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ON HEISENBERG’S INEQUALITY AND BELL’S INEQUALITY

Masao Nagasawa

1. Introduction

(i) Heisenberg’s uncertainty principle in quantum mechanics is formulated,
following Kennard (1927), as

‘‘The product of deviation of the x-component of position and deviation of
the x-component of momentum is not smaller than 1

2 �h’’.

This inequality allows no exception. We will call this ‘‘Heisenberg-Kennard
inequality’’.

There is a well-known proof of Heisenberg-Kennard inequality by Robertson
(1929), who used Schwarz’s inequality.

We will, however, prove that Heisenberg-Kennard inequality follows from
Robertson’s inequality only in a very special case, but doesn’t in general.

More precisely, let cðt; xÞ ¼ eRðt;xÞþiSðt;xÞ be a solution of Schrödinger
equation

i
qc

qt
þ 1

2
s2sc� Vðt; xÞc ¼ 0:

Then Heisenberg-Kennard inequality follows from Robertson’s inequality if and
only if ð

‘R � ‘Smt dx ¼ 0;

where mt ¼ jcðt; xÞj2, or equivalentlyð
qR

qt
þ 1

2
s2DS

� �
mt dx ¼ 0:

Hence, there exists no proof for Heisenberg-Kennard inequality up to now
except for the above special case. Moreover, we will indicate that there is a
counter example against Heisenberg-Kennard inequality. Therefore, Heisenberg’s
uncertainty principle in quantum mechanics is false.

(ii) Bell’s claim ‘‘no local hidden variable model can explain the quantum
mechanical correlation’’ in Bell (1964) will be shown to be false. Bell’s claim

33

Received April 15, 2011; revised May 12, 2011.



was based on Bell’s inequality. We will show that Bell’s inequality concerns
neither locality nor non-locality at all. Hence Bell’s claim doesn’t follow from
Bell’s inequality. We will show in addition that Bell’s inequality holds only
under Bell’s additional dependence condition, but doesn’t in general. We will
moreover give a local spin correlation model, which is a counter-example against
Bell’s claim.

2. The expectation and variation

(i) The expectation
In probability theory the expectation P½X � of a random variable XðoÞ is

defined by

P½X � ¼
ð
X ðoÞ dP:

In quantum mechanics, for a self-adjoint operator A, the inner product of c
and Ac

hc;Aci

is interpreted as the expectation of A, where c is an element of a Hilbert space H
with kck ¼ 1.

If we handle a single bounded operator A, then there exists a random
variable hAðoÞ and a probability measure m such that

hc;Aci ¼
ð
hAðoÞ dm:

In fact, if B is a Banach algebra of bounded commutative self-adjoint operators,
then there exist a compact Hausdor¤ space W and an isometry y from the
Banach algebra B onto the space CðWÞ. Namely for each A A B there exists
hA A CðWÞ such that hA ¼ yA and khAk ¼ kAk, where the norm of hA is khAk ¼
supo AWjhAðoÞj; cf. Nagasawa (1959). Moreover, for a linear functional defined
by

mðhAÞ ¼ h f ;Af i; hA A CðWÞ;

there exists a probability measure m such that

mðhAÞ ¼
ð
hAðoÞ dm;

by Riesz-Markov-Kakutani theorem, cf. Yosida (1965).
Hence the interpretation of the inner product hc;Aci as the expectation of

A is reasonable.
However, if we treat a set of (non-commutable) self-adjoint operators, we

need further consideration.
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Definition 2.1. Let H be a Hilbert space. For c A H with the norm
kck ¼ 1, and a set F of self-adjoint operators (physical quantities), if there exists
a probability space fW;F;Pg and a random variable hAðoÞ such that

hc;Aci ¼
ð
hAðoÞP½do�; for any A A F ;ð2:1Þ

then we will call the random variable hAðoÞ a function representation (hidden
variable) of the self-adjoint operator A A F , and fðW;F;PÞ; hA;A A Fg will be
called a function representation (hidden variable) of fF ;cg.

It should be remarked here that the function representation is not uniquely
determined. In fact, if a random variable gðoÞ is with mean zero, we can take
hAðoÞ þ gðoÞ as another function representation instead of hAðoÞ.

Therefore, when sets of physical quantities are involved in a context, we
must carefully choose hidden variables so that they are physically meaningful,
and consistent with physical quantities we handle.

(ii) The variance
In probability theory the variance of a random variable X is defined by

VarðXÞ ¼
ð

X ðoÞ �
ð
X dm

� �2

dm:ð2:2Þ

In quantum mechanics Robertson (1929) gave a definition of variance of a
self-adjoint operator A by

hc; ðA� hc;AciÞ2ci:ð2:3Þ
However, first of all, it is not at all clear what physical quantity the operator

ðA� hc;AciÞ2 is, and no reasonable physical explanation for this has been
given. Moreover, the inner product by equation (2.3) is not variance of A, but
something else, except for a very special case, as will be shown below.

