lk^-iμk. We can assume that Bλ and B2 are
the two particular constants among the Bk's that satisfy ^ = m a x y j , μλ—
m%.x{μk\ λk—λ^, and λ2—mm{λk}, μ2—mm{μk:λk-=λ2}. From (1), (2), and the
Borel identity theorem it follows that either nB1=c+2i and nB2—c, or nBi=c
and nB2—c+2i. Hence λλ=λ2. With similar reasoning we can now deduce that
77z=2 in (2). It can then be seen (with similar reasoning) that (n—l)B 1

J

ΓB 2 must
equal either c+2i, c, or mB1-\-kB2 where mΦn—l and kΦl. Thus (n—l)5i+52

=7iιB1+kB2. Since n(B1—B2)=±2i, we obtain ^ = ^ 2 = 0 . Hence c = βi where
β is real {βφO, -2).

Now we differentiate (1) twice and eliminate exp((c+2i)z) and exp(cz) between
the three equations to obtain

( 3 ) 2ι(β+l)p'(f)f/-p»(f)(fΎ-p/(f)f"+β(β+2)p(f)=0.

From Nevanlinna's second fundamental theorem [9, pp. 43-44] it follows that we
can find distinct points bu •••, bn-lf and one sequence r7—>-+°° such that

(4) %n(rj, /, bk) = o{imrh f) as r ^ + oo.

For a given ak and g(f) = (f—b1) ' (f—bn-1) we have from (3),

β(β+2)p(f) p'f{f){fΎ p'(f)f" 2i{β+l)p'{f)f
q(f)(f-ak) q{f)(f-ak) ^ q{f){f-ak) q{f){f-ak) '

By using the partial fraction decomposition of each term in (5) together with (4)
and Nevanlinna's fundamental estimate of the logarithmic derivative, we can
deduce that 777(7̂ , /, ak)—o{l)T{rjy f) as r ^ o o . Hence
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(β) m{rh f, ak) = o{l)Ί\rj9 f) for l^k^n.

Now from (1), (6), and [15, Satz 1] we have as r—Tj—>oo,

— (l+o(l))=Mr, eιP+2)U-e?u, 0)= Σ M r , f, ak)π k=i

^ if β>0,

-(β+oQ.))— if iS<—2,

(l+o(l)) — if -2</3<0.

Hence —2</3<0 is necessary.
Now we can use elementary reasoning with (1) and (2) to deduce that

β=-l and

f(z)=A0+A1 exp(-^-)+Λ exp(- -^) .

Further elementary analysis of (7) and (1) will yield cases 2 and 3 in Theorem 1.
The proof of Theorem 1 is now complete.

Open questions.

1. Does the analogous result to Theorem 1 hold for the NPS Ω— {z: exp{h(z)) = l}
where h is any nonconstant entire function ? (Note: In this paper a set in the
form {z: F(z)—0} will always count multiplicities.)

2. Does there exist an uncountable family of entire functions {/J associated
with some NPS Ω such that f^afj+b if iφj ? We can have a countably
infinite family from Theorem 1.

Remark 1. Concerning the topic of an NPS for two entire functions / and
g (where f^ag+b) we mention the following studies.

(i) The papers of Gross [2] and Gross and Yang [6] contain a study of
some special cases of entire functions that are associated with the same NPS.

(ii) We say that two nonconstant entire functions / and g share the finite
value a CM when f(z)—a and g(z)—a have the same zeros counting multiplicities.
Thus two distinct nonconstant entire functions that share two or three finite
values CM will give an example of an NPS for two entire functions that are not
linear transformations of each other. The form of two such entire functions
was given by Nevanlinna [10, pp. 122-125]. Two nonconstant entire functions
that share four finite values (ignoring multiplicities) must be identical from the
well-known theorem of Nevanlinna [10, p. 109].
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Remark 2. Theorem 5.11 in [3] is a result in the general area of Theorem 1.

3. Adding (removing) a finite set to (from) an NPS.

Proof of Theorem 2. Let R(z) be a nonconstant rational function such that
R(z)sinz is entire and where R(z)-^oo or R(z)->0 as z-+oo. We will show that
the set Ω—{z: R(z)sinz=0} is not an NPS, and this will prove Theorem 2.

Suppose Ω is an NPS. Then from Lemma 1 we have

(8) R(z)ecz sin z=p(f(z))

where c is a constant and p is a nonlinear polynomial with distinct zeros

fli, •••, an.

