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LOCALLY HOMOGENEOUS AFFINE HYPERSPHERES
WITH CONSTANT SECTIONAL CURVATURE

CEcE L1

Abstract

In this paper, we study the n-dimensional locally homogeneous affine hyperspheres
with constant sectional curvature, vanishing Pick invariant and the difference tensor
K satisfying K"! #0. As main results, we classify such hyperspheres for dimension
n<S5.

1. Introduction

An important problem in unimodular-affine differential geometry is to
classify all the affine hyperspheres with affine metric of constant sectional
curvature. The following results are well known.

THEOREM 1.1 ([28]). Let M be a locally strongly convex affine hypersphere in
R™ with constant sectional curvature. Then M is locally affine equivalent to
either a hyperquadric or the hyperbolic affine hypersphere

X1Xp Xpe = 1,
where (X1,...,Xns1) is the standard coordinate of R"*!.
TurOREM 1.2 ([29]). Let M be an affine hypersphere in R™' with constant

sectional curvature ¢ and nonzero Pick invariant. Then ¢ =0 and M is locally
affine equivalent to
2 2\(42 2 2 2
(X7 £ x3)(x5 £ x3) - (x5, £x3,) =1
if n=2m-—1, or
2 2y (42 2 2 2
(X1 £ x3) (x5 £ x3) - (X5 £ X5)X2m1 = 1

if n=2m, where (x1,...,Xny1) is the standard coordinate of R"!.
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However, the classification problem becomes much more difficult if the affine
metric is indefinite and the Pick invariant vanishes [2]. Up to now, the following
problem of L. Vrancken remains open.

ProBLEM 1 ([1]). Classify all affine hyperspheres with indefinite affine metric
of constant sectional curvature and vanishing Pick invariant.

We remark from [6, 30] that affine hyperspheres with constant sectional
curvature and nonzero Pick invariant are homogeneous under unimodular affine
transformations. However, affine hyperspheres with constant sectional curvature
and vanishing Pick invariant are not necessarily homogeneous [25]. The solution
of Problem 1 for dimension 2 and 3 has been obtained in [27] and [2] respectively,
but there appear many implicit examples.

On the other hand, different from Euclidean geometry, the class of higher
dimensional homogeneous affine hypersurfaces is very large (cf. [6]), and one
is far from a complete classification. For homogencous affine surfaces one
obtained the classification [21, 22]. The classification of 3-dimensional case
has been completed except for Lorentzian affine hyperspheres (cf. [3, 20, 23,
24, 25]). For general dimension only partial results are known, see [4, 5, 15] for
details. In particular for locally strongly convex homogencous affine hyper-
spheres, Sasaki [26] reduced the classification to that of homogeneous convex
cones. We notice that affine hypersurfaces with parallel cubic form are locally
homogeneous affine hyperspheres [8], and recently, such homogeneous affine
hyperspheres have been classified for the locally strongly convex case [14], the
Lorentzian case [12], 3 and 4-dimensional case [11, 13], and the other subcases
[10, 19].

Recently, a whole family of homogeneous affine hypersurfaces constructed
by M. Eastwood and V. Ezhov in [9], called the generalized Cayley hypersurfaces,
were found in [18] with the following properties: they are improper affine hyper-
sphere with flat 1ndeﬁn1te affine metric, zero Pick invariant and the difference
tensor K satisfying VWK =0 and K"' #0. For each constant x€R, it is

defined by the graph immersion of x,;; = ®(xy,...,x,; o), where
ntl d d-3
(L) D(x1,...,x550) Z [(1—o)s+ 2] Z Xjy o Xy
d=2 d! s=0 Ji+tja=n+1
and (x1,...,X,y1) is the standard coordinate of R"*!. This is the Cayley surface,

the Cayley hypersurface (1) of [9] and the hypersurface (6.3) of [7] corresponding
ton=2 0=0and a =1, respectively. Note that the 3-dimensional generalized
Cayley hypersurfaces, explicitly given by

1 3 —
(1.2) xg4 = O(x1, X2, X3;0) = X1X3 +§ 12axi‘,

x2 xlxz +

are characterized by M. Ooguri as follows:
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TueOREM 1.3 (cf. Proposition 4.2 of [25]). Let M? be a locally homogeneous
affine hypersphere in R* with constant sectional curvature x and vanishing Pick
invariant. If K> #0, then k=0 and M? is locally affine equivalent to the
3-dimensional generalized Cayley hypersurfaces.

Without the condition of homogeneity, both the characterization of the Cayley
hypersurface and that of the generalized Cayley hypersurfaces are obtained in [16]
and [18], respectively.

Motivated by above facts, it is nature to consider the following problem:

PrOBLEM 2. Besides the n-dimensional generalized Cayley hypersurfaces, do
there exist other examples, which are locally homogeneous affine hypersphere
with constant sectional curvature, vanishing Pick invariant and K" ! # 0?

Remark 1.1. For dimension n = 2, there indeed exists such affine sphere
[21], namely x3 = x1x; + log x;. However, for n =3 it follows from Theorem
1.3 that there doesn’t exist such affine hypersphere.

In this paper, we give a positive answer to Problem 2 for n =4 and 5,
namely

MAaIN THEOREM. Let M" be a locally homogeneous affine hypersphere in
R with constant sectional curvature and vanishing Pick invariant. If K"~' # 0,
then M" is an improper affine hypersphere with flat indefinite affine metric for
n<5. Furthermore, M* is locally affine equivalent to the graph immersions of

(1.3) X5:(D(x1,...,X4;oc)—'§xf,

and M? is locally affine equivalent to one of the two graph immersions:

Y 2p (25 - 11a)p
(1L.4) x6:(I)(xl,...,X5;oc)—in‘—?xfszrTxls,
+1 2.3
(1.5) X6 = D(x1, ..., x5;0) — ox;x3 +%x12x§ + wxfxz +%x?
2 1—
- %x‘f - ?ﬁxfxz + ( 3a)ﬁx15,
where o, B, y are arbitrary constant, and ®(xy,...,x,;0) is given by (L.1).

This paper is organized as follows. In Section 2, we introduce the theory of
local affine hypersurfaces. In Section 3, we study the locally homogeneous affine
hyperspheres of Main Theorem to obtain a canonical local frame. The proof of
Main Theorem is given in Section 4 for dimension #» =4 and in Section 5 for
dimension n =5, respectively.



38 CECE LI

2. Preliminaries

We briefly recall the theory of local equiaffine hypersurfaces in [17, 22]. Let
R"*! be the standard (n + 1)-dimensional real affine space, i.e., R""! endowed
with the standard flat connection D and its parallel volume form w, given by the
determinant. Let F : M <— R”"*! be a non-degenerate affine hypersurface. It is
well known that on such hypersurface there exists a canonical transversal vector
field ¢ called the affine normal. Then we can write

(2.1) DyF.(Y) = F.(VyY) + h(X, Y)¢,
(2.2) Dyé = —F,(SX).