To clarify this point we consider:

(iii) The case of Schrödinger operator
On a Hilbert space H ¼ L2ðR3Þ we consider Schrödinger operator (momen-

tum)

p ¼ �h

i
‘:

We take a set of operators

F ¼ fx; p; p2g;
and a Schrödinger function (wave function)

ctðxÞ ¼ eRðt;xÞþiSðt;xÞ;

with kctk ¼ 1, and consider a function representation of fF ;ctg.
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We first take the operator p. Then

hct; pcti ¼ �h

ð
ctðxÞ

1

i
‘ctðxÞ dx

¼ �h

ð
ctðxÞ

1

i
‘Rðt; xÞ þ ‘Sðt; xÞ

� �
ctðxÞ dx

¼
ð
�h

1

i
‘Rðt; xÞ þ ‘Sðt; xÞ

� �
mtðxÞ dx;

where

mtðxÞ ¼ ctðxÞctðxÞ ¼ e2Rðt;xÞ;

as usual in quantum mechanics. Since p is a self-sdjoint operator, the inner
product hct; pcti is real, and henceð

�hð‘Rðt; xÞÞmtðxÞ dx ¼ 0:ð2:4Þ

Therefore, we can write an equality

hct; pcti ¼
ð
�hð‘Rðt; xÞ þ ‘Sðt; xÞÞmtðxÞ dx;ð2:5Þ

and take

hp ¼ �hð‘Rðt; xÞ þ ‘Sðt; xÞÞð2:6Þ
as a function representation of the momentum operator p ¼ �h

i
‘.

Remark. Because of equation (2.4) one can take �h‘Sðt; xÞ as a function

representation of the momentum operator p ¼ �h

i
‘. But we won’t. The reason

is �hð‘Rðt; xÞ þ ‘Sðt; xÞÞ has a good physical meaning as the momentum of
stochastic processes of dynamic theory of random motion in quantum physics, cf.
Nagasawa (1993, 2000, 2002, 2007). But �h‘Sðt; xÞ has no such a good physical
meaning.

We now take p2 ¼ �h

i
‘

� �2

. Then

ð
ctðxÞð p2ctðxÞÞ dx ¼

ð
�h2‘ctðxÞ‘ctðxÞ dx

¼
ð
�h2ctðxÞðð‘Rðt; xÞÞ

2 þ ð‘Sðt; xÞÞ2ÞctðxÞ dx

¼
ð
�h2ðð‘Rðt; xÞÞ2 þ ð‘Sðt; xÞÞ2ÞmtðxÞ dx;
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where mt ¼ ctct. Thus we have

hct; p
2cti ¼

ð
�h2ðð‘RÞ2 þ ð‘SÞ2ÞmtðxÞ dx:

Therefore, we can take

hp2 ¼ �h2ðð‘RÞ2 þ ð‘SÞ2Þð2:7Þ

as a function representation of the operator p2 ¼ �h

i
‘

� �2

.

Remark. There is a good reason to do so, since

1

2m
�h2ðð‘RÞ2 þ ð‘SÞ2Þ

is the kinetic energy
1

2m
p2 of stochastic processes of dynamic theory of random

motion in quantum physics, cf. Nagasawa (1993, 2000, 2002, 2007).

Theorem 2.1 (Nagasawa (2009)). Let

ctðxÞ ¼ eRðt;xÞþiSðt;xÞ

be a Schrödinger function (wave function). Let hp ¼ �hð‘Rþ ‘SÞ be a function
representation of the momentum operator p, and hp2 ¼ �h2ðð‘RÞ2 þ ð‘SÞ2Þ be a
function representation of p2.

If ð
‘R � ‘SmtðxÞ dx0 0;

i.e. if ‘R and ‘S has correlation, thenð
ðhpÞ2ðt; xÞmtðxÞ dx0

ð
hp2ðt; xÞmtðxÞ dx;ð2:8Þ

where mtðxÞ ¼ e2Rðt;xÞ.

Proof. Since the function representation of momentum operator p is
hpðt; xÞ ¼ �h‘ðRðt; xÞ þ Sðt; xÞÞ; we have

ðhpÞ2 ¼ �h2ðð‘RÞ2 þ ð‘SÞ2Þ þ 2�h2‘R � ‘S:ð2:9Þ
By comparing equation (2.9) with equation (2.7), we can complete the proof.

Remark. If ‘R‘S0 0; then ðhpÞ2 0 hp2 :

Theorem 2.2. Let cðt; xÞ ¼ eRðt;xÞþiSðt;xÞ satisfy the Schrödinger equation

i
qc

qt
þ 1

2
s2sc� Vðt; xÞc ¼ 0:ð2:10Þ
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Then the equality ð
ðhpÞ2ðt; xÞmtðxÞ dx ¼

ð
hp2ðt; xÞmtðxÞ dx

holds, if and only if ð
qR

qt
þ 1

2
s2DS

� �
mt dx ¼ 0:ð2:11Þ

Proof. Substitute cðt; xÞ ¼ eRðt;xÞþiSðt;xÞ in equation (2.10), and divide the
resulting equation by c. Then it is easy to see that from the imaginary part we
have

qR

qt
þ 1

2
s2DS þ s2‘S � ‘R ¼ 0:

Therefore, by Theorem 2.1 we can complete the proof.

