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Abstract

In this paper we study n-dimensional complete spacelike submanifolds with constant

normalized scalar curvature immersed in semi-Riemannian space forms. By extending

Cheng-Yau’s technique to these ambients, we obtain results to such submanifolds

satisfying certain conditions on both the squared norm of the second fundamental

form and the mean curvature. We also characterize compact non-negatively curved

submanifolds in De Sitter space of index p.

1. Introduction

In recent years, the study of spacelike submanifolds in semi-Riemannian
ambients has got increasing interest motivated by theirs importance in problems
related to Physics, more specifically in the theory of general relativity.

Concerning to the mathematical viewpoint, such submanifolds appear in
several uniqueness problems, for instance, constant mean curvature spacelike
hypersurfaces exhibit nice Bernstein’s type properties.

Here, we are interested in characterizing complete spacelike submanifolds
with constant scalar curvature immersed in semi-Riemannian space forms by
annalysing the growth of the squared of the second fundamental form of the
immersion or the behaviour of its mean curvature. We recall that a submanifold
immersed is said to be spacelike if its induced metric is positive definite.

The complete connected semi-Riemannian manifolds of index p with con-
stant curvature c, defined as below, will be denoted by Qnþp

p ðcÞ. They may be

considered, up to isometries, as the De Sitter space Snþp
p ðcÞ, if c > 0, the semi-

Euclidean space Rnþp
p , if c ¼ 0 and the semi-hyperbolic space Hnþp

p ðcÞ, if c < 0.
Those manifolds will be defined in Section 2.

Before stating our main results, we shall give a brief summary of principal
results already current in this theory.
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The initial step in this context is due to Goddard [18], that conjectured that
complete spacelike hypersurfaces with constant mean curvature in Snþ1

1 ð1Þ are
totally umbilical. The totally umbilical hypersurfaces of Snþ1

1 ð1Þ are obtained by
intersecting Snþ1

1 ð1Þ with linear hyperplanes of Rnþ2
1 .

J. Ramanathan [27] proved Goddard’s conjecture for S3
1ð1Þ and 0aHa 1.

Moreover, if H > 1, he showed that the conjecture is false, as can be seen from
an example due to Dajczer-Nomizu [14]. Independently, K. Akutagawa proved
in [2] that Goddard’s conjecture is true when n ¼ 2 and either H 2 a c or M 2

is compact or when nb 3 and H 2 <
4ðn� 1Þ

n2
c. He also constructed complete

spacelike rotational surfaces in S3
1ð1Þ with constant H satisfying H > 1 which are

not totally umbilical.
In [24], S. Montiel proved that Goddard’s conjecture is true provided that

Mn is compact. Furthermore, he exhibited examples of complete spacelike hyper-

surfaces in Snþ1
1 ð1Þ with constant mean curvature H satisfying H 2 b

4ðn� 1Þ
n2

and

being not totally umbilical, the so called hyperbolic cylinders, which are isometric
to the Riemannian product H1ðsinh rÞ � Sn�1ðcosh rÞ of a hyperbolic line and
an ðn� 1Þ-dimensional sphere of constant sectional curvatures 1� coth2 r and
1� tanh2 r, respectively. We point out that in [25] Montiel characterized the
hyperbolic cylinders as the only complete non-compact spacelike hypersurfaces

in Snþ1
1 with constant mean curvature H satisfying H 2 ¼ 4ðn� 1Þ

n2
and having

more than one topological end.
In higher codimension, the condition on the mean curvature is replaced by

a condition on the mean curvature vector. Let Mn be a spacelike submanifold
of Qnþp

p ðcÞ with parallel mean curvature vector h. When Mn is maximal, i.e.,

h1 0, T. Ishihara [21] established the following inequality for the squared norm
S of the second fundamental form B of Mn

1

2
DSbS ncþ S

p

� �
:ð1:1Þ

We recall that a submanifold Mn of Qnþp
p ðcÞ is totally geodesic if its second

fundamental form B vanishes identically. As an important application of (1.1),
Ishihara proved that maximal complete spacelike submanifolds in Qnþp

p ðcÞ, cb 0,

are totally umbilical and, if c < 0, then 0aSa�npc. Moreover, he determined
all the complete spacelike maximal submanifolds Mn of Qnþp

p ðcÞ, c < 0, satisfying
S ¼ �npc (cf. [21], Theorem 1.3).

