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THE EULER PRODUCT FOR THE RIEMANN ZETA-FUNCTION
IN THE CRITICAL STRIP

HIROTAKA AKATSUKA

Abstract

In this paper we study a pointwise asymptotic behavior of the partial Euler
product for the Riemann zeta-function on the right half of the critical strip. We
discuss relations among the behavior of the partial Euler product, the distribution of
the prime numbers and the distribution of nontrivial zeros of the Riemann zeta-
function.

1. Introduction
The Riemann zeta-function {(s) has the Euler product expression:

(L.1) (s)=TJa-p7,

p

where p runs over the prime numbers. The product (1.1) converges absolutely in
Re(s) > 1. We consider the partial Euler product

(1.2) [Ta-p="

P=<Xx

as x — oo for fixed sp € C satisfying 1/2 < Re(sp) < 1. When Re(sy) =1, we
know that

[[a-p) " ~elogx,

P=<x

[T0-p )" =20+ i)

P=Xx
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as x — oo for any 7)€ R\{0}, where cg is the Euler constant. The former
formula was obtained by Mertens in [12, p. 53]. See also [17, §3.15] for the
Euler product on Re(sy) = 1.

In this paper we investigate a behavior of the partial Euler product (1.2)
at so € C satisfying 1/2 < Re(sp) < 1. There is corresponding research for L-
functions of elliptic curves over the rational number field: see Goldfeld [5],
Kuo—Murty [10] and Conrad [2]. Their motivation comes from the initial form
of the Birch and Swinnerton-Dyer conjecture, which predicts a behavior of partial
Euler products attached to elliptic curves at the central point. We note that
Conrad has treated a certain class of L-functions, which includes, for example,
Dirichlet L-functions of nonprincipal Dirichlet characters as well as L-functions
of elliptic curves. However L-functions belonging to his class are holomorphic
in the right of a critical line. Thus his results do not apply to the Riemann zeta-
function because of the pole at s = 1. Moreover, when we consider a behavior
of the partial Euler product as x — oo, we cannot ignore a contribution of the
pole as explained below.

We state our results. Let A(n) be the von Mangoldt function and we put
Y(x):=>,..A(m). When Re(sy) = 1/2, a behavior of the partial Euler product
can be characterized as follows:

THEOREM 1. The following conditions (1)—(iii) are equivalent:
(i) Y(x)=x+o(x'?logx) as x — 0.
(i) There exists ty € R such that

m —spy—1 . * du _ l
(1.3) (log x) H(l ) /exp {lﬁgl(Lﬂ—uSo og log .

P=<x

has a nonzero limit as x — oo, where sy := %—i—ito and m is the multi-
plicity of the zero of {(s) at s = sp.
(iii) The quantity (1.3) has a nonzero limit as x — oo for any ty€R.
If the above conditions are valid, then the Riemann hypothesis holds and (1.3)
converges to

(1.4) e(l—m)CE(SO _ I)C(m)(s()) « { V2 if 1o =0,

m! 1 otherwise

as x — oo, where (" (s) is the m-th derivative of {(s).

Under the Riemann hypothesis, the current best estimate for y(x) is ¥(x) =
x+ O(x"2(log x)?). Therefore we cannot reach the first condition in Theorem 1
under the Riemann hypothesis at present. On the other hand, Montgomery
[13, p. 16] predicts that

Y(x) —x v 1 Y(x) —x r 1

1.5) limsu =—, liminf =——.
(1-3) )Hocpxl/z(logloglogx)2 2n % x1/2(log log log x)* 2n
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If both equations are true, then the first condition in Theorem 1 holds. We also
remark that Cramér [3, pp. 24-25] has essentially obtained

X
(1.6) Jl (Y(x) — x)zd—; <« X

under the Riemann hypothesis (see also [4]). In particular (1.6) implies that

L meas{x e [X,2X] : [y(x) — x| > eX/? log X} «

X 2(log X)?

holds for X > 2 and ¢ > 0, where meas is the Lebesgue measure on R. Thus the
first condition in Theorem 1 is reasonable from a statistical standpoint.

When 1/2 < Re(sp) < 1, a behavior of the partial Euler product (1.2) is
characterized as follows:

THEOREM 2. Let ag € (1/2,1) be fixed. Then the following conditions (1)—(iv)
are equivalent.

(1) ¥(x)=x+0(x").

(i) There exists ty € R such that

x du 1
m =) ] : o= -
(1.7) (log x) I | (1=p™) /exp [lglgl (Jl+a o log 1 log 8)]

P=Xx

has a nonzero limit as x — o0, where sy := oo + ity and m is the multi-
plicity of the zero of {(s) at s = so.
(iii) The quantity (1.7) has a nonzero limit as x — oo for any ty € R.
(iv) {(s) # 0 in Re(s) > ao.
If the above conditions are valid, then (1.7) converges to

C(m> (50)

(18) el1 e (3 — 1)L

as X — 00.

In Theorem 2 the asymptotic behavior of the partial Euler product is
equivalent that {(s) is zero-free in Re(s) > a9, which is different from Theorem 1.
This difference comes from a zero density theorem: see Remark 4.3 below.

