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HYERS-ULAM STABILITY OF A CLASS OF FRACTIONAL
LINEAR DIFFERENTIAL EQUATIONS*

CHUN WaNG' AND TiaN-ZHOU XU

Abstract

In this paper, we investigate the Hyers—Ulam stability of a class of fractional linear
differential equations. Applying the Laplace transform method, we prove that a class of
fractional linear differential equations with Riemann-Liouville fractional derivatives is
Hyers—Ulam stable. The results improve and extend some recent results.

1. Introduction and preliminaries

In 1940, the first stability problem concerning group homomorphisms was
raised by Ulam [24]. Let G; be a group and let G, be a metric group with a
metric d(-,-). Given any e > 0, does there exists a ¢ > 0 such that if a func-
tion 4 : Gy — G, satisfies the inequality d(h(xy),h(x)h(y)) < for all x,y e G,
then there exists a homomorphism H : G; — G, with d(h(x), H(x)) < ¢ for all
X € Gl?

In the following years, Hyers affirmatively answered the question of Ulam
for the case where G; and G, are Banach spaces (see [7]). Furthermore, the
result of Hyers was generalized by Rassias (see [21]). Since then, the stability of
many algebraic, differential, integral, operatorial, functional equations have been
extensively investigated (see [1], [2], [3], [4], [6], [8], [9], [14], [17], [18], [19], [20],
[23], [25], [29], [30], [31], [32], [33] and the references therein).

In recent years, many people have paid more and more attention to Hyers—
Ulam stability of differential equations, and gained a series of results. S.-M.
Jung investigated the Hyers—Ulam stability of some linear differential equations
(see [11], [12], [13]), and in [22], H. Rezaei, S.-M. Jung and Th. M. Rassias
discussed Hyers—Ulam stability of linear differential equations by applying Laplace
transform method. D. Popa and I. Rasa proved the generalized Hyers—Ulam
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stability of the linear differential equation in a Banach space (see [19]). In [16],
N. Lungu and D. Popa discussed Hyers—Ulam stability of a first order partial
differential equation, and in [5], M. E. Gordji, Y. Cho, M. Ghaemi and B.
Alizadeh investigated stability of the second order partial differential equations.
J. Wang and Y. Zhou ([26], [27], [28]) proved the stability of fractional evolution
equations and the stability of nonlinear differential equations with fractional
integrable impulses, and they also introduced some new concepts about the
stability of fractional differential equations. In [10], R. W. Ibrahim presented
Hyers—Ulam stability of Cauchy differential equation of fractional order in the
unit disk. However, the theory of Hyers—Ulam stability of fractional differential
equations is still in the initial stages.

The main purpose of this paper is to prove the Hyers—Ulam stability of the
following fractional linear differential equation with Riemann-Liouville fractional
derivative by applying the Laplace transform method

{D“u(t) +du(t) =q(r), te(0,T],
tliau([)|t:0 = Uo,

(1.1)

where 0 < T < +o0, d is a constant in C, g € C([0, 7] x C), and D* is Riemann—
Liouville fractional derivative of order 0 < o < 1 defined by

(1.2) D*u(t) = ﬁ %L(l —5) "u(s) ds = %Il’“u(t),
here

1= - l — ) *u(s) ds
(1.3) 1) = = | =90 @

is Riemann-Liouville fractional integral of order 1 — o (see [15]).

For the sake of coherency we recall a few basic definitions, notions and
properties about the Laplace transform of the fractional derivative. The Laplace
transform of a function u(¢) of a real variable ¢ e (0, c0) is defined by

o0

(1.4) (Lu)(s) = Llu(D)](s) := J eu(t) dr (seC).

0

If the integral (1.4) is convergent at the point sy € C, then it converges absolutely
for s € C such that R(s) > R(sp). One of the most useful properties of the
Laplace transform is the convolution property

15)  L{ul)« o) = z{jo u(t = (@) dé} = Ll L)),

The following results are some basic properties about the Laplace transform
of the fractional derivatives.
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Lemma 1.1 ((15]). If « > 0, and let m be the smallest integer greater than or
equal to o, then

(1.6) L{D*u(t)} = s*L{u(t)} — Ty L™ K1 Dk=mtoy ().

