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THE EULER PRODUCT FOR THE RIEMANN ZETA-FUNCTION

IN THE CRITICAL STRIP

Hirotaka Akatsuka

Abstract

In this paper we study a pointwise asymptotic behavior of the partial Euler

product for the Riemann zeta-function on the right half of the critical strip. We

discuss relations among the behavior of the partial Euler product, the distribution of

the prime numbers and the distribution of nontrivial zeros of the Riemann zeta-

function.

1. Introduction

The Riemann zeta-function zðsÞ has the Euler product expression:

zðsÞ ¼
Y
p

ð1� p�sÞ�1;ð1:1Þ

where p runs over the prime numbers. The product (1.1) converges absolutely in
ReðsÞ > 1. We consider the partial Euler product

Y
pax

ð1� p�s0Þ�1ð1:2Þ

as x ! y for fixed s0 A C satisfying 1=2aReðs0Þa 1. When Reðs0Þ ¼ 1, we
know that Y

pax

ð1� p�1Þ�1 @ ecE log x;

Y
pax

ð1� p�1�it0Þ�1 ! zð1þ it0Þ
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as x ! y for any t0 A Rnf0g, where cE is the Euler constant. The former
formula was obtained by Mertens in [12, p. 53]. See also [17, §3.15] for the
Euler product on Reðs0Þ ¼ 1.

In this paper we investigate a behavior of the partial Euler product (1.2)
at s0 A C satisfying 1=2aReðs0Þ < 1. There is corresponding research for L-
functions of elliptic curves over the rational number field: see Goldfeld [5],
Kuo–Murty [10] and Conrad [2]. Their motivation comes from the initial form
of the Birch and Swinnerton-Dyer conjecture, which predicts a behavior of partial
Euler products attached to elliptic curves at the central point. We note that
Conrad has treated a certain class of L-functions, which includes, for example,
Dirichlet L-functions of nonprincipal Dirichlet characters as well as L-functions
of elliptic curves. However L-functions belonging to his class are holomorphic
in the right of a critical line. Thus his results do not apply to the Riemann zeta-
function because of the pole at s ¼ 1. Moreover, when we consider a behavior
of the partial Euler product as x ! y, we cannot ignore a contribution of the
pole as explained below.

We state our results. Let LðnÞ be the von Mangoldt function and we put
cðxÞ :¼

P
nax LðnÞ. When Reðs0Þ ¼ 1=2, a behavior of the partial Euler product

can be characterized as follows:

Theorem 1. The following conditions (i)–(iii) are equivalent:
(i) cðxÞ ¼ xþ oðx1=2 log xÞ as x ! y.
(ii) There exists t0 A R such that

ðlog xÞm
Y
pax

ð1� p�s0Þ�1

�
exp lim

e#0

ð x
1þe

du

us0 log u
� log

1

e

� �� �
ð1:3Þ

has a nonzero limit as x ! y, where s0 :¼ 1
2 þ it0 and m is the multi-

plicity of the zero of zðsÞ at s ¼ s0.
(iii) The quantity (1.3) has a nonzero limit as x ! y for any t0 A R.

If the above conditions are valid, then the Riemann hypothesis holds and (1.3)
converges to

eð1�mÞcE ðs0 � 1Þ z
ðmÞðs0Þ
m!

�
ffiffiffi
2

p
if t0 ¼ 0;

1 otherwise

�
ð1:4Þ

as x ! y, where zðmÞðsÞ is the m-th derivative of zðsÞ.

Under the Riemann hypothesis, the current best estimate for cðxÞ is cðxÞ ¼
xþOðx1=2ðlog xÞ2Þ. Therefore we cannot reach the first condition in Theorem 1
under the Riemann hypothesis at present. On the other hand, Montgomery
[13, p. 16] predicts that

lim sup
x!y

cðxÞ � x

x1=2ðlog log log xÞ2
¼? 1

2p
; lim inf

x!y

cðxÞ � x

x1=2ðlog log log xÞ2
¼? � 1

2p
:ð1:5Þ
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If both equations are true, then the first condition in Theorem 1 holds. We also
remark that Cramér [3, pp. 24–25] has essentially obtainedðX

1

ðcðxÞ � xÞ2 dx
x

fXð1:6Þ

under the Riemann hypothesis (see also [4]). In particular (1.6) implies that

1

X
measfx A ½X ; 2X � : jcðxÞ � xj > eX 1=2 log Xgf 1

e2ðlog XÞ2

holds for X b 2 and e > 0, where meas is the Lebesgue measure on R. Thus the
first condition in Theorem 1 is reasonable from a statistical standpoint.

When 1=2 < Reðs0Þ < 1, a behavior of the partial Euler product (1.2) is
characterized as follows:

Theorem 2. Let s0 A ð1=2; 1Þ be fixed. Then the following conditions (i)–(iv)
are equivalent.

(i) cðxÞ ¼ xþOðxs0Þ.
(ii) There exists t0 A R such that

ðlog xÞm
Y
pax

ð1� p�s0Þ�1

�
exp lim

e#0

ð x
1þe

du

us0 log u
� log

1

e

� �� �
ð1:7Þ

has a nonzero limit as x ! y, where s0 :¼ s0 þ it0 and m is the multi-
plicity of the zero of zðsÞ at s ¼ s0.

(iii) The quantity (1.7) has a nonzero limit as x ! y for any t0 A R.
(iv) zðsÞ0 0 in ReðsÞ > s0.

If the above conditions are valid, then (1.7) converges to

eð1�mÞcE ðs0 � 1Þ z
ðmÞðs0Þ
m!

ð1:8Þ

as x ! y.

In Theorem 2 the asymptotic behavior of the partial Euler product is
equivalent that zðsÞ is zero-free in ReðsÞ > s0, which is di¤erent from Theorem 1.
This di¤erence comes from a zero density theorem: see Remark 4.3 below.

Theorems 1 and 2 should be compared with Conrad’s results [2, Theorems
3.3, 5.11, 6.3]. We see that the denominator of (1.3), (1.7) and ecE ðs0 � 1Þ on
(1.4), (1.8) are regarded as the contribution of the pole at s ¼ 1.