This affine normal induces the following invariants on M: the affine connection
V, the affine metric, or Berwald-Blaschke metric h, the affine shape operator S
and the cubic form, or Fubini-Pick form C :=Vh. Moreover, the affine mean

. 1 .
curvature of M is defined by H = p trace S. The hypersurface M is called an

affine hypersphere if S = H id, then one easily proves that H = const if n > 2.
M is called a proper affine hypersphere it H # 0 and an improper affine hyper-
sphere if H=0. For a proper affine hypersphere the affine normal satisfies
&= —H(F —¢), where c is a fixed point in R"!, called the center of F(M), for
simplicity, we choose ¢ as the origin of R"*!. For an improper affine hyper-
sphere the affine normal & is constant.

The classical Pick-Berwald theorem states that the affine connection coincides
with the Levi-Civita connection V of affine metric / if and only if the hyper-
surface is a hyperquadric. For that reason, the difference tensor K(X,Y):=
VxY —VyY, related to the cubic form by C(X,Y,Z) = -2h(K(X,Y),Z), plays
a fundamental role in affine differential geometry. Denote by R the curvature
tensor of V, by difference tensor K we have the Gauss and Codazzi equations:

R(X,Y)Z == [h(Y,Z)SX — h(X,Z)SY + h(SY,Z)X — h(SX,Z)Y] — [Ky,Ky]Z,

N =

1

(VxK)(Y,Z) — (VyK)(X,Z) = 5 [(Y, 2)SX = h(X, Z)SY

—h(SY,Z)X + h(SX,Z)Y],
Contracting Gauss equation twice we have

(2.3) y=H+J,

1 . .
where J = mh(l(, K) is the Pick invariant and y is the normalized scalar

curvature of h. Moreover, we have the apolarity condition tr Ky = 0, and the
property that AZ(K(X,Y),Z) is totally symmetric for all X, ¥ and Z.

For an affine hypersphere with constant affine sectional curvature and J = 0,
we have y = H and the Gauss and Codazzi equations reduce to
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(2.4) R(X,Y)Z =H[hY,Z)X —h(X,Z)Y],
(2.5) [Kx,Ky]Z =0,
(2.6) (VxK)(Y,Z) = (VyK)(X,Z).

We prepare the following definitions and lemmas.

DeriNiTION 2.1 (cf. Remark 3.3 of [7]). For given positive integer k, a
(1,k + 1)-tensor field K* is defined by

Kk(le s 7Xk+l) = KX] o 'KXka+l

for any Xi,...,Xs1. If [Ky,Ky]=0 for all X and Y, the tensor field K¥
is totally symmetric. Hence K* vanishes identically if and only if (K,)*v =0
for all vectors v. Denote by m the smallest number such that the symmetric
tensor K is identically zero at the point p. Then for any tangent vector v at
p, we have (K,)"v=0 and there exists a tangent vector u at p such that
h((K)™ " u,u) # 0.

LemMa 2.1 (cf. Lemma 3.3 of [7]). If [Ky,Kz] =0 for all Y and Z, then Ky
is nilpotent for each X. In particular, K" = 0.

An affine hypersurface M in R"*! is called locally homogeneous if for all
points p and ¢, there exists a neighborhood U of p and an equiaffine trans-
formation 4 of R""!, ie., 4 e SL(n+ 1,R"") x R"! such that A(p) = ¢ and
A(U) = M. If U= M holds for any p e M, then M is homogeneous. Recall
the following

Lemma 2.2 (cf. Lemma 2.1 of [25]). If M is locally homogeneous affine
hypersurface, then for any p,qe M there exists a neighborhood U of p and
AeSL(n+1,R"™) x R™™ such that A(F(p)) = F(q), A(F(U)) < F(M) and
A (E(p)) =&(q). Such transformation A preserves V, h, S and K.

3. A canonical local frame

Let M be a locally homogeneous affine hypersphere of R”*! with constant
sectional curvature and zero Pick invariant, i.e., J =0. Then we have y = H,
(2.4), (2.5) and (2.6). Moreover, if K"~! #0 we can choose a canonical local
frame as follows.

LemMa 3.1. If [Ky,Ky] = 0 for each X, Y and K"™' # 0, then there exists a
local frame {Xi,...,X,} such that
31 K(X;, X;) = J . X)) = ) ’
(3-1) (%i, ) { 0, otherwise, (i, ) { 0, otherwise.

The frame is uniquely up to a sign determined.
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Proof. The proof of the first part is the same as the proof of Lemma 6.1 in
[7], see also Lemma 3.2 in [16], although we obtain the local frame instead of
basis. Note that Lemma 3.1 has been proved for n =3 (cf. Lemma 3.4 and
Remark 3.4 of [2]). For the uniqueness of frame, we assume that there exist two
frames {Xi,...,X,} and {Y},...,Y,} satisfying (3.1). Set Y, =a/X;+ -+
ayX,. Since Y1 =K(Y1,Yy) for k=1,...,n—1, we see from (3.1) that

h(Y1,Y,) = h<alX1 + -t ag Xy, Z a;, "'ai,Xil+~-+i/>

ittty <n

= Quy1—¢ E @y i, + o+ E aj, -y,

i1+t =t i+t =n

where /=2,...,n. Denote by J the standard Kronecker delta. Solving the
equations i(Yy, Y,) =6, for / =n,...,1 respectively, we obtain that

=1, m=a3=-=a,=0.

Hence Y; = £+Xj, then by (3.1) the second conclusion is attained. O

Set V. X; = S0 IF" X for the frame {Xi,..., X }. Then, by local homo-
geneity of M we see frorn Lemma 2.2 and 3.1 that F ; are constant. From now
on we follow the convention:

i,j k0 e{l,...;n}; T, =0 if {p,q,1} £{1,...,n}.

From (3.1) we obtain

(3.2) h(Vx, Xj, Xo-k1) + h(X;, Vi, Xy gi1) = 0,
which shows
(33) Fk +Flnn]J];l+1 _Oa Vl7]ak

In particular, Fl nks1 = 0. By (2.6) there holds
(VxK) (X} Xi) = (Vi K) (X, Xi) = (Vo K)(X;, X)),

A simple computation shows

n n—k n—j
/ )4 q
§ ri,j+kX/ - § Fi,jXp+k - E :ri,quH
/=1 p=1 q=1
n—i

n n—k
_ ’ 4
=D ke =Y T iXpu = D T],X
/=1 =1 q=1
n n—i n—j
_ / P q
= Z Fk,/+iX/ - Z r/c,jXp+i - Z rk, iXqtj-
/=1 p=1 q=1
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Then we can rewrite above formulas as

/ /—k (—j _ ot /—k (—i _ /—i (—j
(3.4) e ri,k =0 -1 - rj,kl =T i — Fk,jl - r‘k:i )
which immediately imply that

/ / / . . .