Remark. The equality

ðhpÞ2 ¼ hp2

holds, if and only if

qR

qt
þ 1

2
s2DS1 0:ð2:12Þ

Theorem 2.3. Let ctðxÞ ¼ eRðt;xÞþiSðt;xÞ be a Schrödinger function.
Then:
(i) Only when ‘R and ‘S has no correlation, or equivalently (2.11) holds,

hct; ðp� hct; pctiÞ
2
ctið2:13Þ

gives the variance of the function representation hp ¼ �hð‘Rþ ‘SÞ of the momen-
tum operator p.

(ii) Hence the expectation of the operator ðp� hct; pctiÞ
2
in (2.13) is in

general not variance, but something else.

Proof. For the momentum operator p

hct; ðp� hct; pctiÞ
2
cti ¼ hct; p

2cti� ðhct; pctiÞ
2

¼
ð
hp2ðt; xÞmtðxÞ dx�

ð
hpðt; xÞmtðxÞ dx

� �2

;

the right hand side of which is, if
Ð
‘R‘Smt dx0 0,

0

ð
ðhpÞ2ðt; xÞmtðxÞ dx�

ð
hpðt; xÞmtðxÞ dx

� �2

;
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by Theorem 2.1. Namely, hct; ðp� hct; pctiÞ
2cti is not equal to the variance

of the function representation hp ¼ �hð‘Rþ ‘SÞ of the momentum operator p,
when ‘R and ‘S has correlation. This completes the proof.

3. Heisenberg’s inequality

Robertson (1929) put

X ¼ ðx� hct; xctiÞct; Y ¼ ðpx � hct; pxctiÞct

in Schwarz’s inequality

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hX ;Xi

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hY ;Yi

p
b

1

2
jhX ;Yi� hY ;Xij;ð3:1Þ

and gets ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hct; ðx� hct; xctiÞ

2cti
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hct; ðpx � hct; pxctiÞ
2cti

q
b

1

2
�h;ð3:2Þ

(Robertson (1929)). Robertson claimed that the inequality (3.2) implies the
Heisenberg-Kennard inequality:

‘‘The product of deviation of the x-component of position and deviation of
the x-component of momentum is not smaller than 1

2 �h’’,

that is, Heisenberg’s uncertainty principle (Kennard (1927)).
However, Robertson’s claim is false, becauseffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hct; ðpx � hct; pxctiÞ
2cti

q

in Robertson’s inequality (3.2) coincides with the deviation of the x-component of
momentum only for very special ct by Theorem 2.3.

Therefore, there is no proof for the Heisenberg-Kennard inequality.
Moreover we have

Theorem 3.1 (Nagasawa (2009)). Heisenberg’s uncertainty principle doesn’t
hold. In other words, there is no positive minimum for the product of the deviationffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðxÞ
p

of the x-component of position and the deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðhpxÞ

p
of the x-

component px of momentum in general.

Proof. Let cðt; xÞ ¼ eRðt;xÞþiSðt;xÞ and fix Rðt; xÞ. Then
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðxÞ

p
is fixed.

The function representation of px is

hpx ¼ �h
qR

qx
þ �h

qS

qx
;

and the variance of hpx is

VarðhpxÞ ¼
ð
�h2

qR

qx
þ qS

qx

� �2

mt dx�
ð
�h
qS

qx
mt dx

� �2

;ð3:3Þ

where mt ¼ ctct ¼ e2R is the distribution density.
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If we choose, for instance, S ¼ �eR, then cðt; xÞ ¼ eRðt;xÞþiSðt;xÞ is a solution
of the Schrödinger equation with an appropriately chosen potential function.
Then, since the second integral of the right hand side of equation (3.3) vanishes,
we have

VarðhpxÞ ¼ ð1� eÞ2
ð
e2R�h2

qR

qx

� �2

dx;

which can be arbitrary small, by choosing e. Therefore,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðxÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðhpxÞ

p
can

be arbitrary small. This complete the proof.

4. Inequality for the product of the expectation of kinetic energy
and the variance of position

As an application of Schwarz’s inequality we have

Theorem 4.1. Let x ¼ ðx; y; zÞ, and p ¼ ðpx; py; pzÞ: Then for each coor-
dinate x, y, z

hct; ðx� hct; xctiÞ
2
cti ct;

1

2m
p2ct

� �
b

1

4

1

2m
�h2;ð4:1Þ

that is, the product of the expectation of kinetic energy and the variance of each

component of position is bounded away from zero by a positive constant
1

4

1

2m
�h2.

Proof. We set X ¼ ðx� hct; xctiÞct and Y ¼ pxct in Schwarz’s inequality
(3.1). Then

hct; ðx� hct; xctiÞ
2ctihct; p

2
xctib

1

4
jhct; ðxpx � pxxÞctij

2:

Since

ðpxx� xpxÞct ¼
�h

i
ct;

for arbitrary ct, we have

hct; ðx� hct; xctiÞ
2
ctihct; p

2
xctib

1

4
�h2:

Moreover, since

hct; ðx� hct; xctiÞ
2ctihct; p

2
ycti ¼ 0;

and

hct; ðx� hct; xctiÞ
2ctihct; p

2
zcti ¼ 0;
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by adding the above three equations, we get inequality (4.1). This completes the
proof.