Remark 1.2. In fact, if the initial conditions have the following form:

(1.7) DF My (0+4) = lim DMy (k=0,1,...,m—1)
t—0+

exist, then

(1.8) L{D*u(t)} = s*L{u(t)} — Ty s * I Dk (04).

Remark 1.3. When 0 < o < 1, we have m = 1, one can get
(1.9)  £{D*u(t)} = s*L{u(t)} — D~U"2u(0+) = s*L{u(t)} — I'*u(0+),
here DU~y (0+) = I'u(0+), I'"*u(t) is defined in (1.3).

The Mittag—Leffler function E, 4(z) is defined by

(1.10) Zr TR (z, € C; R(x) > 0),

=0

when o = f =1, we can see that E} ;(z) = e¢*. More detailed information about
the function can be found in [15].

Lemma 1.4 ((15]). If R(s) >0, 1eC, |is™* < 1, then
s P

st =2

(1.11) L{PFE, g(2)}(s) =

where E, p(At*) is the Mittag—Leffler function.

1
st — A

Remark 1.5. When o = B, we have L{t* 'E, ,(2t*)}(s) =

The following result will play an important role in our next analysis.

LemMa 1.6 ([15]). Let 0 <a <1 and let u(t) e Ci_,[0,T] = {ue C(0,TJ;
t'""*ue C[0, T}
(a) If lim,_o. [t'"u(t)] = ¢, c € C, then

(1.12) I'u(0+) = cl(a).
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(b) If I'"*u(0+) =b, be C, and if there exists the limit lim, o, [t'~*u(t)],
then

(1.13) lim [t %u(1)] =

2. Hyers—Ulam stability of differential equations of first order

The following definition can be found in [22].

DerNITION 2.1, The differential equation ¢(q,u,u/,...,u") = 0 has Hyers—
Ulam stability if for given ¢ >0 and a function u such that |p(q,u,u’,...,u")|
< ¢, there exists a solution u, of the differential equation such that |u(f) — u,(?)]
< K(¢) and lim,, K(¢) = 0. If the preceding statement is also true when we
replace ¢ and K(¢) by F(¢) and C(¢), where F, C are appropriate functions not
depending on u and u, explicitly, then we say that the corresponding differential
equation has the generalized Hyers—Ulam stability.

THEOREM 2.2. Let d be a scalar. If a function u: (0,00) — C satisfies the
inequality
(2.1 |u' (1) + du(t) — q(1)] < e

for all t € (0, 00) and for some ¢ > 0, then there exists a solution u, : (0, 0) — C of
the differential equation

(2.2) u' (1) + du(t) = q(1)
such that
(2.3) [u(t) — uq(2)] < etEy »(|d|t)

for all te (0,00), where E)(|d|t) is the Mittag—Leffler function.

Proof.  Let v(t) = u'(t) + du(t) — q(t), for t€ (0,00), we get

(2.4) L{v(0)} = sL{u()} — u(0) + dL{u()} — L{q(1)},

and so

(2.5) {u(n)} = Es{i(?z} L filq(t)} .

Setting

(2.6) uy(1) = u(0)e™ + (E_q + q)(1),

where E_4(f) = e, one can check that u, is a solution of (2.2). Since
(2.7 L{E_gxv} = L{u— u,},

so we have u(t) — u,(t) = (E_g x v)(1).
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By the condition (2.1), it follows that

(2.8) (1) — ua(1)| = [(E—a * v)(1)]

Jr e~ =) p(s) ds

0
J u v(s) ds

J______

Idl”r([s)n ds

n Jo

-2

o) |d|nt”+1
— '(n+2)

:SIE1_2(|d|[),

I
™

which completes the proof.