(3.5) ri,j+k = rj,i+k = rk7j+ja /< mm{l,],k}.
Together with (3.3) there hold

(36) l—‘il.,n = l—‘jl,nfjJri = rj];;i+1 = 07 Vl, ]
Taking i =1, k =n in (3.4), we have
{—j /— /— /—j /
(3~7) rl,nj = l—‘j/.,nl = ri:,jl + rn, 1] - rrf‘jﬁtl'

For /<j we get I/, '=T,;' =T, ;=0 By induction and (3.3) there
hold
1—*/

Jin

While for /= j+1 <n, by (3.3) we obtain

:rn{_, =0, /<]

. : 1 i+1
0= rj{n = F}i,j + le - FIJL.H'l'

Thus Fét}rl =+ 1)1",113l for j<n—1. Together with I'}, = —F,‘hl (cf. (3.3))
we see that

(3.8) Fj{n = Fﬁ‘j =0, V.
For />j+2 we set /=j+m+1 for m=1,...,n—j—1 in (3.7) to
obtain
P FVARR VAR Vet

which by induction gives that Fﬁjffl =(j+ 1)1“,:’71+1 —jl“{’fil for m+4 j<n-—1.

Together with I, =—T/" (cf. (3.3)) we get
n—m+1 T 2j "
FTI‘ :n__m_lrﬁl, rf;ﬁ <17n—m—1 rn,11+1'

Summing above we have proved the following
Lemma 3.2.
(3.9) rf,=T,,=0, /<,
; 2j ; n—m+1
Jj+m+1l J m+1 Jtm _ +1
(310) l—‘n,jwtl _<1_nml)rn,zl ’ 1—‘j,n _nimilr:ﬁl ’

m+j<n-—1.
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Next, taking i=1, k=n—1 in (3.4) we have

(3'1 1) 5{1—‘1/1” - ézfrll,j - 1—*1/;1];1 = 1—‘j/,n - 651—‘]‘1‘1 - r]<;ll
‘ /-1 ‘—j
= anl,j+1 - anl,j - rnff,l'
For / < j<n—1, by (3.9) we obtain I'/,!, =T',"] ,—T,_, .., =0. By induc-

tion and (3.3) there hold
=TI’

n—1,j

(3.12) r

7l =0, /<j<n-L

While for /= j+1<n in (3.11), by (3.3) and (3.9) we get
(1 +5{ _’_5’];71)1"11,”71 = 1—‘jj;n—l +5I{L'71rlifl,l - rj]:l

— r‘.f

n-1,j

| 1
LR Bl SRR

Then there hold

i ) | ) i . '
zir1,~/‘+1 = 1—1111717‘/ + Iﬂnfl71 - (1 +5{ +52,1)1—‘17,,,1, J<n-— 1;

(3.13) ' " L
rjj,nfl :rjj-,n +(1+5{)F1,n71, j<n-2.

By induction in the first line equations of (3.13), we obtain

. l . i .
r'ritl‘jjtl =+ 1)(1",171,1 - rll,nfl) _52711“11%71’ Jj<n-—1
In particular, if j=n—1, by I |, = —F,LLI we see that 1";71_’1 = 1"111,171,

thus

i =0, 2<k<n-—1
Considering the second line equations of (3.13), by (3.3) and (3.10) we have
r/

_/J1—1:05 ZSJSH—Z.

When /> j+2, set /=j+m+1 for m=1,...,n—j—1 in (3.11), we
obtain

Iy —o)

1 m+1  _ pJjtm+l J 1 Jj+m
nfmflrl,nfmfl - 1—‘l,nfl - rj,n -9 r -I

n—m—1" n—m—1,1 Jjyn—1

_ Jjtm+l _ pJtm pmtl
- 1—‘nfl,jJrl 1—‘nfl,j 1—‘}171,1’

which by (3.3) and (3.10) reduce to

n—1 _ Tm+l m+2 1

1—‘n—m—l,n—l - 1—‘1,;’1—1 - 1—‘l,n - 2rn—m—l,l7 m=n-— 3’
j+m _ prm+l N m+2 .

1—‘j.,nfl _rl,nfl +(1 _51)r1,n ’ ]<n—m—1,

JAm+l  _ jtm m+1 m+1 J J m+2 :
Lo =00+ 05 =T + 0 +6,, OIT, j<n—-m-—1
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The last equations imply that
Jjrm+l m+1 mm+1 J m+2 :
rn717_/'+1 - (] + 1)1—‘11—1,1 - ]Fl.n—l + (1 +5117m71>r1,n y Js=n—m— L.

Thus by (3.3) we have (n—m + 1)1",’1”7*1{1 422 = (n—m — I and

1,n n

m+1 J m m .
rﬁlj’ﬂ = (1 I —— 1)(1",,?1 +1"1jz), j<n—m-—1.

Summing above by Lemma 3.2 we proved the following

Lemma 3.3.
1 1 k k .
1—‘nfl,l = 1—‘l,nfl’ 1—‘nfl,k = 1—‘k,nfl = 07 2 < k <n-— la
/ _ 1/ _ .
1—‘j.,nfl - l—‘nfl,j - O’ /< Js
i+ +1 A +2 . .
1—‘jj.,ni/ll :r?:lnfl—’—(l_é{)r??n ) Wl—|—]<7’l—1,
-1 _ mtl +2 1 .
1—‘;tlmfl,nfl - r‘fyjn—l - riﬂn - 21—‘n—m—1,17 m<n-— 3a

j+m 2j ji m .
L = (1 - ﬁ) (O A+ T2, m+j<n—1;

2
—-—m—1

1—~m+1 _n_m+1

In—1— Fm+2 m<n-—2.

m+1
1—‘n—l.l +7’l l,n > =

n—m-—1
_ Since M has constant sectional curvature H, from (2.4) and the definition of
R we have

(3.14)  HOL X — 01k X)) = R(X;, X)) X
= ?X,-v)(ij — vxjvx,-Xk - ﬁ[)(,»,Xj]Xk

= > (O, =T 0 + T, — T T )X,
P:q=1

First, taking i < j=k =n in (3.14), by Lemma 3.2 we have

(3.15) S{HX,= Y (T7,Tf, +T7,T¢, —T7 T8 )X,

i,n~ np i,n~ p,n n,i- p,n
i<p<g<n

When n=2, H=0. For n >3, looking at the components of X, we have

(3.16) S\H= > (T!, T +T/, T2 —TTn)

in" n,p i,n~ p,n n,i* p,n
i<p<n

n—i—1

_ i+myn i+myn _ ritmyn

- E (ri,n rn.i+m + ri,n Iﬁier,n l_‘n,i ri+m.n)'
m=1
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Note from (3.10) that