Theorems 1 and 2 should be compared with Conrad’s results [2, Theorems
3.3, 5.11, 6.3]. We see that the denominator of (1.3), (1.7) and e“(sp — 1) on
(1.4), (1.8) are regarded as the contribution of the pole at s = 1.

Theorems 1 and 2 follow from Theorem 3 below. We put ® := sup{Re(p) :
peC,{(p)=0}. We know that 1/2 < ® < 1 holds unconditionally and that the
Riemann hypothesis is equivalent to ® = 1/2. With this notation we have

THEOREM 3. We assume O < 1. Let sy =09+ ity with ® <og9 <1 and
to € R.  The nonnegative integer m denotes the multiplicity of the zero of ((s) at
s=So. Then we have



82 HIROTAKA AKATSUKA

(1.9) Z M—lim(J ﬂ—log %)—&—mloglogx

S S
Y52 logn &0\ )i u* logu

= liT’z (log {(s) —m log(s — so) +log(s — 1)) + (1 —m)cg
S=0rl1ly
alay

— 1
TG Rk Y (R :
x% log x x90~9 log x

where the implied constant depends only on sy. Here log {(s) — mlog(s—so) +
log(s — 1) is determined such that the following conditions are satisfied:
o Al)
logl(s)=>",-, o log in Re(s) > 1,
carg(s— 1) e (—n/2,n/2) and arg(s —sp) € (—n/2,7n/2) in Re(s) > 1,
* log {(s) — m log(s — so) + log(s — 1) is holomorphic in Re(s) > O.

The partial Dirichlet series for log {(s), i.e., the first term on (1.9), is more
tractable than the logarithm of the partial Euler product (1.2). Therefore we
state Theorem 3 in terms of the partial Dirichlet series instead of the partial Euler
product. We will discuss a relation between the partial Euler product and the
partial Dirichlet series in Lemma 2.1.

Roughly speaking, our main tools to derive Theorem 3 are the following
two facts. The first one is Abel’s theorem for Dirichlet series, which says that
convergence of Dirichlet series at one point implies uniform convergence on a
certain sector. The second one is Weierstrass’s theorem in complex analysis,
which asserts that uniform convergence for a sequence of holomorphic functions
guarantees holomorphy for the limit function.

When we restrict our attention to the case of real sy, Theorems 1-3 can be
described in terms of the logarithmic integral. See Corollaries 4.4, 4.5 and 3.6.

After completing the first version of this paper, the author noticed Ram-
anujan’s work [15, §68], which was unpublished until the late twentieth century.
Roughly speaking, Ramanujan discovered more precise formulas than (1.9) in
the case sp € [1/2,1), probably assuming the Riemann hypothesis. However it
seems that he did not give a convincing proof. We will compare our results with
Ramanujan’s formulas briefly in §5.

In a trial to justify Ramanujan’s formulas, the author found another ap-
proach to Theorem 3 based on a classical method using Perron’s formula. This
approach has an advantage to clarify a contribution of the nontrivial zeros more
explicitly at least in the case that sy is real. However we adopt the original
approach in this paper because it is sufficient for our purpose and the method
is of some interest. The other approach will be included in the forthcoming
paper, in which we will discuss the part of [15] on maximal orders of the divisor
functions o_g(n) :=3_,,d"* for s> 0.

This paper is organized as follows. In §2 we investigate a relation between
the partial Euler product and the partial Dirichlet series for log {(s). In §3
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we prove Theorem 3. In §4 we show Theorems 1 and 2, using Theorem 3. In
§5 we give some remarks related to our results. In Appendix we give some
numerical computations regarding the partial Euler product.

2. The partial Euler product and the partial Dirichlet series

. . . . . A(n
In this section we relate the partial Dirichlet series »,_, . (n) to the

=¥p% logn
logarithm of the partial Euler product, whose branch is determined by

o TI0- ) = 237

P=<x PEX k=

—k&'(]

for fixed sp € C satisfying 1/2 < Re(sp) < 1. First of all we give an explicit
relation between them.

LemmA 2.1.  Let sy = ag + ity with oo € [1/2,1] and tye R Then for x > 2
we have

Z ZZ 10g2+0((10gx) Y if so=1/2,
e logn P<x k= kpkm ~(@=12)(log x) ") if s #1/2,

where the implied constant depends only on .

Proof. We have

Zkakso B Z 1% log n Z Z pkso

PE<X k= 2<n<x P<X k>1
V4 k>x

For ye[2,x] we divide the sum as follows:

(21) 2 Z 25[) Z Z kpkso Z Z kkao'

\/‘<p<x Py k>3 Y<p=<x k>3
pF>x pk>x

By the prime number theorem the second and last sums are

IPPESED DY

1 x—%
&K x7 E 1 « y,
pkﬂo
p<y k>3 P=<Yk>log x/log p

P<y log y

pF>x

- 1
Y Y as X kao < S Tiog s
}<p<vk>3 kp y<p<x k=3 ogy

pk>x
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respectively. Inserting these into (2.1) and taking y = x'/3, we obtain

1
(2.2) szpkm— > nso]ogn 2 ) ZSo <xm>—l/3logx)

P<x k= 2<n<x \/_<p<x

When 1/2 <0y <1, we easily see > 7., p > = O(x~ 12 (log x)~ ') by the
prime number theorem, so that we reach the desired result. We concentrate
on the case oy = 1/2. First of all we show the following:

Z 1 Jloglog X + ¢(0) + O((log X)h if =0,
I e(t9) + O((log X)) if 1 # 0,

(2.3)
pP<X

where ¢(#) is a constant determined by f#y and the implied constants depend
only on #. The formula (2.3) is well known in the case of # = 0: see [14,
Theorem 2.7 (d)] for example. We consider the case 7y #0. Let X < Y. Then
by integration by parts we have

1 Yidn(u) n(Y) n(X) )
2.4 — — = — : 1+ 2it ———d
( ) X<p§; Yp1+2no JX ul+2it Y 1+2it X 1+2it + ( + 21 0) JX y2+2it u
Y
du 1
= (1+2it A 0
(14 2ito) JX ul+2ito logu+ <log X)’
where 7(x) := |{p < x: prime numbers}|. Here in the last equality we applied
X X

n(x) = We easily see from integration by parts that the

+ 2
log x (log x)
last integral on (2.4) is O((log X)™'). Consequently we obtain

1 1
(2.5) Z T+2ity 0<10g X>'

x<p<y?

This implies that ) _, p~'~*" converges as X — co. Taking the limit ¥ — oo

n (2.5), we obtain (2.3) in the case of #, # 0.
By (2.3) we have

1 3 1 Ilog 2+ O((log x)™") if 1 =0,
2 e P o((log )7 if 1 #0.

Applying this to (2.2), we obtain the stated result in the case of gy = 1/2. The
proof is completed. O

Using Lemma 2.1 together with standard treatments of a logarithmic branch
(see [1, §2.2 of Chapter 5] for example), we show the following:
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LemMa 2.2. Let sy = oo + ity with oo €[1/2,1) and toeR. Let m denote
the multiplicity of the zero of {(s) at s =so. Then the following conditions (i) and
(ii) are equivalent:

(i) A4s x — oo,

m —sp\ —1 . . du _ l
(2.6) (log x) H(l -p7) /exp [lgf(r)l (Jugu‘vo Tog log .

P=<x

has a nonzero limit.
(i) 4s x — oo,

v A Jx W 1og 1) 4+ mlog log x
n%logn &0\ ), u® logu 8% £ 708

2<n<x

converges.

Proof. According to Lemma 2.1, (ii) is equivalent that

¥ du 1
— — p~%0) _ |1 — —
(2.7 E Log(l — p~™) — lim (J log 8) + m log log x

= al0 \ J . u% log u

converges as x — oo, where Logz is the principal branch of logz. Thus we
easily see that (ii) implies (i) by taking the exponential on (2.7). Next we show
that (2.7) converges as x — oo under (i). We denote (2.6) by P(so;x) and its
limit by P(sp). Then we have Log(P(so;x)/P(s9)) — 0 as x — oo. For any
x > 2 there exists /i(x) € Z such that

P(s0; x) -
2.8 Lo =m log log x — Log(l — p=%
(2.8) € plso) g log pESX g(l—p™)
. * du 1 .
- 1§ir(1)1 <J1+s g log E) — Log(P(s0)) + 2mih(x).

For 7€ (0,1] we replace x with x+# on (2.8) and subtract (2.8) from it.
Consequently we have

P(so; P(so; g
Log (So7x+77)_L0g (So,x):mj uloL;u_

P(s0) P(s0) Z Log(1 =p™)

X<p=<x+n

_Jm du + 2mi(h(x + 1) — h(x)).

» u®logu
Estimating the sum and the integrals trivially, we obtain

2mi(h(x + ) — h(x)) = Log W ~Log P;)s(ii);)

+O0(x™")
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as x — oo uniformly for 5 € (0,1]. Thus we obtain i(x+#)— h(x) — 0 as
x — oo uniformly for # e (0,1]. This together with A(x) e Z for any x>2
yields that there exists X >2 and heZ such that i(x) =h for any x> X.
Inserting this into (2.8) and taking the limit x — oo, we see that (2.7) converges
to Log(P(sy)) — 2mih. This completes the proof. O

3. Proof of Theorem 3

In this section we prove Theorem 3. Throughout this section we assume
® <1 and fix so = g9 + ity with ® <oy <1 and 7)€ R as in Theorem 3.

Lemma 3.1. Keep the assumption and the notation. Put

A x 1
3.1 A= y(n)—limq YL—log >
J 52 nvlogn w0\ Jyp u log u &
Y(x) —x
_W—leoglogx.

Then for 2 < x <y we have

(32) A(y) - A(x) = 0(;)

x7~© log x

where the implied constant depends only on sy. In particular, the function A(x)
converges as x — oo.