Inequality (4.1) has significant physical applications. In fact, the inequality
shows that if the kinetic energy becomes small (say, in the ground state), then
there is a lower limit for the valiance of position.

As an example, we consider Bose-Einstein condensation, cf. Mewes et al.
(1996), D. S. Jin (1996). Suppose the condensation goes on and the kinetic
energy approaches the ground state. Then we can predict that explosion occurs,
since the variance of position can’t be small by inequality (4.1). The explosion is
actually observed, for this see Cornish et al. (2001), Ueda-Saito (2002).

5. Locality of function representations

We consider a pair of particles with spin created at the origin. They fly
to locations A and B which are far away separated of each other, and are
detected by Stern-Gerlach magnets at the locations A and B. We denote the
orientation of Stern-Gerlach magnets at A and B by fa; bg, where a ¼ ða1; a2; a3Þ
and b ¼ ðb1; b2; b3Þ are vectors with the norm 1.

Let s ¼ ðsx; sy; szÞ be the spin matrix, where

sx ¼
0 1

1 0

� �
; sy ¼

0 �i

i 0

� �
; sz ¼

1 0

0 �1

� �
;

and set

Sða; 1Þ ¼ san 1; Sð1; bÞ ¼ 1n sb:

Then Sða; 1Þ ¼ san 1 and Sð1; bÞ ¼ 1n sb are commutative matrices on a
Hilbert space H ¼ R2 � R2.

We set

c ¼ uþ n u� � u� n uþffiffiffi
2

p ;ð5:1Þ

where

uþ ¼ 1

0

� �
; u� ¼ 0

1

� �
:

In physics the operators Sða; 1Þ ¼ san 1 and Sð1; bÞ ¼ 1n sb are inter-
preted as the spin of particles detected at the locations A and B, respectively.

We give a physical interpretation of our model as follows.
We consider a pair of particles with spin created at the origin. They fly to

locations A and B which are far away separated of each other.
The operator Sða; 1Þ ¼ san 1 represents spin of a particle detected by Stern-

Gerlach magnets settled at the locations A.
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The operator Sð1; bÞ ¼ 1n sb represents spin of another particle detected by
Stern-Gerlach magnets settled at the locations B.

The vectors a ¼ ða1; a2; a3Þ and b ¼ ðb1; b2; b3Þ are orientations of Stern-
Gerlach magnets at the locations A and B, respectively.

After a pair of particles are created at the origin, spin of the particles will
not change.

Equation (5.1) means that spin is up " or down #.
We now compute hc; san 1ci and hc; 1n sbci. We have

uþsauþ ¼ ð1; 0Þ a3 a1 � a2i

a1 þ a2i �a3

� �
1

0

� �
¼ a3;

u�sau� ¼ ð0; 1Þ a3 a1 � a2i

a1 þ a2i �a3

� �
0

1

� �
¼ �a3;

uþsau� ¼ ð1; 0Þ a3 a1 � a2i

a1 þ a2i �a3

� �
0

1

� �
¼ a1 � a2i;

u�sauþ ¼ ð0; 1Þ a3 a1 � a2i

a1 þ a2i �a3

� �
1

0

� �
¼ a1 þ a2i:

Therefore

hc; san 1ci ¼ 0; hc; 1n sbci ¼ 0:ð5:2Þ
This means that the expectation of spins of the particles detected at the locations
A and B are equal to zero.

Moreover, we have

hc; ðsan 1Þð1n sbÞci ¼ �ab;ð5:3Þ

where ab ¼ a1b1 þ a2b2 þ a3b3: This means that operators Sða; 1Þ ¼ san 1 and
Sð1; bÞ ¼ 1n sb have correlation. This correlation of spins of the pair of
particles was induced at the origin, when the particles were created.

An important point in our discussion is the so-called locality of the function
representation of fF;cg. This was the key point of Einstein-Podolsky-Rozen
(1935) (cf. also [2] of Bell (1964).)

Definition 5.1. Let F be a set of three operators

F ¼ fSða; 1Þ;Sð1; bÞ;Sða; 1ÞSð1; bÞg;
and c be given by (5.1). A function representation

fW;P; ha;1; h1;b; ha;1h1;bg
of fF;cg is local, and ha;1 and h1;b are local hidden variables, if the following
locality condition is satisfied:

(L) The random variable ha;1 does not depend on the orientation b of Stern-
Gerlach magnet at the location B which is separated from the location A, and the
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random variable h1;b does not depend on the orientation a of Stern-Gerlach
magnet at the location A which is separated from the location B.

We emphasize here that locality is defined for a single experiment with fixed
orientations fa; bg of Stern-Gerlach magnets at the locations A and B. If several
experiments with di¤erent orientations of Stern-Gerlach magnets are involved in a
context, we require locality for each experiment.