1""*'”:('1_'”le 2 )r"’“ m+i<n;

n,i 1 n,1 >
(3.17) n mll n—m-—1
e L mti<n—l.
Then (3.16) reduce to
. n—i—1 1
(3.18) OH =Y mrngl[(”—er DL,y + 2000, )
m=1
. 1
For i=n—-2, by (3.3) we obtain J{H = —ml“il[nl“il +2(n— 2)1“,,17171].
"Elhe first equation of Lemma 3.3 and (3.17) give —FLM =7, :%Fil,
thus
(3.19) OfH = (17 )%
Thus l",zz_’1 =I,,,=0,,,=0for n>4, and (3.18) reduce to
) n—i—2 1 |
(3.20) S H =" mrﬁ [(n—m+ 1)y, + 207, ]
m=2

For i=n—-3 in (3.20) we obtain JyH =0, ie., H=0 when n=4. For
i=n—4, by (3.3) we have

1
(3.21) OLH = —mril[(n ~ DIy +2(n—4)T, 5], n>5.

Next, taking i< j=n—1<k=n in (3.14), by Lemma 3.2 and 3.3 we
have

(322) 5fHXVl—1 = Z r£i1rr{11—1,qu - 1—‘l;l—l,n Z Fiq,an
i<p<g<n i<q<n
+ Z (rzl'jnfl - r;lz)fl,i)rg,nXéI'
i<p<g<n

Looking at the components of X, ; we have

S\H= Y (0 Tp) 417 ot -Th e —To I7

iin—1"p,n n—1,i" p,n n—1,n" i,n
i<p<n—1

For i=n—2 we get 0f{H =0. Then (3.19) shows I'Z, =0 for all n>3.
Summing above, by previous lemmas we have the following
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LeEmma 3.4.
i+1 i+1
Fnj_l' :ri; =0, n=3,
r‘j{l‘l*l = 1—‘r/zfl,j = O’ /< j7
H =0, n<4.

45

Now, we continue to consider the totally symmetry of VK. Taking (i,k) =

(I,n—2) in (3.4) we have

(3.23) U)o =T =T, =T, - T/ =T/,
= rn/—Z,H—l - F;fzzl,j - F,::é 1
For /< j<n-2in (3.23), by Lemma 3.4 we get
0= rﬁiz = r;1/:21,j - r;iz,jﬂ,
which imply that
(3.24) I, ,=T,,=0, /<j<n-—1

Similarly, for /= j+1<n—1 in (3.23) there hold

(3.25) (1+6 406, )T}, » = rj{n72 - rjjil + 5{1‘721";7271
j 1 1
=T, 5+, =T 0

On the one hand, there hold rﬁ_z,z = 21",11_2’l —(1 +5§’)F11’n_2 and

41 . ; )
F}iiz,jﬂ =+ 1)(1“;]1—271 - rll,n—2) _5}1—2r11,n—2v 2<j<n-2
Combining with 1",:’:21",1_1 = —Fﬁ_zﬂz we see that

(3 26) Fi—m = rll,n—Z’ rf—z,z - (1 *5§1)F11,n—2a

/)., =0,

2t 2<j<n-2

The first equation of (3.26) and (3.10) give that

n—1
Frll—z,l = Fll,n—z = _r13,n = _mr}z,lv
then we obtain from (3.21) that 65 H = (n? 1)(;:); ) (1",3,71)2, which show that
n j—

H =0 when n =15 and 1"371:0forn>5.
(3.25) there hold

J
F./‘,H J

On the other hand, for j <n—2 in

- Flﬁl = (1 +5é)r},n—2'
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By the third line equation of Lemma 3.3 and (3.26) we obtain

r/

= O, 2<j<n-2.

As before, for / > j+2,set/=j+m+1form=1,...,n—j—1in (3.23),
by (3.3) we obtain

(327) (O] +0) DT+ (O 406, )T =T

n—m—1 n—m—2 1,n-2
_ pJjtmtl m+j J 1 j 2
- Fj.nfl - l—‘j,nfz - 5n7mfzrn7n172,1 - 5n—m—lrn7m71,1

_ pJjtm+l Jjt+m m+1 :
=L, -0h, m+j<n—1

Summing above, by previous lemmas we have proved the following

LemMa 3.5. There hold (3.27) and

=Tt =0, n>s,
I, ,=T,,=0, <,
Moy ==ty nz4
rrjt;Z,j = r].'/;n72 = 5-271"117”72, 2<j<n-2,
H=0, n=>5

4. The 4-dimensional case

In this section, for dimension n =4 we completely determine the affine
hyperspheres by proving the following

THEOREM 4.1. Let M be a locally homogeneous 4-dimensional affine hyper-
sphere of R> with constant sectional curvature and vanishing Pick invariant. If
K3 #0, then M is an improper affine hypersphere with flat indefinite affine metric,
and M is locally affine equivalent to one of the graph immersions of polynomials

4.1) Xs :(D(xl,...,x4;cx)—§xf,

where o, B are arbitrary constant.

Proof. By Lemma 3.2-3.5, for n=4 we see that H =0, thus R=0.
Moreover,

s , . . . o
ry +1.7, =0, I,=T,=T,=0I},=0, i<j<4
r;’;‘ = r;;fl.l =0, i<3, r§74 = 1"574 =T3,= 2r;‘73 = 3r§71,

lﬂ13,3 = 31";’71 + 21"?74, 21"3,3 = 21ﬂ13,3 + rim 31"372 = 21"?13.
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For (i,j,k) = (1,3,1) in (3.14), a direct computation gives
0=R(X), X3)X;

3
- 9(r;“571)2)(l + ZF3,1(16F§,1 + 1T} )Xo + T3 (T3 + T ) X5,

Thus T;, =0 and F§.1(F§’,1 + 1"14) =0. Now, taking (i,j,k)=(1,2,1) in
(3.14) we further obtain

A 3 1
0= R(X1, X2)X1 =3 (613 + 5T ) 215 + T )Xo — (813, + 5T )T 5 Xa.

These equations show that F;)l = Ff, 4=0. Set Fi3 :% and Fiz = f3, there
hold

Vi Xi =V Xy =V, Xi =V, X3 =0, Vi,

N o ~ ~ o
(4.2) VX1X3 = §X47 VXIXZ = ﬁX47 VXZXI = 75

VXIXI = —

X.’n

o LS o
§X27ﬂX37 VX2X2:§X4.