Suppose that ρ'(f(z))=0 has only a finite number of roots. It then follows
from (8) and Picard's theorem that R{z)ecz sin z=BJ

Γ(g(z)eΛz)n where q is a poly-
nomial and A, B are constants. Logarithmic differentiation of this identity yields

™ +c+cot z=
R{z) ' " ' " "•«— B+(q(z))"e"Λ'

Since -75-+ c is nonconstant and cotz has the two Picard values +i, it easily
w

follows from Nevanlinna's three-functions theorem [9, p. 47] that -r^+c+cotz
R

has an infinite number of zeros, which contradicts (9). Hence there must exist
a constant b such that ρ'(b) = O and the equation f{z)—b has an infinite number
of roots {zm}m=i'

Set B — p{b). Since R{z)sinz can have at most a finite number of multiple
zeros, it follows from (8) that B is nonzero. Then from (8), each z = z m satisfies
the following two equations:

(10) R(z)ecz sin z=B;

(11) ^fi-B+cB+R{z)ecz cos z=0 .

From (10) and (11) we obtain

(12) e*"=(-§

Combining (12) and (10) yields

(13) sin

Suppose first that cΦ±i. Then as zm
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(14) sin2(zm)-+-j-ί-2-.

If zm = xm

Jriym then for some constant M^O,

(15) \ym\^M for all m.

An elementary analysis of (15), (14), and (10) combined with the hypothesis on
R will show that either B=0 or J3 = OO. Thus we have a contradiction.

Now suppose that c—i. Then from (12) and (10) we obtain

R{zm) IΛ R(zm

Since R is rational it follows that

(16) B"l(R\z))2+2iR

From (16) we see that R can have no zeros. Thus R(z)-*0 as z~^oo. But then
from (10), R(zn)exp(2izm)-^2iB, while from (11), R(zm)exp(2izm)->-2iB, thus
producing the contradiction J5=0. Hence c—i is impossible. We can deduce
that c——i is also impossible.

We have a contradiction in all cases, and so the proof of Theorem 2 is
complete.

In contrast with Theorem 2 the next two examples show that for some
nontrivial preimage sets it is possible to add (remove) some particular finite set
of points and have the resulting set remain an NPS.

EXAMPLE 1. Let q be a nonconstant polynomial, h a nonconstant entire
function, and p a nonlinear polynomial with distinct zeros. Then Ω—
{z: p(q(z)eh(z))=0} is obviously an NPS for qeh.

Suppose first that p{O)Φθ. Then Ωo= {z: q(z)=0} is a finite nonempty set
and

ΩVJΩO= {Z : q(z)ehwp(q(z)eh(z))=Q}

is clearly an NPS for qeh.
Now suppose that £(0)=0 and άeg(p)^3. Then

is clearly an NPS for qeh.

EXAMPLE 2. Let 2a be a positive integer. We will show that there exists
an NPS Ω with exponent of convergence a with the following property: Ω is
exactly the zeros and ones of some entire function g and there exists a particular
finite nonempty set Ωo such that Ω\JΩO is exactly the zeros and ones of another
entire function /. Obviously then the same statement holds if " Ωo such that
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Ω\JΩO" is replaced by " Ω0ClΩ such that Ω-Ωo".
To prove this assertion we consider a functional equation of the form

(17) f(f—l)=pg(g—l)

where p is any nonconstant polynomial such that άeg(p)—2a, and where / and
g are required to be entire functions. Equation (17) can be written as

(18) F2-pG>= \ —f
4 4

where F=f—1/2 and G=g—1/2. From theorems of Gross, Osgood, and Yang
[5 Theorems I, III, V] it follows that there exists a pair of entire functions F
and G that are a solution of (18) such that order (F)—order {G)—a. Hence there
exist entire functions / and g that satisfy (17) with order (/)=order (g)=a. Thus
in view of (17) the assertion is proved.

Open questions.

1. If, in the hypothesis of Theorem 2, we replace the set Ω with the set Ω—
{z\ exρ(/z(z))=l} where h is nonconstant entire, will the conclusion of Theo-
rem 2 still hold ? We suspect the answer is yes.

2. Let Ω be an NPS that has a finite exponent of convergence that is not one-
half of an integer. Is it true that if we add (remove) a finite set of points
to (from) Ω then the resulting set will no longer be an NPS ?