We now consider Bell’s discussion in Bell (1964) on spin correlations.
Bell’s discussion involves the spin correlations of the following four experi-

ments with di¤erent orientations of Stern-Gerlach magnets at the locations A
and B:

(Experiment 1) The orientations of Stern-Gerlach magnets are fa; bg.
(Experiment 2) The orientations of Stern-Gerlach magnets are fa; cg.
(Experiment 3) The orientations of Stern-Gerlach magnets are fb; cg.
(Experiment 4) The orientations of Stern-Gerlach magnets are fb; bg.
We assume that these experiments are independently done and have no

influence of each-other.
To discuss the experiments above we take a set of operators

F ¼ fSf1gða; 1Þ;Sf1gð1; bÞ;Sf1gða; 1ÞSf1gð1; bÞ;ð5:4Þ

Sf2gða; 1Þ;Sf2gð1; cÞ;Sf2gða; 1ÞSf2gð1; cÞ;

Sf3gðb; 1Þ;Sf3gð1; cÞ;Sf3gðb; 1ÞSf3gð1; cÞ;

Sf4gðb; 1Þ;Sf4gð1; bÞ;Sf4gðb; 1ÞSf4gð1; bÞg;

where f1g, f2g, f3g and f4g indicate Experiments 1, 2, 3 and 4, respectively, and
consider fF ;cg with c given in (5.1).

We then consider a function representation of fF ;cg:

fW;P; hA;A A Fg:ð5:5Þ
As we have already remarked, such a function representation is not uniquely

determined. Hence, we must carefully settle function representations, by distin-
guishing the above four experiments.

We will introduce function representations (hidden variables) to fix notations
in the following, where non-uniquness of function representations will have no
influence. As a matter of fact, explicit forms of function representations will be
given in section 7, in which the existence of local function representations
fW;P; hA;A A Fg will be discussed.

For Experiment 1, we denote function representations of operators Sf1gða; 1Þ
and Sf1gð1; bÞ as

h
f1g
a;1 ðoÞ; h

f1g
1;bðoÞ:

We assume they take values G1.
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Since h
f1g
a;1ðoÞ and h

f1g
1;bðoÞ are function representations of Sf1gða; 1Þ and

Sf1gð1; bÞ, we have

P½hf1ga;1 � ¼ 0; P½hf1g1;b � ¼ 0;

because of equation (5.2). Moreover, we have

P½hf1ga;1h
f1g
1;b � ¼ �ab;

because of equation (5.3).
For Experiment 2, we denote function representations of operators Sf2gða; 1Þ

and Sf2gð1; cÞ as

h
f2g
a;1 ðoÞ; h

f2g
1; c ðoÞ:

We assume they take values G1.
Since h

f2g
a;1ðoÞ and h

f2g
1; c ðoÞ are function representations of Sf2gða; 1Þ and

Sf2gð1; cÞ, we have

P½hf2ga;1 � ¼ 0; P½hf2g1; c � ¼ 0;

because of equation (5.2). Moreover, we have

P½hf2ga;1h
f2g
1; c � ¼ �ac;

because of equation (5.3).
Since Experiments 1 and 2 are independently done, function representations

h
f1g
a;1 and h

f2g
a;1 are independent of each other, and

h
f1g
a;1 0 h

f2g
a;1 :ð5:6Þ

For Experiment 3, we denote function representations of operators Sf3gðb; 1Þ
and Sf3gð1; cÞ as

h
f3g
b;1 ðoÞ; h

f3g
1; c ðoÞ:

We assume they take values G1. Then we have

P½hf3gb;1 � ¼ 0; P½hf3g1; c � ¼ 0;

because of equation (5.2). Moreover, we have

P½hf3gb;1h
f3g
1; c � ¼ �bc;

because of equation (5.3).
Since Experiments 2 and 3 are independently done, function representations

h
f2g
1; c and h

f3g
1; c are independent of each other, and

h
f2g
1; c 0 h

f3g
1; c :ð5:7Þ

For Experiment 4, we denote function representations of operators Sf4gðb; 1Þ
and Sf4gð1; bÞ as

h
f4g
b;1 ðoÞ; h

f4g
1;bðoÞ:
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We assume they take values G1 and

h
f4g
b;1ðoÞh

f4g
1;bðoÞ ¼ �1:

Then we have

P½hf4gb;1 � ¼ 0; P½hf4g1;b � ¼ 0;

because of equation (5.2), and

P½hf4gb;1h
f4g
1;b � ¼ �1;

because of equation (5.3).
Since Experiments 3 and 4 are independently done, function representations

h
f3g
b;1 and h

f4g
b;1 are independent of each other; and also h

f4g
1;b and h

f1g
1;b are independent

of each other, since Experiments 4 and 1 are independently done. Therefore

h
f3g
b;1 0 h

f4g
b;1 and h

f4g
1;b 0 h

f1g
1;b :ð5:8Þ

We assume that hidden variables

fhf1ga;1 ; h
f1g
1;bg; fhf2ga;1 ; h

f2g
1; c g; fhf3gb;1 ; h

f3g
1; c g and fhf4gb;1 ; h

f4g
1;bgð5:9Þ

of Experiments 1, 2, 3 and 4 satisfy locality.