Proof. Let 2 <x < y. Then integration by parts gives

(3.3) yo AW J d

S0 - S0
S2n logn ), u® logu

« u%logu yology x% logx
v _ ¥ _
R O ST

cuvtllog u v ut! (log u)*

_ JydW(u) —u) Y3 -y Yx)-x

We treat the last two terms. Here we recall the following formula for u > 2 and
T =2 (see [14, Theorem 12.5]):

P 2
Y(u) =u— Z %—i— 0(10gu)+0<w>,

p=B+iy
-T<y<T

where p = i + iy runs over the nontrivial zeros of {(s) with —T <y < T counted
with multiplicity and the implied constant is absolute. Thus for « € {1,2} and
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T > |ty| we have

YoY(u) —u L du
4 AL S ol
(34) Jx utl(log u)” du Z pL uo—r+(log u)”
p=p+iy
~T<y<T
Y d 1 (71 T))*
cof[ ot ) o L[ ot )
x ua'()“rl (log u)“ T X uoo (log u)
We easily see that
r du 1
o—1 « o—1"7
x uot(log u) x%(log x)
L [* (log(uT))* - 2o ¥ (log T)°
il M L2 — | ytnq y es )
7| umiogaye 4 7 (10w 74 %

We treat the sum on (3.4). We divide it into p =59 and p # 59. When p # s,
integration by parts gives

v (logu)”  p—so (log y)*  p—so (log x)”

JJ’ du 1 y/)*So 1 xP—50

o J Y du
p =50 ) us—r+1(log u)*
Applying these to (3.4) and taking the limit 7 — oo, we obtain

[,

v ust (log u)”

m Y du 1 y/’*b‘o 1 xP—50
=T o o + 7
50 L u(logu)”  (log y) ,;)p(p —s0)  (log x) ; p(p — s0)
1 Y du 1
3 p(p— vo)J so=pt1 1O\ o |
PES0 S0) Jx u (log u) xo (log x)

We estimate the sums over the nontrivial zeros by using }_, lp| 2 < o0, so

that
Jy |//(u)—ua:_mjy du 40 1 ).
« uvt(log u) 50 ) u(log u)” x2=9(log x)

Applying this to (3.3) and noting that m =0 if gy > ®, we obtain the desired
result. U
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Next we compute the limit of A(x).

Lemma 3.2. Keep the assumption and the notation as in Theorem 3 and
Lemma 3.1. Then we have
lim A(x) = lim (log {(s) — m log(s — so) + log(s — 1)) + (1 — m)cg

X— 00 s=0+1ity
alag

where log {(s) — m log(s — so) + log(s — 1) is determined in the same as Theorem 3.

We put
(3.5) Fls;x) = J W dA (),
12
We show Lemma 3.2 by calculating lim, |, limy_.., F(o + ity;x) by two ways.
Firstly we investigate convergence of F(s;x) as x — oo.

Lemma 3.3. Keep the assumption and the notation as in Theorem 3 and
Lemma 3.1. Then F(s;x) converges as x — oo uniformly on se€ Sy = {o+it:
|t — 1| < H(o —00)} for each H > 0. In particular, lim,_,., F(s;x) is continuous
on Sy and holomorphic in the interior % of S for each H > .

We remark that the prototype of Lemma 3.3 is Abel’s theorem for Dirichlet
series, which can be found in [14, Theorem 1.1] for instance.

Proof of Lemma 3.3. Let H >0 be fixed. Thanks to Lemma 3.1, the
function 4(x) has a limit, say 4. Let ¢ >0 be arbitrary. Then there exists
X > 2, which depends only on sy, H and &, such that |4(x) — 4| <e/(3+ H)
(=:¢) holds for any x > X. We take s =0+ it € ¥y and (X <)x < y and treat
|F(s;y) — F(s;x)|. If s =s0, then |F(so; y) — F(so;x)| = |[A(y) — A(x)| < 2¢' < e.
Next we consider the case s # syp. In this case ¢ > gy holds. Integration by
parts gives

Flsiy) = Flsix) = | wd(atw) - 4)
= y0(A(y) — A) = X7 (A(x) — 4)
— (s0—9) Jy u N A(u) — A) du.
Estimating each term trivially, we obtain V

v
|F(s;y) — F(s;x)| <26 + |so — S|8/J u o du < <2 + 1% S|>
X g — 09

Since |[s) — 5| < (6 —09) + |t — 1| < (1 + H)(o — 0p), this is bounded above by
<(3+H)¢ =e¢ Thus F(s;x) converges as x — oo uniformly on se %y as
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desired. In consequence we see that lim,_.., F(s;x) is continuous on %, and
is holomorphic in &;; by Weierstrass’s theorem (see [1, §1.1 of Chapter 5]).

We complete the proof. O
Next we calculate lim,_,, F(s;x) when Re(s) > 1. Inserting (3.1) into (3.5)
A
and using log {(s) =", " li)ng)n in Re(s) > 1, we easily see that
“ du
. Iim F(s;x) =1 —
(3.6) sl (s x) = log {(s) L us log u

o0 0 _
N g (TOE
» whotllogu )iy u log u
holds for Re(s) > 1. To calculate the first two integrals, we show the following
formula:

Lemma 34. In arg(z—1) e (—n/2,n/2) we have

. “ du 1
(3.7) 131101 (Jlﬂ i logu log E) = —cg —log(z—1).

Proof. We restrict z to z> 1. Changing the variable u by u = ¢’ and
integrating by parts, we have

F e :—(1+8)_(Z_l)loglog(1+s)+(z—1)Jw e log v dv
It e 10g u log(1+¢)

Since —(14¢) "V log log(1 + &) — log(1/¢) tends to zero as ¢ | 0, we have
[5%) 1 [°9) :
lim (J du log —) =(z—-1) J e~ (z=1v log v dv.

elo \ )1, u® logu e 0

Changing the variable v by w = (z — 1)v and applying I'(1) = 1 and T''(1) = —cg,
where I'(z) is the gamma function, we obtain (3.7) for z > 1. Since both sides
on (3.7) are holomorphic in arg(z—1) € (—n/2,%n/2), the identity (3.7) holds
for arg(z — 1) € (—n/2,7/2) by the identity theorem. This completes the proof.