The only nonzero components of VK are
VK(Xs, X1, X)) = aXy,
VK (X1, X1, X)) = aX3 + 36Xy,
and the only nonzero Lie brackets are
%
3

Now, we look at the following system of differential equations of (py,p,).

o
X3+ pXy, [X1,X3] =3 X,

X1, X2] = 5

Xi(p) =0, Xa(p) =73, Xz(p1) = Xa(p) =0,

Xi(p2) = =3p1s Xalpp) =B, Xalp) =3, Xa(ps) = 0.

W

(4.3)

A direct computation shows that for k=1,2
(Xl"Y/ - ‘Xin - [/Ylv‘Xijk =0, Vij

Hence, for instance by introducing coordinates, it is clear that the system of
differential equations (4.3) has a unique solution (p;,p,) with initial conditions
p1(0) = p,(0) =0. Then, by straightforward computation, using (4.3) we verify
the following lemma.

Lemma 4.1. The linear independent vector fields
Yi=X1+pXs+pXe, Yo=X2, Y3=2X3 Yi=2X,
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satisfy [Y;, Y;] =0 for all i, j. Hence, there exist local coordinates {uy,u>,u3,us}

%: Y: for i=1,2,3,4 and p, :zuz, Pr :/)’ug—f—gug.

on M such that 3

Expressing the Levi-Civita connection in terms of the frame Y; we see that
?)/3 Y; = vyz Y; = ?ys Y, =0, ﬁn Y, = ﬁyl_ Yi=0, Vi

*

3

Vy Y, =Vy, Y1 =Y, VyY;=VyY :%Y4,

R o 1 “
(4.4) VYIYIZ_EYZ_ﬂY3+6062“2Y47 Vy Yo=Yy,

Also the only nonzero components of the affine metric are

o
h(Y1, Y1) = 2Puy +ouz,  h(Y1,Y2) =34 h(Y1, Yq) = h(Y2, Y3) =1,

and the only nonzero components of the difference tensor are

2
Ky Y1=1Y +§O€H2 Yo, Ky Yo=Y;, Ky Ys;=Ky,Y2=1Y4.
Note that the affine normal field ¢ of improper affine hypersphere M is constant.
From DyY = Ky Y + VyY + h(X, Y)¢&, it follows that the immersion F is deter-
mined by the following system of differential equations:

2—o o4+ o
Fulul - TFMZ _ﬂFm +%u2Fu4 + (zﬁuz + “u3)éa
o 24
Fuluz = Fu3 +ﬁ}7u4 +§Mzé, Fu1u3 = TE!M
34+«
Fuzuz - TFuu E411t4 = Fuzu3 = 67
Fugug = Fu2u4 = Fu3u4 = Fu4u4 = 07

0 . . . .
where F,, := F*é_ Solving above system of differential equations, up to an
Uj

affine transformation, we obtain

2—ua 2—a
FA+M1A1+(M2+ 7 u%)A2+(u3+u1uz+Tu§§u%)A3
2+ 3+ , 24a , 4—q* , |
+[M4+ > uiuz + 6 M2+Tuluz+mul+ﬂuluz—guﬁul Ay
340 5, 240, 24+ 4
—+ |ujug + uruz + 6 uju; + 2 1”3+T“i“2

4 —o?

5
Six 4t Ty T g

B, uf 4
+ 7 a1 }é,
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where A; = F, (0), A= F(0) are constant vectors of R°. Because of non-

degenerate, M lies linearly full in R>. Hence & A, ..., A4 are linearly indepen-
dent vectors. By an equiaffine transformation we can write
2—0o , 2—o 4 [)’2 +oc 34+,
F= (Ul’u2+Tu1,u3+“1u2+Tu1 7 Uy, Uy +—— 3 u3+Tu2
2 4—o? 1 3
+ l—oc 122+4 a4uf—|—ﬂu1u2—gaﬁu?,ulm—i—ugm —l—%ulu%
2+u 2 240 4 4—-0 o B, B 5
+ 2 ujus + B “1”2+—5!X4“1+§“1”2_E”1 — R”.
2 — 2 —
Set x1 =uy, xo =up + aulz, X3 = us + ujup + “uf —/—))ul2 and
4 12 2
3+ 2 2+ o 2 4 — 2 1 3
X4 = Uy + > upuz +—— G u; + 7 U 2+4 4u1+[3u1u2 oc[ful,
X5 = UjUg + Ut +3+auu2+2+a2 +2 u3u
5 = Ull4 + Upli3 5 i g dis o it
4 - B > uff 4
3% 4W+2WW_ZV“

we see that M lies on the graph immersion of polynomial

3a s 2-0)G-9 5 B

2 2
X5 = X1X4 + X2X3 — X[ X3 — X1X; + 3 XX — 30 X] _Z 1
This is exactly the hypersurface (4.1). Obviously, if f =0 these are exactly the
4-dimensional generalized Cayley hypersurfaces. O

5. The 5-dimensional case

In this section, for dimension n =5 we completely determine the affine
hyperspheres by proving the following

THEOREM 5.1. Let M be a locally homogeneous 5-dimensional affine hyper-
sphere of R® with constant sectional curvature and vanishing Pick invariant. If
K* #0, then M is an improper affine hypersphere with flat indefinite affine metric,
and M is locally affine equivalent to one of the two graph immersions:

y 28, (25 - 11o)p
(5.1 x6:(I)(xl,...,X5;oc)—Zx?—?x?n-FT 157
+1 2-3
(5.2) xg = D(x1, ..., x5;0) — ox;x3 +%x12x§ + 06(062 )xf)Q + 06(0612 )xf
2 1 -
—£x?—?ﬁx?X2+#xlsa

where o, B, y are arbitrary constant.
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Proof.
0 = h(R(X3, X4) X3, X2) =

thus 1"13 = 0. Moreover,

ri, S pd

By Lemma 3.2-3.5, H=0 (thus R =0) and (3.14) we see that

(ri3)2v

ko =0 Tis=T5; =T, =T, =0, i<j
r;gl_r'“_o i<4, Ify=T5,=0, k<,
rit=rit' =0, i<4, /e =r{?=0, j<3,
(5.3) 31"‘5‘,1 :Ff75:Ff4+21"f 3 21"27521"34—%21“23,
1"374—1—1"25,5:21" s+T7 4_2F33+F34, 21"354:21" 4+F337
Ffﬁ4+l"1575:21"274—1"2’3:21"3’3, F44—31"41‘#21"1 50
21“15,4 = rf.& + 3F§,2-
For (i,j,k) =(2,5,2) and (3,4,2) in (3.14), the direct computations show that
54 0=R(X2, X5)Xy =T3,(I'3,+ T3 X5,
0 =R(X3, X3)X> = (1“131"273 + rg,zri,a - 1"2’21“;4)/\’5.
Cram: F5 , = 0. Otherwise, assume that F5 L\ =a#0, by (3.3) we see from
the first equation of (5.4) and (5.3) that
I5,=a, T3,= —ga, ri;= 1_52a, I}, =-2aq,
[y=T{s=3a I;;= ga