6. Bell’s inequality

Bell (1964) used hidden variables given by (5.9) in discussing correlations of
hidden variables for Experiments 1, 2, 3 and 4, but he made an additional
assumption on relations between hidden variables of these experiments.

Namely, Bell required

h
f2g
a;1 ¼ h

f1g
a;1 ; h

f2g
1; c ¼ h

f3g
1; c ; h

f4g
b;1 ¼ h

f3g
b;1 and h

f4g
1;b ¼ h

f1g
1;b :ð6:1Þ

By (6.1) Bell rejects all of (5.6), (5.7) and (5.8). This means that he requires
dependence between hidden variables of Experiments 1, 2, 3, and 4.

We will call (6.1) Bell’s additional condition, or Bell’s dependence.
(As a matter of fact, in his paper Bell (1964) he simply neglected and didn’t

write the superscript f1g, f2g, f3g and f4g of hidden variables in (6.1). More-
over, he confused Bell’s dependence in (6.1) with locality. This was his error.)

We note that Bell’s dependence in (6.1) has nothing to do with locality (L) of
Definition 5.1. Locality is, in fact, a notion on each single experiment.

Proposition 6.1. Assume Bell’s dependence in (6.1). Then

jP½hf1ga;1h
f1g
1;b � � P½hf2ga;1h

f2g
1; c �ja 1þ P½hf3gb;1h

f3g
1; c �:ð6:2Þ

Proof. Since h
f4g
b;1h

f4g
1;b ¼ �1, we have

h
f1g
a;1h

f1g
1;b � h

f2g
a;1h

f2g
1; c ¼ h

f1g
a;1h

f1g
1;b þ h

f2g
a;1h

f2g
1; c h

f4g
b;1h

f4g
1;bð6:3Þ
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By Bell’s dependence in (6.1), equation (6.3) can be rewritten as

h
f1g
a;1h

f1g
1;b � h

f2g
a;1h

f2g
1; c ¼ h

f1g
a;1h

f1g
1;b þ h

f1g
a;1h

f3g
1; c h

f3g
b;1h

f1g
1;b

and hence we have

¼ h
f1g
a;1h

f1g
1;bð1þ h

f3g
b;1h

f3g
1; c Þ; P� a:e::

Because h
f1g
a;1h

f1g
1;b a 1,

h
f1g
a;1h

f1g
1;b � h

f2g
a;1h

f2g
1; c a 1þ h

f3g
b;1h

f3g
1; c ; P� a:e::

Taking the expectation of both sides, we get (6.2). This complete the proof.

Inequality (6.2) is called Bell’s inequality. In the proof of Proposition 6.1,
the locality (L) of Definition 5.1 is not used, but applied is Bell’s dependence in
(6.1). Hence, Bell’s inequality has nothing to do with locality at all.

Proposition 6.2. Bell’s dependence in (6.1) is inconsistent with the random
variables fhf1ga;1 ; h

f1g
1;b ; h

f2g
a;1 ; h

f2g
1; c ; . . .g in (5.9) to be function representations of Experi-

ments 1, 2, 3 and 4 of spin correlation.

Proof. Let fhf1ga;1 ; h
f1g
1;b ; h

f2g
a;1 ; h

f2g
1; c ; . . .g in (5.9) be a function representation of

four experiments of spin correlation, and assume Bell’s dependence in (6.1). We
then get Bell’s inequality (6.2), and reach a contradiction. In fact, we take vectors
b ¼ ðb1; b2; b3Þ and c ¼ ðc1; c2; c3Þ being orthogonal. Then

P½hf3gb;1h
f3g
1; c � ¼ �bc ¼ 0:

Therefore, the right hand side of inequality (6.2) is equal to 1. Since

P½hf1ga;1h
f1g
1;b � ¼ �ab; P½hf2ga;1h

f2g
1; c � ¼ �ac;

if we set a ¼ b� c

kb� ck , we get

P½hf1ga;1h
f1g
1;b � � P½hf2ga;1h

f2g
1; c � ¼ �aðb� cÞ ¼ �kb� ck2

kb� ck

¼ �kb� ck ¼ �
ffiffiffi
2

p
:

Thus, by (6.2), we reach a contradiction
ffiffiffi
2

p
a 1. This completes the proof.

Remark. Aspect-Dalibard-Roger (1982) showed experimentally that Bell’s
inequality doesn’t hold. Their experiment implies that Bell’s dependence in (6.1)
is inconsistent with their experiment.

Bell claimed that, if hidden variables are local, they must satisfy Bell’s
inequality (6.2); therefore ‘‘no local hidden variable model can explain the
quantum mechanical correlation’’, since inequality (6.2) induces a contradiction.
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However, Bell’s claim is false, because of Proposition 6.1. In fact, Bell’s
inequality (6.2) concerns neither locality nor non-locality at all. It follows from
Bell’s dependence assumption in (6.1) which has nothing to do with locality.