O

Next we investigate analytic properties of the last term on (3.6).

Lemma 3.5. Keep the assumption and the notation as in Theorem 3 and
Lemma 3.1. Then for s =a+it with ¢ >1 and t e R we have

(3.8) Jw uwd<‘/’(”) - “> 27 sy JMW(—I Eo+ 21;) d-.

12 uvlogu) log2 s z ¢ 1 -z
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Each term on the right-hand side is holomorphic in Re(s) > ©. On t =ty the last
term has the following asymptotic behavior as o | oy:

+o0+ity 1 gl 2172 m
(3.9) J < (Z)+l—z)dz__s()10g

a+ity z (

+o(1).

g — 0y

Proof. First of all we prove (3.8) for Re(s) > 1. Integrating by parts, we
have

(3.10) Joo W ('”(”) - ”) _27 ) r Y —u

1 uo logu) log?2 , ustllogu

We treat the last term on (3.10). We note that

+oo4-it 1 1
J 1 % = 5
s u? ust!log u

holds for u > 2. Applying this and Fubini’s theorem, we have

Jw ) —u g JHM r YW =

2 ust! 10g u s 2

We note that

(3.11)

holds for Re(z) > 1. In fact, expressing ({'/¢)(z) = —>_.2, A(n)n~" in terms of
the Stieltjes integral and integrating by parts, we can plainly see (3.11). Thus we
obtain

(3.12) J@ V) —u JMW(—E Yo+ 21_2) d.

, ustllogu s z { -z
. . . . 1 4” 21—z
Inserting (3.12) into (3.10), we reach (3.8). Since the integrand —3 z(z) + =
is holomorphic in Re(z) > ©, the right-hand side of (3.12) is holomorphic in
Re(s) > O©.
Finally we show (3.9). We write
+oo+ity 1 CI 217:
——Z(2)+ dz
Ja+ilo ( ZC() 1_Z>
+o0+ity +oo+ity 1 / 2172’
:—J Ldz+J (——C—(z)+ m >dz
orin 2(2 = 50) ity z zZ(z—s0) 1—z
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Since the integrand of the last term is holomorphic at z = s, the last term is O(1)
as o | og. The first term is calculated as follows:

+c0+ity 2+ity
_J _m_ dz:_J M to)
a+ity z(z — 50) o+ity z(z — o)

_ _TJM’( ! _1) d=+ 0(1)

S0 o+ity zZ— 380 z
=" log +o(1).
S0 g — 0y
Combining these, we obtain (3.9). O

Proof of Lemma 3.2. Inserting (3.7) and (3.8) into (3.6), we see that

(3.13) lim F(s;x) = (log {(s) — m log(s — so) + log(s — 1)) + (1 — m)cg

X— 00
+lim Jz B og L
el0 \ J14e u® log u & e

lim r du log -
T lag W50+ log u &%

2175 + o0+t 1 C/ 2172
10g2+(so—s)L <—ZC(Z) + _Z) d=

holds for s = o + it with ¢ > 1 and te R. It follows from Lemmas 3.3 and 3.5
that both sides of (3.13) are holomorphic in s € &; for each H > 0. Thus (3.13)
holds for s € ¥} by the identity theorem. We put s = ¢ + ity and take the limit
o | gp. Then by Lemma 3.3 again we have

(3.14) lim lim F(s;x) = lim F(sp;x) = lim A(x) — 4(2-).
S:(1'+ll0 X—00 X—00 X—00
alog

By the definition of A(x) we have

(3.15)  A(2=) = —lim r @ 1oa Y 4 mloglog 2 4+ 2
‘ w0 \Jypun logu &% glog log 2’

It follows from (3.9) that

) +o0+ify 1 C/ 2172
(3.16) ‘Y:I%rfito(so — ) L (_E T (z2) + = z> dz = 0.
Combining (3.13)—(3.16), we obtain the desired result. O

Proof of Theorem 3. Taking the limit y — oo on (3.2) and applying Lemma
3.2, we complete the proof. O
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Finally in this section we discuss Theorem 3 when sy is real. In this case
we can write the second term on (1.9) in terms of the logarithmic integral Li(x),

which is defined by
1—¢ X
Li(x) := lirn(J +J > du_
10 \ Jo 142/ log u

In fact, Theorem 3 turns to

COROLLARY 3.6. We assume @ < 1. Then for each o€ [®,1) we have

> A(n) Li(xl“)=log(—5(“))+w(X)_x+O< 1 )

o - o o—®
Y52 log n x* log x x*9 log x

where log(—{(x)) e R.
Here we keep in mind that {(«) < 0 for « € (0, 1), which follows from [17,
(2.1.5)] for example. In order to show Corollary 3.6, we need the following

formula:

LemMa 3.7. Let o€ (0,1) and x > 1. Then we have

lim (J du___ log %) = Li(x"™) —log(1 — &) — cg.