Then the second equation of (5.4) implies that « = 0, a contradiction. Claim has

been proved. Then it follows from (5.3) and (5.4) that
Fg,l = 1"334 = 1";4 = rg,g = Ff74 = Fg,s = rfs = Fi3 =0.
Similarly, by (3.3) and the sixth line equations of (5.3) there hold
0 =h(R(X1, X>) X1, Xs) =
(550  0=R(X1;, X)X,
R(X1, X3)X; =

1—‘25,4(1—‘25,4 - 1"1515),
= 1“4‘1(1“4‘1“1 + Ff,s)X%

O

Fg,s(rga - 1"1575)X3 — (M35 + ril)(riz + 1ﬂf,3)X4
CLAM: F3 ,=0. Otherwise, assume that T3 y = b ;é 0, by (5.5) we see from

the sixth line equations of (5.3) that 1"15 5 = Ff4 = —3[4, =b. Then the second
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equation of (5.5) implies that b =0, a contradiction. Claim has been proved.
Moreover, we see from

(v)(lK)(XLXZ) = (vXZK)(X17X2)a (ﬁXzK)(Xl’Xl) = (ﬁXlK)(szXl)
that
(5.6) Ay, =03 ,+2I5;, 205,=T0;,+201; 303,=2I7,.
It follows from this and the sixth line equations of (5.3) that
5
(3, =203, =2 Tiy=T4 =-T;=3/
Taking this into the first equation of (5.5) we obtain A =0, thus
F§,4 = 1“373 = F?A = Fil = Fls,S = F§,3 =0.

Set T ;=p, I}, =y. Summing above, by the last equation of (5.3) and
the last two equations of (5.6) we can express the Levi-Civita connection as
follows:

Vi Xi = VyxXs =V, Xi = Vy, X4 = Vx, X3 =0, Vi,

. . 2
V)(1)(4 = 1—‘15.4‘Xv5a VX2X2 = gﬁXSa

R . 1 2
Vi X3 =T X + X5, Vi X = <§ ri;— §rf’4> Xy,
(5.7)
Y 4 1os C 205 14
VieXs = (T3 4510 | X5, Vido = (3174 - 3105 | X,
. . R PR 2
Vi X2 = _r113X3 +9Xs, VX =-— 1—‘173 +§F1_4 X3 _§ﬁX47

ﬁXle = —1"15"4X2 —ﬂXg, — yX4.
Combining with the Gauss equation fQ(X 1,X2)X1 =0 we obtain that
1
59 s+ a(rts -3 o
Hence we can divide our discussion into two cases:
Case I. T}, =3I}, Case I T}, =-T7,.

3
For Case I, we set 1"15_’4 =3, :?oc‘ We note from (5.7) that the only

nonzero components of VK are

VK(X1, X1, X)) = aXs + 28Xy + 3yXs, VK(X3, X1, X)) = aXs,

VK (X2, X1, X)) = aXy + 28X, VK (X1, X2, X2) = aXs.
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The only nonzero Lie brackets are

3o 8a
[X17X4] :?Xﬁ [X17X3} 15X4 +ﬂX55
o 3u 2
X2, X3] = EXS’ X1, X2] = EX3 +§/>’X4 + 7Xs.

Now, we look at the following system of differential equations of
(P1s- -5 pa)-

3a .
Xi(py) =0, Xz(m):m Xa(py) = Xa(py) = Xs5(p;) =0, Vi,

o
Xi(py) = —g/v X2(py) =0, Xz(py) =
8 2p 8
(59) ¢ Xilps)=—gsp, Xalps) ==, Xslps) =15, Xalps) =0,
30 o
Xi(ps) = _<ﬁﬂl +503>a Xa(py) =y — 5/71,

3o
5

Direct computations show that for k =1,2,3,4
(/YIX; - XX - [leﬁXj])pk =0, Vi

Xz(py) =B, Xalpy) =

Hence, for instance by introducing coordinates, it is clear that the system of
differential equations (5.9) has a unique solution (py,...,p,) with initial condi-
tions p,(0) = --- = p4(0) = 0. Then, by straightforward computation, using (5.7)
and (5.9) we verify the following lemma.

Lemma 5.1. The linear independent vector fields

Yi=Xi+p X+ 03X+ p4Xs, Yo=Xo+ p,Xs,
Y3=X; Yi=2Xy Ys=2Xs

satisfy [Y;,Y;]) = 0 for all i,j. Hence, there exist local coordinates {uy, ..., us} on
M such that i =Y, and
(’)ui
3u o 28 8u o?

3o
—u3 4 yuy + fuz + —uy.

Pr=qp4 P2=gUs P3=?M2+ 5

—u
34 Pa= T
Expressing the Levi-Civita connection in terms of the frame Y; we see that

Vy,Y3=Vy, Ya=Vy, Y1 =0, VyY,=VyYs=0, Vij

. 30 2 7o
Vylylz—?yz—ﬁys (V—l-guz)n-i-(l—oﬁuz—i— 0 )Y57
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. o o2 o
Y| = Yo=—-Y — — Y-
VY1 =V 12 5 3+<V+10 5 s

. . o N . 3o . 2
Vy Y3 =Vy Y :§Y4 +pYs, VyY4=VyY; :?Y& Vy, 1> :?ﬁ

The only nonzero components of the affine metric are

o? 28 7oc

600
25“2 + 2yuy + 2pus +§u4, h(Y1, Y?) :?uz + = 10
3o

10

and the only nonzero components of the difference tensor are

uz) Ys, Vy,Y3=VyYs=

Ys.

h(Y, 1) =

h(Yy, Y3) = —u>, h(Yy,Ys)=h(Y>,Ys) =h(Y3, Y3) =1,

5 10
Ky Ys=KyYs=Ys Ky Yi=KyYs=7s

3o 4 9a 3o
Ky Y = Y2+—u2Y4+< ﬁuz+—u3> Ys, Ky/Yr=13 +EUZY5,

As before, the immersion F is determined by the following system of
differential equations:

5 —3u (15—«
Fu1u| :TFMz_ﬂFus—i_[%uZ_V}Fm

(40 4 210)p (454 21o)o
+[ 3 T

u3:| Fu5

2 6o
2 2 —
(25u2+ yup + 2pus3 + 5 u4>é

5—ua a(o+ 3) 28 To
S5+ 2
Fulm 3 Fu4 +ﬂFus + u2£7 Fuzug = Fu4 +?ﬂFusa
5+ 3 2+oc
Fu1u4 = 5 Fu57 Elzug = TE{sa Fu|u5 = Fuzu4 = Fu3u3 = 5

EI3LI4 = Fu4u4 = Fu,ﬂus = 07 VZ,

0 . . . .
where F,, := F*E' Solving above system of differential equations, up to an

affine transformation, we obtain

10

5—a (0=50Ba=5 5 f ,
+<u3+ 5 uluz—i—Wul— Ui A3

—3u
F:A+u1A1+<u2+ uf)Az
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S5+ 1, 25-4?