3. Suppose that Ω— {cn} is an infinite NPS. Does there exist an infinite sequence
of positive numbers {dn} where <5n—>0 with the following property : if Ωr— {dn}
is any infinite discrete set that satisfies 0<\cn—dn\<dn for all n then Ω' is
not an NPS ?

A special case of an NPS is a zero-one set [14], which is a pair of sequences
({an}> {bn}) without finite limit points such that there is an entire function /
whose zero-sequence is precisely {an} and whose one-sequence is precisely {bn}
(counted by multiplicities). Some papers on zero-one sets are [11], [12], [14],
and [16]. Open question 3 above was studied by Winkler [16] for zero-one sets.
See also [11].

4. Some sets that are not nontrivial preimage sets.

Theorem 2 gives a class of countable discrete sets that are not non-trivial
preimage sets. We will exhibit here several more classes.

EXAMPLE 3. Let Ω be a countable discrete set of real numbers with an
exponent of convergence λ>l. It is easy to see that Ω cannot be an NPS
because of Edrei's theorem [1] that an entire function with only real zeros and
real ones has order at most one. Miles [14, p. 289] used this reasoning to prove
the analogous result concerning zero-one sets.
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EXAMPLE 4. Let Ω be a countable discrete nonempty set such that every
point in Ω appears at least three times, and let Ωλ be a countable discrete set
that satisfies

lim——,—7^-— 0
r-oo N{r, Ω)

Then ΩVJΩi is not an NPS. The proof of this result is similar to the proof of
Theorem 1 in [7], and hence we will omit it. This result generalizes Theorem
1 of [7].

THEOREM 3. Let F be an entire function that either {A) has finite noninteger
order p, or (B) has integer order p^l, maximum type, and the exponent of con-
vergence of the zeros of F is p. Suppose that for O^U<1,

(19) N(r, F, 0)^tf+o(l))T(r, F)

as r->cx>. Set Ω={z: F(z)=0}.
// 0^Λ<l/2 then Ω is not an NPS. In the other cases 1 / 2 ^ < 1 , suppose

that Ω is an NPS for some entire function f that is

(20)

where h is entire anp alf ••• , an are n^2 distinct numbers. Then

(21) ^ — .
n

Proof. Suppose Ω is an NPS, i. e. (20) is satisfied. From Lemma 1 and the
hypothesis we see that in (20), order (f)=p and h is a polynomial of degree
Sp. It follows that there exists a sequence r m -^+oo such that T{rm, e~h) —
o(l)T(rm, F). Then from (20) and the second fundamental theorem we obtain

N(rn, 0, F)= jίMr™, ak, f)^(n-l + o(l))T(rm, f)

, F).

Combining this with (19) will prove Theorem 3.

Remarks.

1. If F has integer order and normal type then we cannot get an analogous
result to Theorem 3 consider for example

F(z)=ee'(e'-a1)(e'-ai) ••• (ez-an).

2. It is possible to get equality in (21) for every n in case (A) of Theorem 3
consider the function
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i ? (z)=(cosVT-l)(cosVT+l)(cosVT+2) ••• ( c o s V T + n - 1 ) .

THEOREM 4. Suppose F is entire of finite order p>0, the zeros of F have

exponent of convergence p, and N(r, F, 0)=o(ϊ)rp~ε for some ε>0. Then Ω—

{z: F(z)=0} is not an NPS.

Proof. If Ω is an NPS, then

Feh=(f-a1)"'(f-an)

where h is entire, / is entire of order p from Lemma 1, and alf a2, •••, an are
n>2 distinct values. Hence by the second fundamental theorem,

r, f, ak)=N(r, F, 0)=o

which is a contradiction. This proves Theorem 4.

Remark. The zeros of a function F in Theorem 4 will necessarily have
unbounded multiplicities. An example [8, pp. 298-299] is

where m is a positive integer, p is a nonconstant polynomial, and {an}
2

n% are
2m

rational numbers (α2m>0) such that Σ α ^ 7 1 is a non-negative integer whenever
71 = 0

k is an integer. F is entire of order (2mJ

Γl)άeg(p)) the exponent of convergence
of the zeros of F is (2m+l)deg(/>), and JV(r, F, 0)=N(r, ep, 1)+O(logr).

Of course we can easily construct canonical products F to satisfy the hypo-
thesis of Theorem 4.
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