el0 \ )14, u* log u

Proof. Changing the variable u by u'/0=% we have

1—o

* du J * du

14e U” log U (1+42)' IOg u
Jlﬂ du Jla Jx"‘ du Jlx du
= + + —— .
(145 log u 0 1+ ) logu Jo logu
We write the first term on the right as

I+e d I+e 1 1 I+¢ d
(3.18) J u :J ( _ )du+J u_
(14¢)~ log u (14 \logu u—1 (14e) U —1

We easily see that the first integral on the right is o(1) and the last integral
is —log(l —a)+o(l) as €| 0. Thus (3.18) equals —log(1 —a)+o(1) as ¢ 0.
Inserting this into (3.17), we have

* du 1 1=¢ du 1
li —log — ) = —log(1 — Li(x'™) — 1i log — ).
ity (J1+n”“ logu ¢ e) og(l =)+ Litx) - i (Jo logu ¢ e>

(3.17) J
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We casily see that the last term on the right is
. = du 1
lim +log—-)=cg
elo\Jo logu €

by changing the variable u by u =" and integrating by parts in the same
manner as the proof of Lemma 3.4. This completes the proof. O

Proof of Corollary 3.6. Since ((x) # 0, the multiplicity m equals 0 in
Theorem 3 with s = o. Applying Lemma 3.7 to Theorem 3 with sy = o, we
obtain the stated result. O

4. Proof of Theorems 1 and 2
In this section we prove Theorems 1 and 2. First of all we show the

following:

ProPOSITION 4.1. Let sy:=ag+ity with 1/2<09<1 and tpoeR. We
assume that

4.1 Z Aln) lim <J du__ _ log é) + m log log x

2Sn§xn50 logn 0\ Ji,u® logu

converges as x — oo, where m is the multiplicity of the zero of {(s) at s = s).
Then the following assertions hold.
(1) Y(x) =x+o0(xlogx) as x — co.
(2) L(s) # 0 in Re(s) > op.
(3) The quantity (4.1) converges to
lim (log {(s) —m log(s — s0) + log(s — 1)) + (1 — m)cg
S=o-+ily
(Tlo'()
as x — oo, where log {(s) — mlog(s — so) + log(s — 1) is determined as in
Theorem 3.

Proof. We show (1). From the assumption, the quantity (4.1) has a limit,
which is denoted by ¢. We put

A(n) . ¥ du 1
A(x) := —1 —log — log 1 —c.
(x) Z glf(r)l (J og 8) +mloglogx—c¢

S S
ZSngnOlogn 14 U0 log u

Then A(x) =0(1) as x — co. We have

A(n
u® log ud( Z p 1(0; n>

2<n<u

(42) 00 = |

172

= J u® log udA(u) + x + O(x™).
12
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Integration by parts gives
(4.3) J u" log udA(u)
12

X X
= x"A(x) log x — SOJ u® 'A(u) log u du — J u*'A(u) du+ O(1).

2 2
The first term is o(x™ log x). In order to treat the second term, we divide the
interval 2 <u < xinto 2 <u < x'? and x'/? <u < x. We see from A(u) = o(1)
that the integral on 2 <u < x'/2 is O(x®/?log x) and the integral on x'/2 <
u<x is o(x®logx). Thus the second term on the right-hand side of (4.3)
is o(x? log x). In the same manner the third term is o(x). In total (4.3) is
o(x? log x) as x — co. Applying this to (4.2), we obtain (1).

It is well known that (1) implies (2). In fact, we note that the following

equation holds in Re(s) > 1 (see (3.11)):

! C(u) —u 5. 21
(4.4) g—(s):—sJ () du — 2 .

¢ ) ustl s—1

We see from (1) that the integral converges absolutely and locally uniformly in
Re(s) > 9. Thus ({'/{)(s) is holomorphic in {se C : Re(s) > g, s # 1}, which
is nothing but (2).

Lastly we show (3). The assertion (2) says o9 > ©®. Inserting (1) into (1.9),
we obtain (3). O

Proof of Theorem 1. We prove the former part of Theorem 1 by showing
that (iii) implies (ii), that (ii) implies (i) and that (i) implies (iii). It is clear that
(iii) implies (ii). We show that (ii) implies (i). By Lemma 2.2 (ii) implies that
(4.1) converges as x — oo for some sy =1+ ifp. Thus by Proposition 4.1 (1),
we obtain (i). Next we show that (i) implies (iii). Let so =1+ it with 7pe R
be arbitrary. We note that (i) implies the Riemann hypothesis (see (4.4)).
Applying the assumption (x) = x + o(x'/? log x) to Theorem 3 with gy = 1/2,
we see that (4.1) converges as x — oo. Thanks to Lemma 2.2, we obtain (iii).
We complete the proof of the former part of Theorem 1.

We show the latter part. In the proof of the former part we have already
mentioned that (i) implies the Riemann hypothesis. Inserting Lemma 2.1 and (i)
into Theorem 3 with gy = 1/2 and taking the exponential, we find that (1.3)
converges to (1.4) as x — oo. This completes the proof. O

Before we prove Theorem 2, we quote the following result of Grosswald
[7, Théoréme 1]:

LemMA 4.2, If © > 1/2, then we have y(x) = x + O(x®).