Remark 2.3. In a recent result ([22], Theorem 3.3), the following control
function of the equation (2.2) was obtained

et (for R(d) =0),

(2.9) (1 — e R
R(d)

In Theorem 2.2, we replace the control function by an expression related to

Mittag—Leffler function. When d =0, by a simple calculation, we have

E;»(0) =1, so in this case the result coincides with (2.9). When R(d) <0
one can get

= |d tk“ glelllr -1 g(eldlt — 1
(2.10) etEy »(|d|t) = Z | ( d ) < (|§R(d)| )

e(1 — eld\t) - g(1 — e~ R)
Rd) —  Rd)

(for R(d) #0).

8(1 _ e—?}e(d)r)
R(d)

here is the control function in (2.9) when R(d) # 0.

COROLLARY 2.4. Let d be a scalar. If a function u : (0, 0) — C satisfies the
inequality

(2.11) /(1) + du(t) — ()] < F(1)
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Sor all te(0,00) and for some F(t) > 0, then there exists a solution u, : (0,00)
— C of the differential equation (2.2) such that

(2.12) [u(t) — uq(1)| < F(0)tE) 2(|d|1)
Jor all te (0,00), where E|»(|d|t) is the Mittag—Leffler function.

Example 2.5. Consider the following differential equation

(2.13) w'(f) + 2u(t) = e 2.
The function u;(¢) = —e~3 satisfies
(2.14) |} (1) + 2uy (1) — e 7| < % — %
and the initial value is u;(0) = —1.
By (2.6) and initial value u;(0) = —1, we obtain an exact solution of the

equation (2.13)

(2.15) Us(t) = —e 2 + te™*

with u,(0) = —1 =u;(0). By Corollary 2.4, the control function of u;(#) is
PETRT

(2.16)  [ur () — ual)] = (5-%) (ﬁ— 1) < %(ﬁ—%) (¥ — 1)

for all > 0, thus, the error of the approximate solution u;(#) can be estimated.

1(1—1 (e* —1). A simple calculation shows that

3. Hyers—Ulam stability of fractional linear differential equations

In this section, we will extend Theorem 2.2 to the case of fractional linear
differential equations.

DEerFINITION 3.1. The fractional differential equation ¢(q,u, D*'u,..., D*™u)
=0 has Hyers—Ulam stability if for given ¢ >0 and a function u such that
lp(q,u,D*u,...,D*u)| < e there exists a solution u, of the differential equation
such that |u(f) — u,(7)] < K(¢) and lim,_ K(¢) = 0. If the preceding statement
is also true when we replace ¢ and K(¢) by F(f) and C(¢), where F, C are
appropriate functions not depending on u and u, explicitly, then we say that the
corresponding differential equation has the generalized Hyers—Ulam stability.

Some other concepts about stability of fractional differential equations can
be found in [27] and [28].
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THEOREM 3.2. Let d be a scalar, 0 <a <1, 0< T < +4o0. If a function
u:(0,T) — C satisfies the inequality
(3.1) [D*u(t) + du(t) — q(t)| < ¢

for all t € (0,T)] and for some ¢ > 0, then there exists a solution u, : (0,T] — C of
the fractional differential equation

(3.2) D*u(t) + du(t) = q(r)
such that
(33) (1) — ug(1)| < e1”Ey o1 (|d|1%)

Sor all te(0,T], where E, ,\(|d|t*) is the Mittag—Leffler function.

Proof.  Let v(t) = D*u(t) + du(t) — q(¢) for te (0,7], by the initial value
condition of (1.1), Lemmas 1.1 and 1.6, we have

(3.4) L{v(t)} = s*L{u(t)} — D*'u(0+) + dL{u(t)} — L{q(0)}
= s"L{u(t)} — uol(o) +dL{u(t)} — L{q(1)}
= (" +d)L{u(t)} —uol (o) — L{q(1)}.