Theorems 1 and 2 follow from Theorem 3 below. We put Y :¼ supfReðrÞ :
r A C; zðrÞ ¼ 0g. We know that 1=2aYa 1 holds unconditionally and that the
Riemann hypothesis is equivalent to Y ¼ 1=2. With this notation we have

Theorem 3. We assume Y < 1. Let s0 ¼ s0 þ it0 with Ya s0 < 1 and
t0 A R. The nonnegative integer m denotes the multiplicity of the zero of zðsÞ at
s ¼ s0. Then we have
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X
2anax

LðnÞ
ns0 log n

� lim
e#0

ð x
1þe

du

us0 log u
� log

1

e

� �
þm log log xð1:9Þ

¼ lim
s¼sþit0
s#s0

ðlog zðsÞ �m logðs� s0Þ þ logðs� 1ÞÞ þ ð1�mÞcE

þ cðxÞ � x

xs0 log x
þO

1

xs0�Y log x

� �
;

where the implied constant depends only on s0. Here log zðsÞ �m logðs� s0Þþ
logðs� 1Þ is determined such that the following conditions are satisfied:

� log zðsÞ ¼
Py

n¼2

LðnÞ
ns log n

in ReðsÞ > 1,

� argðs� 1Þ A ð�p=2; p=2Þ and argðs� s0Þ A ð�p=2; p=2Þ in ReðsÞ > 1,
� log zðsÞ �m logðs� s0Þ þ logðs� 1Þ is holomorphic in ReðsÞ > Y.

The partial Dirichlet series for log zðsÞ, i.e., the first term on (1.9), is more
tractable than the logarithm of the partial Euler product (1.2). Therefore we
state Theorem 3 in terms of the partial Dirichlet series instead of the partial Euler
product. We will discuss a relation between the partial Euler product and the
partial Dirichlet series in Lemma 2.1.

Roughly speaking, our main tools to derive Theorem 3 are the following
two facts. The first one is Abel’s theorem for Dirichlet series, which says that
convergence of Dirichlet series at one point implies uniform convergence on a
certain sector. The second one is Weierstrass’s theorem in complex analysis,
which asserts that uniform convergence for a sequence of holomorphic functions
guarantees holomorphy for the limit function.

When we restrict our attention to the case of real s0, Theorems 1–3 can be
described in terms of the logarithmic integral. See Corollaries 4.4, 4.5 and 3.6.

After completing the first version of this paper, the author noticed Ram-
anujan’s work [15, §68], which was unpublished until the late twentieth century.
Roughly speaking, Ramanujan discovered more precise formulas than (1.9) in
the case s0 A ½1=2; 1Þ, probably assuming the Riemann hypothesis. However it
seems that he did not give a convincing proof. We will compare our results with
Ramanujan’s formulas briefly in §5.

In a trial to justify Ramanujan’s formulas, the author found another ap-
proach to Theorem 3 based on a classical method using Perron’s formula. This
approach has an advantage to clarify a contribution of the nontrivial zeros more
explicitly at least in the case that s0 is real. However we adopt the original
approach in this paper because it is su‰cient for our purpose and the method
is of some interest. The other approach will be included in the forthcoming
paper, in which we will discuss the part of [15] on maximal orders of the divisor
functions s�sðnÞ :¼

P
djn d

�s for s > 0.
This paper is organized as follows. In §2 we investigate a relation between

the partial Euler product and the partial Dirichlet series for log zðsÞ. In §3
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we prove Theorem 3. In §4 we show Theorems 1 and 2, using Theorem 3. In
§5 we give some remarks related to our results. In Appendix we give some
numerical computations regarding the partial Euler product.

2. The partial Euler product and the partial Dirichlet series

In this section we relate the partial Dirichlet series
P

2anax

LðnÞ
ns0 log n

to the

logarithm of the partial Euler product, whose branch is determined by

log
Y
pax

ð1� p�s0Þ�1

 !
:¼
X
pax

Xy
k¼1

p�ks0

k
;

for fixed s0 A C satisfying 1=2aReðs0Þ < 1. First of all we give an explicit
relation between them.

Lemma 2.1. Let s0 ¼ s0 þ it0 with s0 A ½1=2; 1� and t0 A R. Then for xb 2
we have

X
2anax

LðnÞ
ns0 log n

¼
X
pax

Xy
k¼1

1

kpks0
þ � 1

2 log 2þOððlog xÞ�1Þ if s0 ¼ 1=2;

Oðx�ðs0�1=2Þðlog xÞ�1Þ if s0 0 1=2;

(

where the implied constant depends only on s0.

Proof. We have

X
pax

Xy
k¼1

1

kpks0
�
X

2anax

LðnÞ
ns0 log n

¼
X
pax

X
kb1
pk>x

1

kpks0
:

For y A ½2; x� we divide the sum as follows:

¼ 1

2

X
ffiffi
x

p
<pax

1

p2s0
þ
X
pay

X
kb3
pk>x

1

kpks0
þ
X

y<pax

X
kb3
pk>x

1

kpks0
:ð2:1Þ

By the prime number theorem the second and last sums are

X
pay

X
kb3
pk>x

1

kpks0

��������

��������
a
X
pay

X
k>log x=log p

1

pks0
f x�s0

X
pay

1f
x�s0y

log y
;

X
y<pax

X
kb3
pk>x

1

kpks0

��������

��������
a

X
y<pax

Xy
k¼3

1

pks0
f

1

y3s0�1 log y
;
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respectively. Inserting these into (2.1) and taking y ¼ x1=3, we obtain

X
pax

Xy
k¼1

1

kpks0
�
X

2anax

LðnÞ
ns0 log n

¼ 1

2

X
ffiffi
x

p
<pax

1

p2s0
þO

1

xs0�1=3 log x

� �
:ð2:2Þ

When 1=2 < s0 a 1, we easily see
P ffiffi

x
p

<pax p
�2s0 ¼ Oðx�ðs0�1=2Þðlog xÞ�1Þ by the

prime number theorem, so that we reach the desired result. We concentrate
on the case s0 ¼ 1=2. First of all we show the following:

X
paX

1

p1þ2it0
¼ log log X þ cð0Þ þOððlog XÞ�1Þ if t0 ¼ 0;

cðt0Þ þOððlog X Þ�1Þ if t0 0 0;

(
ð2:3Þ

where cðt0Þ is a constant determined by t0 and the implied constants depend
only on t0. The formula (2.3) is well known in the case of t0 ¼ 0: see [14,
Theorem 2.7 (d)] for example. We consider the case t0 0 0. Let X aY . Then
by integration by parts we have