+|:u4+ 5 u1u3+2u2+ 50 ulzuz
(> =25)30—=5) , 7, (5+a)p ,
5!'x 25 g 75”‘ 30 uj | As
54 3a 2+« Ba+5)(a+5) 5+ 30
+[u5+5”1“4+ 5 a3 50 uius + 10 u;
(02 —25)(30+5) 5 (a2 —25)(942 —25)
- 3l x 125 it 51 % 252 uj + furus + yuiuz
B, (5—a)f , oy ﬁ off 4
3 - —uy | A
+3u2+ T 5—5—3' 15t |4s
1 1 2+ o 5+ 3a ) 300+ 5 5 5
+ |uius + upug + = u3+3' 2-|— 5 u1u2u3+Tulu4+T”1”2

(B +5)(x+35) 4 (0> —25)(3e+5) 4 (a2 —25)(9a> —25) ¢
— - uju

3x25 B 51 % 25 2 6! x 252 i
B, p 2,7 2 (5_0‘)/)) 3 ay /))2 s of 5
+2u1u3+3u1u2 +2u1uz+ 30 Ui 20+4! Uy = =S g,

where A4; = F, (0), 4 = F(0) are constant vectors of R®. Similar to the proof
of Theorem 4.1, by an equiaffine transformation we see that M lies on the graph
immersion of polynomial

1 1 3-— 3-—
x6:x1x5—|—xzx4;+§x32.—x12x4—§x§—2x1x2x3 +Taxl3x3 —|—Tax12x§
3—0)(2 -« 43 — o) (2 — a)(5 — 3«
R I N R R LN
y 2B (25 — 11a)p
BRI LR

This is exactly the hypersurface (5.1). Obviously, if f =7 =0 these are exactly
the 5-dimensional generahzed Cayley hypersurfaces.

For Case II, we set I’} 4= ~T'}; =0 We note from (5.7) that the only
nonzero components of VK are '

VK (X1, X1, X)) = 30X3 + 2Xs + 39Xs, VK(X3, X1, X]) = 3aXs,
VK (X5, X1, X)) = —aXy + 2B X5, VK (X1, X2, X) = —aXs.
The only nonzero Lie brackets are

(X1, X4] = aXs, (X1, X3] = X5,

3
X2, X3] = —SaXs,  [X1, X2

o 2
=_-X;+ =X Xs.
5 3+3ﬁ 4+ pAXs

2
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Now, we look at the following system of differential equations of
(P1s--Pa)-

Xi(p) =0, Xalpy) ==, Xa(p) = Xalpy) = Xs(p;) =0, Vi,

2
3a 3
Xl(p2):7pla X2(py) =0, X3(P2):—7, X4(p2) =0,
5.10 2
G103 Xip) =0, Xalp) =2 Xo(p) = Xapy) =0,

Xi(pg) = —(Bp1 +op3), Xa(ps) =7 +%P17
Xs(ps) =P, Xa(py) =0

Direct computations show that for k =1,2,3,4

As before, by straightforward computation, using (5.7) and (5.10) we verify the
following lemma.

Lemma 5.2. The linear independent vector fields

Y1 =X1+p1 X3+ p3Xa +pyXs, Yo= X2+ ppXs,
Yi=X;, Yy=2Xy Ys=2Xs

satisfy [Y;, Y;] =0 for all i, j. Hence, there exist local coordinates {uy,...,us} on

M such that ai =Y; and

1

o 3o 2p 302,
P1=FU2, pr= Ty, Py = 3l P4:?“2+W2+/’)“3+°‘“4'

Expressing the Levi-Civita connection in terms of Y; we see that

Vi, Y3=Vy, Ya=Vy, Y1 =0, Vy,Y;=VyY5=0, Vi

~ 7 3 2
VYI Y| = —aY, —ﬂY3 - (})+O!2u2)Y4+<O6{ﬁu2 —;U3> Ys,

. . o2 . o o
VYZ Yl = VY[ Y2 = OCY} + (y+7u2) Ys, VYZ Y3 = VY; Y2 — _EYS’

. . . . . 2
Vyl Y3:VY3Y1 = —uaYy —|—ﬁY5, VYl Y4:VY4Y1 =aYs, VYZYZZ?ﬁYS'

The only nonzero components of the affine metric are
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h(Yh, Y1) = aczu% + 2yuy + 2Pusy + 20my,  h(Y1, Y2) :¥u2 —%
o
h(Y1, Y3) =5, h(Y1,Ys) = h(Y2,Ys) = h(Y3, Y3) =1,

and the only nonzero components of the difference tensor are

us,

4 3o o
Ky Yi =Y, +ounYs+ (?ﬁuz +7u3) Ys, Ky Y2=173 +§u2Y5,

Ky Y35=Ky,Y,=Y4, Ky Ys=KyY;=17Ys.
Then, the immersion F is determined by the system of differential equations:

Fulul = (1 - a)Fllz _ﬂFm + (Om2 - azuz - y)FMA
N {(70( + 8)ﬁu N 3a(l — o)

3 5 3 1/[3:| F, + (oc2u§ + 2yuy + 2fus + 204 )€,

+1 2 3
Fuu, = (1 +“)Fu3 + |:05(O{2 )uZ + y:| Fus + (_ﬁuZ __[xu3)é;

3 2
o 2
Ellug :(1 _a)Fm +ﬁFu5 +§u267 Fuzuzsz +?ﬂFu57
2—ua
FM1M4 = (1 +OC)FM57 FUQU3 = TFM57 FM1M5 = FMZ’M = FVS”} = 67
Fugm = Fu4u4 = Fu,-+1u5 = 07 Vl,

0 . . . .
where F,, := F*ﬁ_ Solving above system of differential equations, up to an
U;

affine transformation, we obtain

F=A+4+uAd + ”2+T“1 Ar + u3+(1+a)u1uz+Tul—§ul Az

2
I —o” ,
——uji

* 2

1
ug + (1 — o0)ujus +Eu§ +

2—uo l—o° , l+o
) uruz + ujus + ——uj,

2

+ |us + (1 + o)ujug +

(1+o)(1 —a?) (1—a2)?
3l 5!