Proof of Theorem 2. We prove the former part of Theorem 2 by showing
that (iii) implies (ii), that (ii) implies (iv), that (iv) implies (i) and that (i) implies
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(iii). Clearly (iii) implies (ii). We assume (ii). Then we can show y(x) =
x+o(x? log x) in the same manner as the proof of Theorem 1. Since the
integral on (4.4) converges locally uniformly in Re(s) > g, we obtain (iv). We
immediately see from Lemma 4.2 that (iv) implies (i). We can easily show that
(i) implies (iii) in the same manner as the proof of Theorem 1. We complete
the proof of the former part.

We can also show the latter part in the same manner as the proof of
Theorem 1. We omit the detail. O

Remark 4.3. Lemma 4.2 is a typical application of a zero density theorem.
Thus the slight difference between Theorems 1 and 2 comes from the zero density
theorem.

At the end of this section we discuss the case that sy is real. Taking Lemma
3.7 into account, we immediately see that the following are weaker versions of
Theorems 1 and 2, respectively.

CoROLLARY 4.4. The following conditions (1) and (ii) are equivalent:
(i) ¥(x)=x+o0(x""?log x) holds as x — oo.
(i) As x tends to infinity, we have

[T fexpllin )] - ~vE ().

P=Xx

If the above conditions hold, then the Riemann hypothesis is true.

CoROLLARY 4.5. Let o€ (1/2,1). Then the following conditions (i)—(iii) are
equivalent:

(i) Y(x) =x+ O(x*) holds as x — o0.

(i) As x tends to infinity, we have

[T0-p )" fewlLic )] - -t

P<X

(iif) ¢(s) # 0 in Re(s) > o

5. Concluding remarks

In this section we give several remarks related to our results.

First of all we mention a formula of Guinand [8, Theorem 2| regarding
the number N(T) of the zeros p of {(s) in 0 <Im(p) <T. Now we assume
the Riemann hypothesis. We take 7 > 0. For simplicity suppose that
{(1/24iT) # 0. Taking the imaginary part on (1.9) with sp =1/2+iT and
taking the limit as x — oo, we obtain
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arg C<;+ iT> — lim ( Z A(n) sin(T log n) n JX sin(7 log u) "

e\ L5, n'Plogn 1 ul/?logu
—x) sin(7 lo 1
L 1)2 (T log x) —arg( —<+iT).
x1/2 log x 2

Here arg {(}+iT) and arg(— 4+ iT) are determined such that arg (¢ + iT) and
arg(c — 1 +iT) are continuous on ¢ > 1/2 and they tend to 0 as g — +o0.
Applying this to the following formula (see [14, Theorem 14.1])
1 1 T T 1 1
N(T) = argr<4+2> % logn—i—; argC(2+lT> +1,

we obtain a formula for N(7). This essentially agrees with [8, Theorem 2].
Guinand used Hankel transforms and his method is different from ours.

Aln) On the

In this paper we treat asymptotic behaviors of 22 <n<¥ % log

other hand, Gonek [6] considered behaviors of

-~ A(n)v(n; x)
n% logn ’

(5.1)

n=2

where v(-;x) is a weight function. If we choose v(-;x) appropriately, then a
behavior of (5.1) can be obtained under a milder assumption than the case of
our unweighted sum. Compare the displayed formula just before Theorem 9.1
in [6], which is a consequence of the Riemann hypothesis, with Theorem 1.

Lastly we compare Theorem 3 with Ramanujan’s formulas [15, (359) and
(361)]. For simplicity we assume the Riemann hypothesis. When s € [1/2,1),
we can rewrite Theorem 3 as follows:

PrOPOSITION 5.1.  Assume the Riemann hypothesis. Then,
(1) We have

52 [T0-p" = —var(g) ewlLise + o1 )|

P log x

where 9(x) =3, _ log p.
(2) For o€ (1/2,1) we have

53 T[0-r" = -t exo|Li0 )+ 0( oo ) |

P<x x*=1/2 log x
where the implied constant depends only on .

For the proof we start with Theorem 3. Let o €[1/2,1). Then under the
Riemann hypothesis we have
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A(n) . x du 1
4 -1 — log —
(54) Z n*logn xlfloq (Jl+x u*logu °8 a)

2<n<x

= log(—(1 a)C(a))+cE+l//(x)_x+0< : >

x*log x x*=1/2 log x

We calculate the last term on the left by using the following lemma together with
Lemma 3.7.