X
X<paY

1

p1þ2it0
¼
ðY
X

dpðuÞ
u1þ2it0

¼ pðYÞ
Y 1þ2it0

� pðXÞ
X 1þ2it0

þ ð1þ 2it0Þ
ðY
X

pðuÞ
u2þ2it0

duð2:4Þ

¼ ð1þ 2it0Þ
ðY
X

du

u1þ2it0 log u
þO

1

log X

� �
;

where pðxÞ :¼ jfpa x : prime numbersgj. Here in the last equality we applied

pðxÞ ¼ x

log x
þO

x

ðlog xÞ2

 !
. We easily see from integration by parts that the

last integral on (2.4) is Oððlog X Þ�1Þ. Consequently we obtain

X
X<paY

1

p1þ2it0
¼ O

1

log X

� �
:ð2:5Þ

This implies that
P

paX p�1�2it0 converges as X ! y. Taking the limit Y ! y

on (2.5), we obtain (2.3) in the case of t0 0 0.
By (2.3) we have

1

2

X
ffiffi
x

p
<pax

1

p1þ2it0
¼

1
2 log 2þOððlog xÞ�1Þ if t0 ¼ 0;

Oððlog xÞ�1Þ if t0 0 0:

(

Applying this to (2.2), we obtain the stated result in the case of s0 ¼ 1=2. The
proof is completed. r

Using Lemma 2.1 together with standard treatments of a logarithmic branch
(see [1, §2.2 of Chapter 5] for example), we show the following:
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Lemma 2.2. Let s0 ¼ s0 þ it0 with s0 A ½1=2; 1Þ and t0 A R. Let m denote
the multiplicity of the zero of zðsÞ at s ¼ s0. Then the following conditions (i) and
(ii) are equivalent:

(i) As x ! y,

ðlog xÞm
Y
pax

ð1� p�s0Þ�1

�
exp lim

e#0

ð x
1þe

du

us0 log u
� log

1

e

� �� �
ð2:6Þ

has a nonzero limit.
(ii) As x ! y,

X
2anax

LðnÞ
ns0 log n

� lim
e#0

ð x
1þe

du

us0 log u
� log

1

e

� �
þm log log x

converges.

Proof. According to Lemma 2.1, (ii) is equivalent that

�
X
pax

Logð1� p�s0Þ � lim
e#0

ð x
1þe

du

us0 log u
� log

1

e

� �
þm log log xð2:7Þ

converges as x ! y, where Log z is the principal branch of log z. Thus we
easily see that (ii) implies (i) by taking the exponential on (2.7). Next we show
that (2.7) converges as x ! y under (i). We denote (2.6) by Pðs0; xÞ and its
limit by Pðs0Þ. Then we have LogðPðs0; xÞ=Pðs0ÞÞ ! 0 as x ! y. For any
xb 2 there exists hðxÞ A Z such that

Log
Pðs0; xÞ
Pðs0Þ

¼ m log log x�
X
pax

Logð1� p�s0Þð2:8Þ

� lim
e#0

ð x
1þe

du

us0 log u
� log

1

e

� �
� LogðPðs0ÞÞ þ 2pihðxÞ:

For h A ð0; 1� we replace x with xþ h on (2.8) and subtract (2.8) from it.
Consequently we have

Log
Pðs0; xþ hÞ

Pðs0Þ
� Log

Pðs0; xÞ
Pðs0Þ

¼ m

ð xþh

x

du

u log u
�

X
x<paxþh

Logð1� p�s0Þ

�
ð xþh

x

du

us0 log u
þ 2piðhðxþ hÞ � hðxÞÞ:

Estimating the sum and the integrals trivially, we obtain

2piðhðxþ hÞ � hðxÞÞ ¼ Log
Pðs0; xþ hÞ

Pðs0Þ
� Log

Pðs0; xÞ
Pðs0Þ

þOðx�s0Þ
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as x ! y uniformly for h A ð0; 1�. Thus we obtain hðxþ hÞ � hðxÞ ! 0 as
x ! y uniformly for h A ð0; 1�. This together with hðxÞ A Z for any xb 2
yields that there exists X b 2 and h A Z such that hðxÞ ¼ h for any xbX .
Inserting this into (2.8) and taking the limit x ! y, we see that (2.7) converges
to LogðPðs0ÞÞ � 2pih. This completes the proof. r

3. Proof of Theorem 3

In this section we prove Theorem 3. Throughout this section we assume
Y < 1 and fix s0 ¼ s0 þ it0 with Ya s0 < 1 and t0 A R as in Theorem 3.

Lemma 3.1. Keep the assumption and the notation. Put

AðxÞ :¼
X

2anax

LðnÞ
ns0 log n

� lim
e#0

ð x
1þe

du

us0 log u
� log

1

e

� �
ð3:1Þ

� cðxÞ � x

xs0 log x
þm log log x:

Then for 2a xa y we have

AðyÞ � AðxÞ ¼ O
1

xs0�Y log x

� �
;ð3:2Þ

where the implied constant depends only on s0. In particular, the function AðxÞ
converges as x ! y.

Proof. Let 2a xa y. Then integration by parts gives

X
x<nay

LðnÞ
ns0 log n

�
ð y
x

du

us0 log u
ð3:3Þ

¼
ð y
x

dðcðuÞ � uÞ
us0 log u

¼ cðyÞ � y

ys0 log y
� cðxÞ � x

xs0 log x

þ s0

ð y
x

cðuÞ � u

us0þ1 log u
duþ

ð y
x

cðuÞ � u

us0þ1ðlog uÞ2
du:

We treat the last two terms. Here we recall the following formula for ub 2 and
T b 2 (see [14, Theorem 12.5]):

cðuÞ ¼ u�
X

r¼bþig
�TagaT

ur

r
þOðlog uÞ þO

uðlogðuTÞÞ2

T

 !
;

where r ¼ b þ ig runs over the nontrivial zeros of zðsÞ with �T a gaT counted
with multiplicity and the implied constant is absolute. Thus for a A f1; 2g and
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T > jt0j we have