(I+a)p 2oy + 2
+Tufu2 — Tu%

uj + Buus + yuiuy +Eu§

u13u2 + 3

As
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1 1 2—u 1+a 1+«
+ u1u5+u2u4+2u3+3' 2+ 5 upuz + —— ) u12u4+ 7 ufug
1—o? (1-a?)(1+0) (1-a®? ¢ B B
+ 3 ufm—&—Tu?uz—i—Tul—&— u12u3+3u1u§
1+ 2ay + B*
+yu12u2+7( 3'a)ﬂufu2—7w4'ﬁ uf ¢,

where 4; = F,,(0), A = F(0) are constant vectors of R®. As before, by an equi-
affine transformation we see that M lies on the graph immersion of polynomial

1 1 34+a
X6 = X1X5 + X2X4 —|—§x32 — xfx4 — §x23 —2x1x0x3 + (1 — oc)x13x3 + Txlzxg

=04 (-2’24

2 1 -«
5 1X2 B X —%x‘f—?ﬁxfxz—&—i( 3 )ﬁxls
This is exactly the hypersurface (5.2) of Main Theorem. When o = 0, we note
that above graph immersion coincides with that of (5.1). O

The proof of Main Theorem follows immediately from that H =0 for n < 5
in Section 3, Theorem 4.1 and 5.1.

Acknowledgement. The author would like to express his sincere thanks to
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REFERENCES

[1] T. BINDER AND U. SiMON, Progress in affine differential geometry-problem list and continued
bibliography, Geometry and topology of submanifolds X, World Science Publishing, River
Edge, 2000, 1-17.

[2] F. DILLEN, M. A. MAGID AND L. VRANCKEN, Affine hyperspheres with constant affine sectional
curvature, Geometry and topology of submanifolds X, World Science Publishing, River
Edge, 2000, 31-53.

[3] F. DiLeN aND L. VRANCKEN, The classification of 3-dimensional locally strongly convex
homogeneous affine hypersurfaces, Manuscripta Math. 80 (1993), 165-180.

[4] F. DiLeNn anD L. VRANCKEN, Homogeneous affine hypersurfaces with rank one shape
operators, Math. Z. 212 (1993), 61-72.

[5] F. DiLLEN AND L. VRANCKEN, Quasi-umblical, locally strongly convex homogeneous affine
hypersurfaces, J. Math. Soc. Japan 46 (1994), 477-502.

[6] F. DILLEN AND L. VRANCKEN, Calabi-type composition of affine spheres, Diff. Geom. Appl. 4
(1994), 303-328.

[7] F. DILLEN AND L. VRANCKEN, Hypersurfaces with parallel difference tensor, Japan J. Math.
4 (1998), 43-60.

[8] F. DILLEN, L. VRANCKEN AND S. YAPRAK, Affine hypersurfaces with parallel cubic form,
Nagoya Math. J. 135 (1994), 153-164.

[9] M. Eastwoop aND V. EzHov, Cayley hypersurfaces, Proc. Steklov Inst. Math. 253 (2006),
221-224.



58
[10]
[11]
[12]

(13]

[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]

(26]
(27]

(28]
(29]

(30]

CECE LI

R. HiLDEBRAND, Centro-affine hypersurface immersions with parallel cubic form, Beitr.
Algebra. Geom. 56 (2015), 593-640.

Z.J. Hu anp C. C. L1, The classification of 3-dimensional Lorentzian affine hypersurfaces with
parallel cubic form, Diff. Geom. Appl. 29 (2011), 361-373.

Z. J. Hu, C. C. L1, H. L1 AND L. VRANCKEN, Lorentzian affine hypersurfaces with parallel
cubic form, Results Math. 59 (2011), 577-620.

Z. J. Hu, C. C. L, H. L1 anp L. VRANCKEN, The classification of 4-dimensional non-
degenerate affine hypersurfaces with parallel cubic form, J. Geom. Phys. 61 (2011),
2035-2057.

Z.J. Hu, H. L1 aAnD L. VRANCKEN, Locally strongly convex affine hypersurfaces with parallel
cubic form, J. Diff. Geom. 87 (2011), 239-307.

Z.J. Hu, C. C. Lt anDp C. ZHANG, On quasi-umbilical locally strongly convex homogeneous
affine hypersurfaces, Diff. Geom. Appl. 33 (2014), 46-74.

Z.J. Hu, C. C. L1 aND D. ZuanG, A differential geometry characterization of the Cayley
hypersurface, Proc. Amer. Math. Soc. 139 (2011), 3697-3706.

A.-M. L1, U. SiIMON AND G. S. ZHAO, Global affine differential geometry of hypersurfaces,
W. de Gruyter, Berlin, 1993.

C. C. L1 AND D. ZHANG, The generalized Cayley hypersurfaces and their geometrical
characterization, Results. Math. 68 (2015), 25-44.

C. C. L, Affine hypersurfaces with parallel difference tensor relative to affine o-connection,
J. Geom. Phys. 86 (2014), 81-93.

M. A. MaGID AND L. VRANCKEN, Homogeneous hypersurfaces with nondiagonalisable, rank
one shape operators, Soochow J. Math. 21 (1995), 89-105.

K. Nomizu anp T. Sasaki, A new model of unimodular-affinely homogeneous surfaces,
Manuscripta Math. 73 (1991), 39-44.

K. Nomizu AND T. Sasaki, Affine differential geometry: geometry of affine immersions,
Cambridge University Press, 1994.

M. OocGuri, The classification of 3-dimensional locally homogeneous Blaschke hypersurfaces
with nondiagonalizable affine shape operators, Soochow J. Math. 32 (2006), 379-398.
M. OoGurl, The classification of 3-dimensional quasi-umbilical locally homogeneous Blaschke

hypersurfaces, Diff. Geom. Appl. 25 (2007), 56-77.

M. OoGurl, Three-dimensional locally homogeneous Lorentzian affine hyperspheres with
constant sectional curvature, J. Geom. 104 (2013), 137-152.

T. Sasaki, Hyperbolic affine hyperspheres, Nagoya Math. J. 77 (1980), 107-123.

U. Smmon, Local classification of twodimensional affine spheres with constant curvature
metric, Diff. Geom. Appl. 1 (1991), 123-132.

L. VrRanckeN, A.-M. L1 anp U. SmvoN, Affine spheres with constant affine sectional
curvature, Math. Z. 206 (1991), 651-658.

L. VRaNCKEN, The Magid-Ryan conjecture for equiaffine hyperspheres with constant sectional
curvature, J. Diff. Geom. 54 (2000), 99-138.

C. P. WanG, Canonical equiaffine hypersurfaces in R"*!, Math. Z. 214 (1993), 579-592.

Cece Li
SCHOOL OF MATHEMATICS AND STATISTICS
HENAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
LuoyanG 471023
P. R. CHINA
E-mail: ceceli@haust.edu.cn
ceceli@sina.com