LemMa 5.2, Let o> 0 be fixed. Suppose r(x) =o(x) as x — co. Then it
holds unconditionally that

Jx+r<x> du__ 1) o P )
N u*logu x*logx x!+log x
Proof.  We write the left-hand side as

x+r(x) du r(x) du
L u* logu_JO (x+u)* log(x +u)’

(5.5)

We see from the Taylor expansions that the identities

(x+u)™ = X“(l +§)_“ - x“(l n 0<%|>)

_ lul\ _ |ul
log(x+u)logx+0()C =logx(1+0 Ylog x

hold uniformly for —x/2 <u < x/2. Thus we have

(x+u)” llog(x+u) T li)gx (1 + 0<|_§{c|>>

uniformly for —x/2 < u < x/2. Inserting this into (5.5), we complete the proof.
O

and

Proof of Proposition 5.1. For a€[1/2,1) we calculate the last term on the
left-hand side of (5.4). By Lemmas 3.7 and 5.2 together with the conditional
estimate 9(x) = x + O(x'/2(log x)?), we have

. o du 1
lim — log —
elo \ )i, u* logu e
Y du 1 "W du
= lim J —log - —J _
elo \ J14, u*logu € x u*logu

~ Li(9()' ) — log(1 — ) — e — 20X 0<(10g )>
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Applying this and §(x) = y(x) + O(x'/?) (see [14, Corollary 2.5]) to (5.4), we
obtain

> e = Li(3(0)' )+ loe(~L) + O o)

o - a—1/2
, 5= n*logn x*1/2 Jog x

Inserting Lemma 2.1 and taking the exponential, we reach the desired result.

O

We give some comments on Proposition 5.1. According to Proposition 5.1,
1 .
- ~ =V 5) explLicao )
P=X

holds as x — oo only assuming the Riemann hypothesis. On the other hand, in
view of Corollary 4.4,

1/ — 1 .
JUGERS ‘~ﬁc(§) exp[Li(x!/?)

is not achieved under the Riemann hypothesis at present.

In [15, (359) and (361)] Ramanujan gives more precise formulas than (5.2)
and (5.3) without a convincing proof. For example, Ramanujan asserts that
O((log x)™") on (5.2) can be replaced by

1 1 xP~12 1
— 1= x| +o[——).
logx\" 25p(p—3) (log x)

We will discuss Ramanujan’s formulas in the forthcoming paper.

Appendix A. Numerical calculations

In this appendix we give numerical data for

E(o; x) := H(l - p“)l/exp[Li(xl"‘)].

P=<x
In view of Corollaries 4.4 and 4.5, E(x;x) is expected to converge to

V2 if a=1/2,

Ew%:_awx{l if1/2<a<1

as x — oo for o€ [l/2,1).

Table 1 presents numerical values for E(x;x) and E(x). This calculation
was done by PARI/GP. Our expectation E(o;x) — E(o) is not far from the
truth in view of the numerical data. In order to give some more observations
on the numerical data, we look at the ratio E(x;x)/E(a) for o e[1/2,1). We
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Table 1. E(x;x) and E(x).

E(o; x) o=1/2 | «=5/8 | a=3/4 | «=7/8

x=10 2.336986 | 2.798311 | 4.074990 | 8.246520
x=102 || 2.188085 | 2.499169 | 3.690993 | 7.660053
x=103 || 2.172603 | 2.376645 | 3.566187 | 7.518212
x=10% || 2.182170 | 2.300975 | 3.507474 | 7.467063
x =105 || 2.136782 | 2.234054 | 3.471481 | 7.443684
x=10°% || 2.028938 | 2.178329 | 3.451221 | 7.434380
x=107 || 2.022247 | 2.158042 | 3.446000 | 7.432788
x=10% || 2.053075 | 2.148405 | 3.444133 | 7.432372
x =107 || 2.074954 | 2.140566 | 3.442940 | 7.432150
x =101 || 2.106856 | 2.135434 | 3.442312 | 7.432055

E(x) 2.065253 | 2.117418 | 3.441285 | 7.431961

assume the Riemann hypothesis. Then, inserting Lemma 2.1 into Corollary 3.6
and taking the exponential, we obtain

(A1) E(%:x) = E(2) exp{‘“’o_% 0< ! )}

x* log x x*=1/2 log x

Thus, the conjectural bound (x) = x + O(x"/2(log log log x)*), which is a con-
sequence of Montgomery’s conjecture (1.5), implies

E(o; x) (log log log x)*
A2 =14+0|— 7" |.
(A2) E(2) i ( x*1/2 log x
On the other hand, numerical calculation gives
E(1/2;109)_ E(1/2; 10‘0)_
(A.3) w— 1.0046"', T/z)— 1.0201 AR

To some extent, the conjectural estimate (A.2) seems reasonable from a stand-
point of (A.3) because (log loglog x)?/log x approximately equals 0.0593 for
x=10° and 0.0567 for x = 10'°.

From Table 1 we may wonder if E(«; x) > E(«) for any o > 1/2 and x > 10.
However we cannot expect it because of the following result:

ProOPOSITION A.l.  We assume the Riemann hypothesis. Then for o€ (1/2,1)

we have
log log log x
E(u;x) =E 1+Q (—————1 ).
() = £ 1+ 0 (28 02

In particular under the Riemann hypothesis there exists {x,},, such that x, tends
to infinity and E(u;x,) — E(a) changes sign on n € L.
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Proof. We assume the Riemann hypothesis. It follows from (A.1) and the
conditional estimate y(x) = x 4+ O(x'/?(log x)?) that

(R = )]

Inserting Littlewood’s omega result y(x) = x + Q4 (x'/? log log log x) (see [11],
[9, Theorem 5.8], [14, Theorem 15.11] for example), we complete the proof.
O

Remark A.2. In [16, Théoréeme 2] Robin has shown unconditionally that
there exists {x,},—, such that x, tends to infinity and

H (1- pil)_l — e log x,

P

changes sign on ne€ Zs.
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