ð y
x

cðuÞ � u

us0þ1ðlog uÞa du ¼ �
X

r¼bþig
�TagaT

1

r

ð y
x

du

us0�rþ1ðlog uÞað3:4Þ

þO

ð y
x

du

us0þ1ðlog uÞa�1

 !
þO

1

T

ð y
x

ðlogðuTÞÞ2

us0ðlog uÞa du

 !
:

We easily see that ð y
x

du

us0þ1ðlog uÞa�1
f

1

xs0ðlog xÞa�1
;

1

T

ð y
x

ðlogðuTÞÞ2

us0ðlog uÞa duf
1

T
y1�s0ðlog yÞ2�a þ y1�s0ðlog TÞ2

ðlog yÞa

 !
:

We treat the sum on (3.4). We divide it into r ¼ s0 and r0 s0. When r0 s0,
integration by parts gives

ð y
x

du

us0�rþ1ðlog uÞa ¼
1

r� s0

yr�s0

ðlog yÞa �
1

r� s0

xr�s0

ðlog xÞa

þ a

r� s0

ð y
x

du

us0�rþ1ðlog uÞaþ1
:

Applying these to (3.4) and taking the limit T ! y, we obtain

ð y
x

cðuÞ � u

us0þ1ðlog uÞa du

¼ �m

s0

ð y
x

du

uðlog uÞa �
1

ðlog yÞa
X
r0s0

yr�s0

rðr� s0Þ
þ 1

ðlog xÞa
X
r0s0

xr�s0

rðr� s0Þ

� a
X
r0s0

1

rðr� s0Þ

ð y
x

du

us0�rþ1ðlog uÞaþ1
þO

1

xs0ðlog xÞa�1

 !
:

We estimate the sums over the nontrivial zeros by using
P

r jrj
�2 < y, so

that ð y
x

cðuÞ � u

us0þ1ðlog uÞa ¼ �m

s0

ð y
x

du

uðlog uÞa þO
1

xs0�Yðlog xÞa
� �

:

Applying this to (3.3) and noting that m ¼ 0 if s0 > Y, we obtain the desired
result. r
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Next we compute the limit of AðxÞ.

Lemma 3.2. Keep the assumption and the notation as in Theorem 3 and
Lemma 3.1. Then we have

lim
x!y

AðxÞ ¼ lim
s¼sþit0
s#s0

ðlog zðsÞ �m logðs� s0Þ þ logðs� 1ÞÞ þ ð1�mÞcE :

where log zðsÞ �m logðs� s0Þ þ logðs� 1Þ is determined in the same as Theorem 3.

We put

Fðs; xÞ :¼
ð x
"2
us0�s dAðuÞ:ð3:5Þ

We show Lemma 3.2 by calculating lims#s0 limx!y F ðsþ it0; xÞ by two ways.
Firstly we investigate convergence of F ðs; xÞ as x ! y.

Lemma 3.3. Keep the assumption and the notation as in Theorem 3 and
Lemma 3.1. Then Fðs; xÞ converges as x ! y uniformly on s A SH :¼ fsþ it :
jt� t0jaHðs� s0Þg for each H > 0. In particular, limx!y Fðs; xÞ is continuous
on SH and holomorphic in the interior S�

H of SH for each H > 0.

We remark that the prototype of Lemma 3.3 is Abel’s theorem for Dirichlet
series, which can be found in [14, Theorem 1.1] for instance.

Proof of Lemma 3.3. Let H > 0 be fixed. Thanks to Lemma 3.1, the
function AðxÞ has a limit, say A. Let e > 0 be arbitrary. Then there exists
X b 2, which depends only on s0, H and e, such that jAðxÞ � Aja e=ð3þHÞ
ð¼: e 0Þ holds for any xbX . We take s ¼ sþ it A SH and ðX aÞxa y and treat
jF ðs; yÞ � Fðs; xÞj. If s ¼ s0, then jF ðs0; yÞ � F ðs0; xÞj ¼ jAðyÞ � AðxÞja 2e 0 a e.
Next we consider the case s0 s0. In this case s > s0 holds. Integration by
parts gives

F ðs; yÞ � Fðs; xÞ ¼
ð y
x

us0�sdðAðuÞ � AÞ

¼ ys0�sðAðyÞ � AÞ � xs0�sðAðxÞ � AÞ

� ðs0 � sÞ
ð y
x

us0�s�1ðAðuÞ � AÞ du:

Estimating each term trivially, we obtain

jFðs; yÞ � F ðs; xÞja 2e 0 þ js0 � sje 0
ð y
x

us0�s�1 dua 2þ js0 � sj
s� s0

� �
e 0:

Since js0 � sja ðs� s0Þ þ jt� t0ja ð1þHÞðs� s0Þ, this is bounded above by
a ð3þHÞe 0 ¼ e. Thus F ðs; xÞ converges as x ! y uniformly on s A SH as
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desired. In consequence we see that limx!y Fðs; xÞ is continuous on SH , and
is holomorphic in S�

H by Weierstrass’s theorem (see [1, §1.1 of Chapter 5]).
We complete the proof. r

Next we calculate limx!y F ðs; xÞ when ReðsÞ > 1. Inserting (3.1) into (3.5)

and using log zðsÞ ¼
Py

n¼2

LðnÞ
ns log n

in ReðsÞ > 1, we easily see that

lim
x!y

Fðs; xÞ ¼ log zðsÞ �
ðy
2

du

us log u
ð3:6Þ

þm

ðy
2

du

us�s0þ1 log u
�
ðy
"2
us0�sd

cðuÞ � u

us0 log u

� �

holds for ReðsÞ > 1. To calculate the first two integrals, we show the following
formula:

Lemma 3.4. In argðz� 1Þ A ð�p=2; p=2Þ we have

lim
e#0

ðy
1þe

du

uz log u
� log

1

e

� �
¼ �cE � logðz� 1Þ:ð3:7Þ

Proof. We restrict z to z > 1. Changing the variable u by u ¼ ev and
integrating by parts, we haveðy

1þe

du

uz log u
¼ �ð1þ eÞ�ðz�1Þ log logð1þ eÞ þ ðz� 1Þ

ðy
logð1þeÞ

e�ðz�1Þv log v dv:

Since �ð1þ eÞ�ðz�1Þ log logð1þ eÞ � logð1=eÞ tends to zero as e # 0, we have

lim
e#0

ðy
1þe

du

uz log u
� log

1

e

� �
¼ ðz� 1Þ

ðy
0

e�ðz�1Þv log v dv:

Changing the variable v by w ¼ ðz� 1Þv and applying Gð1Þ ¼ 1 and G 0ð1Þ ¼ �cE ,
where GðzÞ is the gamma function, we obtain (3.7) for z > 1. Since both sides
on (3.7) are holomorphic in argðz� 1Þ A ð�p=2; p=2Þ, the identity (3.7) holds
for argðz� 1Þ A ð�p=2; p=2Þ by the identity theorem. This completes the proof.

r

Next we investigate analytic properties of the last term on (3.6).

