Translator Disclaimer
March 2013 Banach spaces of bounded Dirichlet finite harmonic functions on Riemann surfaces
Mitsuru Nakai
Kodai Math. J. 36(1): 15-37 (March 2013). DOI: 10.2996/kmj/1364562715

Abstract

The Banach space of bounded Dirichlet finite harmonic functions on an open Riemann surface will be seen to be reflexive and also separable if and only if the underlying Riemann surface does not carry any unbounded Dirichlet finite harmonic function.

Citation

Download Citation

Mitsuru Nakai. "Banach spaces of bounded Dirichlet finite harmonic functions on Riemann surfaces." Kodai Math. J. 36 (1) 15 - 37, March 2013. https://doi.org/10.2996/kmj/1364562715

Information

Published: March 2013
First available in Project Euclid: 29 March 2013

zbMATH: 1266.30029
MathSciNet: MR3043395
Digital Object Identifier: 10.2996/kmj/1364562715

Rights: Copyright © 2013 Tokyo Institute of Technology, Department of Mathematics

JOURNAL ARTICLE
23 PAGES


SHARE
Vol.36 • No. 1 • March 2013
Back to Top