Thus
(3.5) clutn) = ) el + £1g(0)
Setting

t

(3.6)  ua(t) = uoT (2)1* ' Ey o (—dt”) + L(l —8)" T Eya(—d(1 = 5)")q(s) ds,

then
(3.7) " u,(t) = upl (@) E, o (—dt*) + t'* Jt(t — ) E, (—d(t — 5)")q(s) ds,
0

when ¢t — 0 in (3.7), we obtain
(3.8) " u, ()], = uo,

so u,(r) satisfies the initial value condition.
By the property of convolution and Lemma 1.4, we get

(3.9)  L{u,(t)} = L{uoT (a)t* 'E, ,(—dt*)}

+ E{J;(t — )" Eya(—d(t — 5)")q(s) ds}
= ugT () L{t* E, o (—dt*)} + L{t* T E, ,(—dt*)}L{q(1)}
_ wl'(2) + L{q(1)}

s*+d '
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y (3.9) and Lemma 1.1 we obtain
(3.10) L{D%uy(1) + dua()} = L{q(1)}.

Since £ is one-to-one, it follows that D%u,(t) + du,(t) = q(t), so u,(¢) is a solution
of (3.2). Applying (3.5) and (3.9), we get

(3.11) Liu(t)} = Lua(0)} =

By Lemma 1.4, we have

L{ov(1)}
st +d

(3.12)  L{(t* "E, ((—dt*)) x v(t)}(s) = L{t* T E, o(—dt*)} L{v(1)} = iiv—(:zl} .
Hence

(3.13) L{u(t) — ug (1)} = L{(t*  Ey o (—dt™)) = v(1)},

s,

(3.14) u(t) — uy(t) = (t*7VE, ,(—dt*)) * v(2).

Therefore, from (3.1), it follows that

(3.15) u(t) = ua(1)] = [(* By u(—dt*)) + 0(1)|

O(z —5)" E, L (—d(t — 5)")o(s) ds

—

k . ) ok+o—1

Zo ock +a) vls) ds

A . ocker 1
J v(s) ds
0

[
%ﬁ

0

; ock —I— o)
0 k . zxk+a 1

<

- ; Jo ock + o) b(s) s
0 k . zxk+a 1

< d
; L ock + o) (s)|ds

0 t
< l— ok+o—1 d
_ngl" ock+oc J ) s
_, 0 |d| tcszroz

y Ik +o+1)

=&t Eof,oz+1(|d|l )a

which completes the proof.
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Remark 3.3. When o =1, we can see that Theorem 3.2 coincides with
Theorem 2.2, so Theorem 3.2 generalizes Theorem 2.2. In fact, the control
function which at the right side of the inequality (3.3) includes more information
about Hyers—Ulam stability of fractional linear differential equations.

COROLLARY 3.4. Let d be a scalar, 0 <o <1, 0< T < +0o0. If a function
u:(0,T] — C satisfies the inequality
(3.16) |D*u(t) + du(t) — q(t)| < F(¢)

for all t € (0, T) and for some F(t) > 0, then there exists a solution u, : (0, T] — C
of the fractional differential equation (3.2) such that

(3.17) (1) — ua ()] < F(0)1" Ey o1 (|d]17)
for all te(0,T], where E, ,.1(|d|t*) is the Mittag—Leffler function.

Example 3.5. Consider the following fractional differential equation

16 1
1 pl2 _ 5273 L
(3.18) u(t) + 7Tu(t) Sﬁl + 7t +20,
where o =1, d=7 q(t)zits/z—k7t3-i-L
2 ’ 57 20°
For ¢ =, the function u(r) = ¢* satisfies
16 1 1
(3.19) DY2u (1) + Tuy (1) — —=12 =713 <=

57 S 20| " 10°

and initial value of u;(¢) is ¢'/%u;(t)|,_, = 0.
By (3.6) and ¢'/u;(1)|,_, = 0, we can construct an exact solution of equation
(3.18)

' 16 1
320) u,(t)=| (t—5)"E “7(t— )" [ —=5"2+ 75> + = ds.
(3.20)  ua(1) Jo( 5) 1/2,12(=7(t = 5)77) Sﬁs +757 + 55 ) ds
By Theorem 3.2, the control function of u(¢) is {5v/7E1)2,3/2(7/1), thus

(.21) (1)~ (0] < 15 VEE1 2321V,

and the error of the approximate solution u;(f) can be estimated.
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