Lemma 3.5. Keep the assumption and the notation as in Theorem 3 and
Lemma 3.1. Then for s ¼ sþ it with s > 1 and t A R we haveðy

"2
us0�sd

cðuÞ � u

us0 log u

� �
¼ 21�s

log 2
� ðs0 � sÞ

ðþyþit

s

� 1

z

z 0

z
ðzÞ þ 21�z

1� z

� �
dz:ð3:8Þ
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Each term on the right-hand side is holomorphic in ReðsÞ > Y. On t ¼ t0 the last
term has the following asymptotic behavior as s # s0:ðþyþit0

sþit0

� 1

z

z 0

z
ðzÞ þ 21�z

1� z

� �
dz ¼ �m

s0
log

1

s� s0
þOð1Þ:ð3:9Þ

Proof. First of all we prove (3.8) for ReðsÞ > 1. Integrating by parts, we
have ðy

"2
us0�sd

cðuÞ � u

us0 log u

� �
¼ 21�s

log 2
� ðs0 � sÞ

ðy
2

cðuÞ � u

usþ1 log u
du:ð3:10Þ

We treat the last term on (3.10). We note that

ðþyþit

s

1

uzþ1
dz ¼ 1

usþ1 log u

holds for ub 2. Applying this and Fubini’s theorem, we have

ðy
2

cðuÞ � u

usþ1 log u
du ¼

ðþyþit

s

ðy
2

cðuÞ � u

uzþ1
dudz:

We note that

z 0

z
ðzÞ ¼ �z

ðy
2

cðuÞ
uzþ1

duð3:11Þ

holds for ReðzÞ > 1. In fact, expressing ðz 0=zÞðzÞ ¼ �
Py

n¼1 LðnÞn�z in terms of
the Stieltjes integral and integrating by parts, we can plainly see (3.11). Thus we
obtain ðy

2

cðuÞ � u

usþ1 log u
du ¼

ðþyþit

s

� 1

z

z 0

z
ðzÞ þ 21�z

1� z

� �
dz:ð3:12Þ

Inserting (3.12) into (3.10), we reach (3.8). Since the integrand � 1

z

z 0

z
ðzÞ þ 21�z

1� z
is holomorphic in ReðzÞ > Y, the right-hand side of (3.12) is holomorphic in
ReðsÞ > Y.

Finally we show (3.9). We write

ðþyþit0

sþit0

� 1

z

z 0

z
ðzÞ þ 21�z

1� z

� �
dz

¼ �
ðþyþit0

sþit0

m

zðz� s0Þ
dzþ

ðþyþit0

sþit0

� 1

z

z 0

z
ðzÞ þ m

zðz� s0Þ
þ 21�z

1� z

� �
dz:
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Since the integrand of the last term is holomorphic at z ¼ s0, the last term is Oð1Þ
as s # s0. The first term is calculated as follows:

�
ðþyþit0

sþit0

m

zðz� s0Þ
dz ¼ �

ð 2þit0

sþit0

m

zðz� s0Þ
dzþOð1Þ

¼ �m

s0

ð2þit0

sþit0

1

z� s0
� 1

z

� �
dzþOð1Þ

¼ �m

s0
log

1

s� s0
þOð1Þ:

Combining these, we obtain (3.9). r

Proof of Lemma 3.2. Inserting (3.7) and (3.8) into (3.6), we see that

lim
x!y

Fðs; xÞ ¼ ðlog zðsÞ �m logðs� s0Þ þ logðs� 1ÞÞ þ ð1�mÞcEð3:13Þ

þ lim
e#0

ð2
1þe

du

us log u
� log

1

e

� �

�m lim
e#0

ð2
1þe

du

us�s0þ1 log u
� log

1

e

� �

� 21�s

log 2
þ ðs0 � sÞ

ðþyþit

s

� 1

z

z 0

z
ðzÞ þ 21�z

1� z

� �
dz

holds for s ¼ sþ it with s > 1 and t A R. It follows from Lemmas 3.3 and 3.5
that both sides of (3.13) are holomorphic in s A S�

H for each H > 0. Thus (3.13)
holds for s A S�

H by the identity theorem. We put s ¼ sþ it0 and take the limit
s # s0. Then by Lemma 3.3 again we have

lim
s¼sþit0
s#s0

lim
x!y

F ðs; xÞ ¼ lim
x!y

Fðs0; xÞ ¼ lim
x!y

AðxÞ � Að2�Þ:ð3:14Þ

By the definition of AðxÞ we have

Að2�Þ ¼ � lim
e#0

ð2
1þe

du

us0 log u
� log

1

e

� �
þm log log 2þ 21�s0

log 2
:ð3:15Þ

It follows from (3.9) that

lim
s¼sþit0
s#s0

ðs0 � sÞ
ðþyþit0

s

� 1

z

z 0

z
ðzÞ þ 21�z

1� z

� �
dz ¼ 0:ð3:16Þ

Combining (3.13)–(3.16), we obtain the desired result. r

Proof of Theorem 3. Taking the limit y ! y on (3.2) and applying Lemma
3.2, we complete the proof. r
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Finally in this section we discuss Theorem 3 when s0 is real. In this case
we can write the second term on (1.9) in terms of the logarithmic integral LiðxÞ,
which is defined by

LiðxÞ :¼ lim
e#0

ð1�e

0

þ
ð x
1þe

� �
du

log u
:

In fact, Theorem 3 turns to

Corollary 3.6. We assume Y < 1. Then for each a A ½Y; 1Þ we have

X
2anax

LðnÞ
na log n

� Liðx1�aÞ ¼ logð�zðaÞÞ þ cðxÞ � x

xa log x
þO

1

xa�Y log x

� �
;

where logð�zðaÞÞ A R.