7. A local spin correlation model

We consider

(Experiment 1) the orientations of Stern-Gerlach magnets are fa; bg;
(Experiment 2) the orientations of Stern-Gerlach magnets are faO; bOg;
(Experiment 3) the orientations of Stern-Gerlach magnets are faOO; bOOg;

and so on.
We assume that these experiments are independently done, and have no

influence of each other.
To discuss these experiments we take a set of operators

F ¼ fSða; 1Þ;Sð1; bÞ;Sða; 1ÞSð1; bÞ; fa; bg is arbitraryg:ð7:1Þ
An important point here is the so-called locality of the function represen-

tation of fF ;cg, cf. Einstein-Podolsky-Rozen (1935), Bell (1964).
We denote a function representation of fF ;cg as

fW;P; h
fa;bg
a;1 ; h

fa;bg
1;b ; h

fa;bg
a;1 h

fa;bg
1;b ; fa; bg is arbitrarygð7:2Þ

where superscript fa; bg of h
fa;bg
a;1 and h

fa;bg
1;b distinguishes an experiment with

vectors a and b at the location A and B from others, i.e. each superscript fa; bg
indicates each independent experiment. We repeat the definition of locality of
the function representation in (7.2).

Definition 7.1. Let F be the set of operators given by (7.1) and c be given
by (5.1). A function representation in (7.2) of fF ;cg is local, if it satisfies the
following locality condition: For each experiment with fa; bg,

(L) the random variable h
fa;bg
a;1 does not depend on the vector b of Stern-

Gerlach magnet at the location B, and the random variable h
fa;bg
1;b does not

depend on the vector a of Stern-Gerlach magnet at the location A. Namely,
h
fa;bg
a;1 and h

fa;bg
1;b are local hidden variables.

Theorem 7.1. Let F be the set of operators given by (7.1) and c be given by
(5.1). Then there exists a local function representation of fF ;cg such as in (7.2).

Proof. We first set W ¼ f0; 1g � f0; 1g; and define functions h1ði; jÞ and
h2ði; jÞ on W by

h1ð0; jÞ ¼ 1; h1ð1; jÞ ¼ �1; j ¼ 0; 1;ð7:3Þ
and

h2ði; 0Þ ¼ �1; h2ði; 1Þ ¼ 1; i ¼ 0; 1:ð7:4Þ
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The function h1ði; jÞ does not depend on the second variable, and the function
h2ði; jÞ does not depend on the first variable. Namely they are locally defined.

We then define the product space

W ¼
Y
fa;bg

Wfa;bg;

where Wfa;bg ¼ W . An element of W is

o ¼ ð. . . ;oa;b; . . . ;oaO;bO; . . .Þ;
where . . . ;oa;b A Wfa;bg; . . . ;oaO;bO A WfaO;bOg; . . . .

For each fa; bg, we define functions h
fa;bg
a;1 ðoÞ and h

fa;bg
1;b ðoÞ on the product

space W by

h
fa;bg
a;1 ðoÞ ¼ h1ðoa;bÞ; where o ¼ ð. . . ;oa;b; . . . ;oaO;bO; . . .Þ;

h
fa;bg
1;b ðoÞ ¼ h2ðoa;bÞ; where o ¼ ð. . . ;oa;b; . . . ;oaO;bO; . . .Þ;

ð7:5Þ

where the functions h1 and h2 are given by (7.3) and (7.4), respectively.

The random variable h
fa;bg
a;1 ðoÞ depends only on oa;b A Wfa;bg and equals to

h1 given by (7.3), and hence h
fa;bg
a;1 ðoÞ does not depend on vector b. The random

variable h
fa;bg
1;b ðoÞ depends only on oa;b A Wfa;bg and equals to h2 given by

(7.4), and hence h
fa;bg
1;b ðoÞ does not depend on vector a. Therefore, the random

variables h
fa;bg
a;1 and h

fa;bg
1;b satisfy the locality condition (L) of Definition 7.1.

Let p ¼ fpij; i; j ¼ 0; 1g be a probability measure on W ¼ f0; 1g � f0; 1g
given by

p00 ¼ p11 ¼
1þ ab

4
; p01 ¼ p10 ¼

1� ab

4
:ð7:6Þ

We define the product measure

P ¼
Y
fa;bg

pfa;bg; where pfa;bg ¼ p;ð7:7Þ

on the product space W ¼
Q

fa;bg Wfa;bg, cf. eg. Halmos (1950), p. 158 (2).

The probability measure P is common for all pairs fa; bg, and a universal
probability measure for discussing the problem of spin correlations.

Since the measure P is the direct product, if we change the orientation of
Stern-Gerlach magnets at the locations A and B, namely, if fa; bg0 faO; bOg, then
a set of random variables

fhfa;bga;1 ; h
fa;bg
1;b ; h

fa;bg
a;1 h

fa;bg
1;b g

and a set of random variables

fhfaO;bOgaO;1 ; h
faO;bOg
1;bO ; h

faO;bOg
aO;1 h

faO;bOg
1;bO g

are independent.
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Moreover, the expectation of the random variables h
fa;bg
a;1 ðoÞ and h

fa;bg
1;b ðoÞ

given by (7.5) areð
h
fa;bg
a;1 ðoÞP½do� ¼ 0;