Here we keep in mind that zðaÞ < 0 for a A ð0; 1Þ, which follows from [17,
(2.1.5)] for example. In order to show Corollary 3.6, we need the following
formula:

Lemma 3.7. Let a A ð0; 1Þ and x > 1. Then we have

lim
e#0

ð x
1þe

du

ua log u
� log

1

e

� �
¼ Liðx1�aÞ � logð1� aÞ � cE :

Proof. Changing the variable u by u1=ð1�aÞ, we have

ð x
1þe

du

ua log u
¼
ð x1�a

ð1þeÞ1�a

du

log u
ð3:17Þ

¼
ð1þe

ð1þeÞ1�a

du

log u
þ

ð1�e

0

þ
ð x1�a

1þe

 !
du

log u
�
ð1�e

0

du

log u
:

We write the first term on the right as

ð1þe

ð1þeÞ1�a

du

log u
¼
ð1þe

ð1þeÞ1�a

1

log u
� 1

u� 1

� �
duþ

ð1þe

ð1þeÞ1�a

du

u� 1
:ð3:18Þ

We easily see that the first integral on the right is oð1Þ and the last integral
is �logð1� aÞ þ oð1Þ as e # 0. Thus (3.18) equals �logð1� aÞ þ oð1Þ as e # 0.
Inserting this into (3.17), we have

lim
e#0

ð x
1þe

du

ua log u
� log

1

e

� �
¼ �logð1� aÞ þ Liðx1�aÞ � lim

e#0

ð1�e

0

du

log u
þ log

1

e

� �
:
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We easily see that the last term on the right is

lim
e#0

ð1�e

0

du

log u
þ log

1

e

� �
¼ cE

by changing the variable u by u ¼ e�v and integrating by parts in the same
manner as the proof of Lemma 3.4. This completes the proof. r

Proof of Corollary 3.6. Since zðaÞ0 0, the multiplicity m equals 0 in
Theorem 3 with s0 ¼ a. Applying Lemma 3.7 to Theorem 3 with s0 ¼ a, we
obtain the stated result. r

4. Proof of Theorems 1 and 2

In this section we prove Theorems 1 and 2. First of all we show the
following:

Proposition 4.1. Let s0 :¼ s0 þ it0 with 1=2a s0 < 1 and t0 A R. We
assume that X

2anax

LðnÞ
ns0 log n

� lim
e#0

ð x
1þe

du

us0 log u
� log

1

e

� �
þm log log xð4:1Þ

converges as x ! y, where m is the multiplicity of the zero of zðsÞ at s ¼ s0.
Then the following assertions hold:

(1) cðxÞ ¼ xþ oðxs0 log xÞ as x ! y.
(2) zðsÞ0 0 in ReðsÞ > s0.
(3) The quantity (4.1) converges to

lim
s¼sþit0
s#s0

ðlog zðsÞ �m logðs� s0Þ þ logðs� 1ÞÞ þ ð1�mÞcE

as x ! y, where log zðsÞ �m logðs� s0Þ þ logðs� 1Þ is determined as in
Theorem 3.

Proof. We show (1). From the assumption, the quantity (4.1) has a limit,
which is denoted by c. We put

DðxÞ :¼
X

2anax

LðnÞ
ns0 log n

� lim
e#0

ð x
1þe

du

us0 log u
� log

1

e

� �
þm log log x� c:

Then DðxÞ ¼ oð1Þ as x ! y. We have

cðxÞ ¼
ð x
"2
us0 log ud

X
2anau

LðnÞ
ns0 log n

 !
ð4:2Þ

¼
ð x
"2
us0 log udDðuÞ þ xþOðxs0Þ:
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Integration by parts givesð x
"2
us0 log udDðuÞð4:3Þ

¼ xs0DðxÞ log x� s0

ð x
2

us0�1DðuÞ log u du�
ð x
2

us0�1DðuÞ duþOð1Þ:

The first term is oðxs0 log xÞ. In order to treat the second term, we divide the
interval 2a ua x into 2a ua x1=2 and x1=2 < ua x. We see from DðuÞ ¼ oð1Þ
that the integral on 2a ua x1=2 is Oðxs0=2 log xÞ and the integral on x1=2 <
ua x is oðxs0 log xÞ. Thus the second term on the right-hand side of (4.3)
is oðxs0 log xÞ. In the same manner the third term is oðxs0Þ. In total (4.3) is
oðxs0 log xÞ as x ! y. Applying this to (4.2), we obtain (1).

It is well known that (1) implies (2). In fact, we note that the following
equation holds in ReðsÞ > 1 (see (3.11)):

z 0

z
ðsÞ ¼ �s

ðy
2

cðuÞ � u

usþ1
du� s � 21�s

s� 1
:ð4:4Þ

We see from (1) that the integral converges absolutely and locally uniformly in
ReðsÞ > s0. Thus ðz 0=zÞðsÞ is holomorphic in fs A C : ReðsÞ > s0; s0 1g, which
is nothing but (2).

Lastly we show (3). The assertion (2) says s0 bY. Inserting (1) into (1.9),
we obtain (3). r

Proof of Theorem 1. We prove the former part of Theorem 1 by showing
that (iii) implies (ii), that (ii) implies (i) and that (i) implies (iii). It is clear that
(iii) implies (ii). We show that (ii) implies (i). By Lemma 2.2 (ii) implies that
(4.1) converges as x ! y for some s0 ¼ 1

2 þ it0. Thus by Proposition 4.1 (1),
we obtain (i). Next we show that (i) implies (iii). Let s0 ¼ 1

2 þ it0 with t0 A R
be arbitrary. We note that (i) implies the Riemann hypothesis (see (4.4)).
Applying the assumption cðxÞ ¼ xþ oðx1=2 log xÞ to Theorem 3 with s0 ¼ 1=2,
we see that (4.1) converges as x ! y. Thanks to Lemma 2.2, we obtain (iii).
We complete the proof of the former part of Theorem 1.

We show the latter part. In the proof of the former part we have already
mentioned that (i) implies the Riemann hypothesis. Inserting Lemma 2.1 and (i)
into Theorem 3 with s0 ¼ 1=2 and taking the exponential, we find that (1.3)
converges to (1.4) as x ! y. This completes the proof. r

Before we prove Theorem 2, we quote the following result of Grosswald
[7, Théorème 1]:

Lemma 4.2. If Y > 1=2, then we have cðxÞ ¼ xþOðxYÞ.

Proof of Theorem 2. We prove the former part of Theorem 2 by showing
that (iii) implies (ii), that (ii) implies (iv), that (iv) implies (i) and that (i) implies
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(iii). Clearly (iii) implies (ii). We assume (ii). Then we can show cðxÞ ¼
xþ oðxs0 log xÞ in the same manner as the proof of Theorem 1. Since the
integral on (4.4) converges locally uniformly in ReðsÞ > s0, we obtain (iv). We
immediately see from Lemma 4.2 that (iv) implies (i). We can easily show that
(i) implies (iii) in the same manner as the proof of Theorem 1. We complete
the proof of the former part.

We can also show the latter part in the same manner as the proof of
Theorem 1. We omit the detail. r

Remark 4.3. Lemma 4.2 is a typical application of a zero density theorem.
Thus the slight di¤erence between Theorems 1 and 2 comes from the zero density
theorem.

At the end of this section we discuss the case that s0 is real. Taking Lemma
3.7 into account, we immediately see that the following are weaker versions of
Theorems 1 and 2, respectively.

Corollary 4.4. The following conditions (i) and (ii) are equivalent:
(i) cðxÞ ¼ xþ oðx1=2 log xÞ holds as x ! y.
(ii) As x tends to infinity, we have

Y
pax

ð1� p�1=2Þ�1

�
exp½Liðx1=2Þ� ! �

ffiffiffi
2

p
z

1

2

� �
:

If the above conditions hold, then the Riemann hypothesis is true.

Corollary 4.5. Let a A ð1=2; 1Þ. Then the following conditions (i)–(iii) are
equivalent:

(i) cðxÞ ¼ xþOðxaÞ holds as x ! y.
(ii) As x tends to infinity, we have

Y
pax

ð1� p�aÞ�1

�
exp½Liðx1�aÞ� ! �zðaÞ:

(iii) zðsÞ0 0 in ReðsÞ > a.

5. Concluding remarks

In this section we give several remarks related to our results.
First of all we mention a formula of Guinand [8, Theorem 2] regarding

the number NðTÞ of the zeros r of zðsÞ in 0 < ImðrÞaT . Now we assume
the Riemann hypothesis. We take T > 0. For simplicity suppose that
zð1=2þ iTÞ0 0. Taking the imaginary part on (1.9) with s0 ¼ 1=2þ iT and
taking the limit as x ! y, we obtain
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arg z
1

2
þ iT

� �
¼ lim

x!y

 
�
X

2anax

LðnÞ sinðT log nÞ
n1=2 log n

þ
ð x
1

sinðT log uÞ
u1=2 log u

du

þ ðcðxÞ � xÞ sinðT log xÞ
x1=2 log x

!
� arg � 1

2
þ iT

� �
:

Here arg z
	
1
2 þ iT



and arg

	
� 1

2 þ iT


are determined such that arg zðsþ iTÞ and

argðs� 1þ iTÞ are continuous on sb 1=2 and they tend to 0 as s ! þy.
Applying this to the following formula (see [14, Theorem 14.1])

NðTÞ ¼ 1

p
arg G

1

4
þ iT

2

� �
� T

2p
log pþ 1

p
arg z

1

2
þ iT

� �
þ 1;

we obtain a formula for NðTÞ. This essentially agrees with [8, Theorem 2].
Guinand used Hankel transforms and his method is di¤erent from ours.

In this paper we treat asymptotic behaviors of
P

2anax

LðnÞ
ns0 log n

. On the
other hand, Gonek [6] considered behaviors of

Xy
n¼2

LðnÞvðn; xÞ
ns0 log n

;ð5:1Þ

where vð�; xÞ is a weight function. If we choose vð�; xÞ appropriately, then a
behavior of (5.1) can be obtained under a milder assumption than the case of
our unweighted sum. Compare the displayed formula just before Theorem 9.1
in [6], which is a consequence of the Riemann hypothesis, with Theorem 1.

Lastly we compare Theorem 3 with Ramanujan’s formulas [15, (359) and
(361)]. For simplicity we assume the Riemann hypothesis. When s0 A ½1=2; 1Þ,
we can rewrite Theorem 3 as follows:

Proposition 5.1. Assume the Riemann hypothesis. Then,
(1) We haveY

pax

ð1� p�1=2Þ�1 ¼ �
ffiffiffi
2

p
z

1

2

� �
exp LiðQðxÞ1=2Þ þO

1

log x

� �� �
;ð5:2Þ

where QðxÞ :¼
P

pax log p.
(2) For a A ð1=2; 1Þ we haveY

pax

ð1� p�aÞ�1 ¼ �zðaÞ exp LiðQðxÞ1�aÞ þO
1

xa�1=2 log x

� �� �
;ð5:3Þ

where the implied constant depends only on a.

For the proof we start with Theorem 3. Let a A ½1=2; 1Þ. Then under the
Riemann hypothesis we have
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X
2anax

LðnÞ
na log n

� lim
e#0

ð x
1þe

du

ua log u
� log

1

e

� �
ð5:4Þ

¼ logð�ð1� aÞzðaÞÞ þ cE þ cðxÞ � x

xa log x
þO

1

xa�1=2 log x

� �
:

We calculate the last term on the left by using the following lemma together with
Lemma 3.7.