ð
h
fa;bg
1;b ðoÞP½do� ¼ 0;

and the correlation is ð
h
fa;bg
a;1 ðoÞhfa;bg1;b ðoÞP½do� ¼ �ab;

where P is the universal probability measure given by (7.7).
Therefore, comparing them with equations (5.2) and (5.3), we have, for each

pair fa; bg,
hc; san 1ci ¼

ð
h
fa;bg
a;1 ðoÞP½do�;

hc; 1n sbci ¼
ð
h
fa;bg
1;b ðoÞP½do�;ð7:8Þ

hc; ðsan 1Þð1n sbÞci ¼
ð
h
fa;bg
a;1 ðoÞhfa;bg1;b ðoÞP½do�:

Thus we have shown

fW;P; h
fa;bg
a;1 ; h

fa;bg
1;b ; h

fa;bg
a;1 h

fa;bg
1;b ; fa; bg arbitraryg

is a function representation of fF ;cg, where F is given by (7.1) and c is given by
(5.1).

We have already shown that the random variables h
fa;bg
a;1 ðoÞ and h

fa;bg
1;b ðoÞ

given by (7.5) are local hidden variables. Therefore, our function representation
in (7.2) is local. This completes the proof.

Remark. What the equality in (7.8) means is that the left and right hand
sides of the equation coincide for each pair fa; bg. One can see also that the
right hand side follows from the left hand side. In fact, let c be given by (5.1).
Then the left hand side of equation (7.8) is

hc; ðsan 1Þð1n sbÞci ¼ 1

2
fðuþsauþÞðu�sbu�Þ þ ðu�sau�ÞðuþsbuþÞ

� ðuþsau�Þðu�sbuþÞ � ðu�sauþÞðuþsbu�Þg

where uþ ¼ 1

0

� �
, u� ¼ 0

1

� �
;

¼ �ab

which can be decomposed as

¼ � 1þ ab

4
þ 1� ab

4
þ 1� ab

4
� 1þ ab

4
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and with the functions h1ði; jÞ and h2ði; jÞ given by equations (7.3) and (7.4),
respectively, one gets

¼ h1ð0; 0Þh2ð0; 0Þ
1þ ab

4
þ h1ð0; 1Þh2ð0; 1Þ

1� ab

4

þh1ð1; 0Þh2ð1; 0Þ
1� ab

4
þ h1ð1; 1Þh2ð1; 1Þ

1þ ab

4

moreover, by definition (7.6) of the probability measure p ¼ fpij; i; j ¼ 0; 1g

¼ h1ð0; 0Þh2ð0; 0Þp00 þ h1ð0; 1Þh2ð0; 1Þp01
þh1ð1; 0Þh2ð1; 0Þp10 þ h1ð1; 1Þh2ð1; 1Þp11

then according to definitions (7.5) and (7.7)

¼
ð
h
fa;bg
a;1 ðoÞhfa;bg1;b ðoÞP½do�;

which is the right hand side of equation (7.8).
About the relation of Theorem 7.1 to other hidden variable theories, cf.

Nagasawa (1997), and Nagasawa-Schröder (1997).
As a special case of Theorem 7.1 we have

Theorem 7.2. For Experiments 1, 2, 3 and 4 take the set of operators F
given in (5.4), and c in (5.1). Then there exists a local function representation

fW;P; h
f1g
a;1 ; h

f1g
1;b ; h

f1g
a;1h

f1g
1;b ; h

f2g
a;1 ; h

f2g
1; c ; h

f2g
a;1h

f2g
1; c ; h

f3g
b;1 ; h

f3g
1; c ; h

f3g
b;1h

f3g
1; c ; h

f4g
b;1 ; h

f4g
1;b ; h

f4g
b;1h

f4g
1;bg

of fF ;cg. Pairs fhf1ga;1 ; h
f1g
1;bg; fh

f2g
a;1 ; h

f2g
1; c g; fh

f3g
b;1 ; h

f3g
1; c g and fhf4gb;1 ; h

f4g
1;bg satisfy lo-

cality (L) of Definition 7.1, that is, they are local hidden variables.
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Birkhäuser Verlag, Basel, Boston, Berlin, 2000.

[16] M. Nagasawa, On quantum particles, Chaos, Solitons & Fractals 13 (2002), 1393–1405.

[17] M. Nagasawa, Dynamic theory of stochastic movement of systems, Stochastic economic

dynamics (B. J. Jensen and T. Palokangas, eds.), Copenhagen Business School Press, 2007,

133–164.

[18] M. Nagasawa, A note on the expectation and deviation of physical quantities, Chaos,

Solitons & Fractals 39 (2009), 2311–2315, doi:10.1016/j.chaos.2007.06.129.

[19] H. R. Robertson, The uncertainty principle, Phys. Rev. 34 (1929), Letters to the editor, 163–

164.

[20] M. Ueda and H. Saito, Mean-field analysis of collapsing and exploding Bose-Einstein

condensates, Physical Review A 65 (2002), 033624-1–033624-6.

[21] K. Yosida, Functional analysis, Springer-Verlag, Berlin, Heidelberg, 1965.

Masao Nagasawa

Institute of Mathematics

University of Zürich

Winterthurerstrasse 190

CH-8057 Zürich
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