Lemma 5.2. Let a > 0 be fixed. Suppose rðxÞ ¼ oðxÞ as x ! y. Then it
holds unconditionally thatð xþrðxÞ

x

du

ua log u
¼ rðxÞ

xa log x
þO

jrðxÞj2

x1þa log x

 !
:

Proof. We write the left-hand side asð xþrðxÞ

x

du

ua log u
¼
ð rðxÞ
0

du

ðxþ uÞa logðxþ uÞ :ð5:5Þ

We see from the Taylor expansions that the identities

ðxþ uÞ�a ¼ x�a 1þ u

x

� ��a

¼ x�a 1þO
juj
x

� �� �
and

logðxþ uÞ ¼ log xþO
juj
x

� �
¼ log x 1þO

juj
x log x

� �� �

hold uniformly for �x=2a ua x=2. Thus we have

1

ðxþ uÞa logðxþ uÞ ¼
1

xa log x
1þO

juj
x

� �� �

uniformly for �x=2a ua x=2. Inserting this into (5.5), we complete the proof.
r

Proof of Proposition 5.1. For a A ½1=2; 1Þ we calculate the last term on the
left-hand side of (5.4). By Lemmas 3.7 and 5.2 together with the conditional
estimate QðxÞ ¼ xþOðx1=2ðlog xÞ2Þ, we have

lim
e#0

ð x
1þe

du

ua log u
� log

1

e

� �

¼ lim
e#0

ð QðxÞ
1þe

du

ua log u
� log

1

e

 !
�
ð QðxÞ
x

du

ua log u

¼ LiðQðxÞ1�aÞ � logð1� aÞ � cE � QðxÞ � x

xa log x
þO

ðlog xÞ3

xa

 !
:
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Applying this and QðxÞ ¼ cðxÞ þOðx1=2Þ (see [14, Corollary 2.5]) to (5.4), we
obtain X

2anax

LðnÞ
na log n

¼ LiðQðxÞ1�aÞ þ logð�zðaÞÞ þO
1

xa�1=2 log x

� �
:

Inserting Lemma 2.1 and taking the exponential, we reach the desired result.
r

We give some comments on Proposition 5.1. According to Proposition 5.1,Y
pax

ð1� p�1=2Þ�1 @�
ffiffiffi
2

p
z

1

2

� �
exp½LiðQðxÞ1=2Þ�

holds as x ! y only assuming the Riemann hypothesis. On the other hand, in
view of Corollary 4.4,Y

pax

ð1� p�1=2Þ�1 @�
ffiffiffi
2

p
z

1

2

� �
exp½Liðx1=2Þ�

is not achieved under the Riemann hypothesis at present.
In [15, (359) and (361)] Ramanujan gives more precise formulas than (5.2)

and (5.3) without a convincing proof. For example, Ramanujan asserts that
Oððlog xÞ�1Þ on (5.2) can be replaced by

1

log x
1� 1

2

X
r

xr�1=2

r
	
r� 1

2



 !

þO
1

ðlog xÞ2

 !
:

We will discuss Ramanujan’s formulas in the forthcoming paper.

Appendix A. Numerical calculations

In this appendix we give numerical data for

Eða; xÞ :¼
Y
pax

ð1� p�aÞ�1

�
exp½Liðx1�aÞ�:

In view of Corollaries 4.4 and 4.5, Eða; xÞ is expected to converge to

EðaÞ :¼ �zðaÞ �
ffiffiffi
2

p
if a ¼ 1=2;

1 if 1=2 < a < 1

�

as x ! y for a A ½1=2; 1Þ.
Table 1 presents numerical values for Eða; xÞ and EðaÞ. This calculation

was done by PARI/GP. Our expectation Eða; xÞ ! EðaÞ is not far from the
truth in view of the numerical data. In order to give some more observations
on the numerical data, we look at the ratio Eða; xÞ=EðaÞ for a A ½1=2; 1Þ. We
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assume the Riemann hypothesis. Then, inserting Lemma 2.1 into Corollary 3.6
and taking the exponential, we obtain

Eða; xÞ ¼ EðaÞ exp cðxÞ � x

xa log x
þO

1

xa�1=2 log x

� �� �
:ðA:1Þ

Thus, the conjectural bound cðxÞ ¼ xþOðx1=2ðlog log log xÞ2Þ, which is a con-
sequence of Montgomery’s conjecture (1.5), implies

Eða; xÞ
EðaÞ ¼ 1þO

ðlog log log xÞ2

xa�1=2 log x

 !
:ðA:2Þ

On the other hand, numerical calculation gives

Eð1=2; 109Þ
Eð1=2Þ ¼ 1:0046 � � � ; Eð1=2; 1010Þ

Eð1=2Þ ¼ 1:0201 � � � :ðA:3Þ

To some extent, the conjectural estimate (A.2) seems reasonable from a stand-
point of (A.3) because ðlog log log xÞ2=log x approximately equals 0:0593 for
x ¼ 109 and 0:0567 for x ¼ 1010.

From Table 1 we may wonder if Eða; xÞ > EðaÞ for any a > 1=2 and xb 10.
However we cannot expect it because of the following result:

Proposition A.1. We assume the Riemann hypothesis. Then for a A ð1=2; 1Þ
we have

Eða; xÞ ¼ EðaÞ 1þWG
log log log x

xa�1=2 log x

� �� �
:

In particular under the Riemann hypothesis there exists fxngyn¼1 such that xn tends
to infinity and Eða; xnÞ � EðaÞ changes sign on n A Zb1.

Table 1. Eða; xÞ and EðaÞ.

Eða; xÞ a ¼ 1=2 a ¼ 5=8 a ¼ 3=4 a ¼ 7=8

x ¼ 10 2.336986 2.798311 4.074990 8.246520

x ¼ 102 2.188085 2.499169 3.690993 7.660053

x ¼ 103 2.172603 2.376645 3.566187 7.518212

x ¼ 104 2.182170 2.300975 3.507474 7.467063

x ¼ 105 2.136782 2.234054 3.471481 7.443684

x ¼ 106 2.028938 2.178329 3.451221 7.434380

x ¼ 107 2.022247 2.158042 3.446000 7.432788

x ¼ 108 2.053075 2.148405 3.444133 7.432372

x ¼ 109 2.074954 2.140566 3.442940 7.432150

x ¼ 1010 2.106856 2.135434 3.442312 7.432055

EðaÞ 2.065253 2.117418 3.441285 7.431961
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Proof. We assume the Riemann hypothesis. It follows from (A.1) and the
conditional estimate cðxÞ ¼ xþOðx1=2ðlog xÞ2Þ that

Eða; xÞ ¼ EðaÞ 1þ cðxÞ � x

xa log x
þO

1

xa�1=2 log x

� �� �
:

Inserting Littlewood’s omega result cðxÞ ¼ xþWGðx1=2 log log log xÞ (see [11],
[9, Theorem 5.8], [14, Theorem 15.11] for example), we complete the proof.

r

Remark A.2. In [16, Théorème 2] Robin has shown unconditionally that
there exists fxngyn¼1 such that xn tends to infinity andY

paxn

ð1� p�1Þ�1 � ecE log xn

changes sign on n A Zb1.
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