R. Aiyama [3] studied compact spacelike submanifolds in Snþp
p ðcÞ with

parallel mean curvature vector and proved that if the normal connection of Mn

is flat, then Mn is totally umbilical. In the same work [3], it was proved that
compact spacelike submanifolds in Snþp

p ðcÞ with parallel mean curvature vector
and non-negative sectional curvatures are also totally umbilical.
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Q. M. Cheng [11] showed that Akutagawa’s result [2] is valid for complete
spacelike submanifolds in Snþp

p ðcÞ with parallel mean curvature vector.
In [8], [9], Chaves-Sousa obtained the following inequality for the squared

norm of the traceless tensor F ¼ B�Hg, where g stands for the induced metric
on a spacelike submanifold in Qnþp

p ðcÞ with parallel mean curvature vector

1

2
DjFj2 b jFj2 jFj2

p
� nðn� 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðn� 1Þ
p HjFj þ nðc�H 2Þ

 !
:ð1:2Þ

As an application of (1.2), Brasil-Chaves-Mariano [5] obtained an other
limitation for the supremum of the mean curvature

sup H 2 <
4ðn� 1Þc

ðn� 2Þ2pþ 4ðn� 1Þ
;ð1:3Þ

as an extension of Akutagawa’s [2] and Cheng’s [11] results.
Moreover, Chaves-Sousa [9] obtained a Lorentzian version of results ob-

tained by Yano-Ishihara [31] and also by Yau [32] for Riemannian submanifolds.
More precisely they proved that complete spacelike submanifolds in Qnþp

p ðcÞ with
parallel mean curvature vector, non-negative sectional curvatures and constant
scalar curvature are totally umbilical or a product M1 �M2 � � � � �Mk, where
each Mi is a totally umbilical submanifold of Qnþp

p ðcÞ and the M 0
i s are mutually

perpendicular along their intersections.
In [4], L. Alı́as and A. Romero developed some integral formulas for

compact spacelike hypersurfaces in de Sitter space Snþ1
1 ð1Þ and obtained char-

acterizations for totally umbilical spacelike hypersurfaces with constant higher
order mean curvature.

Motivated by this brief description, it would be natural to replace the
assumption on the mean curvature vector by a suitable one on the scalar
curvature and to characterize the complete spacelike submanifolds in Qnþp

p ðcÞ
satisfying this new condition.

In order to study hypersurfaces with constant scalar curvature, Cheng and
Yau [13] introduced a new self-adjoint di¤erential operator k acting on C2-
functions defined on Riemannian manifolds. Using this approach, they were
able to classify compact hypersurfaces Mn with constant normalized scalar
curvature R satisfying Rb c and non-negative sectional curvatures immersed
in Riemannian space forms of constant curvature c.

There are some interesting and recent results related to the study of spacelike
hypersurfaces with constant scalar curvature in De Sitter space. Y. Zheng [33]
proved that a compact spacelike hypersurface in Snþ1

1 ðcÞ with constant normal-
ized scalar curvature R, R < c, and non-negative sectional curvatures is totally
umbilical. Later, Q. M. Cheng and S. Ishikawa [12] showed that Zheng’s result
in [33] is also true without additional assumptions on the sectional curvatures of
the hypersurface.

In [20], Z. Hu, M. Scherfner and S. Zhai classified spacelike hypersurfaces in
De Sitter space Snþ1

1 ðcÞ with constant scalar curvature and two distinct principal
curvatures.
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Recently, Camargo-Chaves-Sousa [7] answered a question posed by H. Li
in Section 4 of [23] with an additional hypothesis on the mean curvature. The
authors proved that a complete spacelike hypersurface in Snþ1

1 ð1Þ, nb 3, with

constant normalized scalar curvature R satisfying
n� 2

n
aRa 1 and bounded

mean curvature is totally umbilical.
We recall that the immersion x : Mn ! Qnþp

p ðcÞ is substantial if its codi-
mension can not be reduced. The smallest codimension for which an immersion
x can be reduced is called the substantial codimension of x.

It should be pointed out that the normalized mean curvature vector is defined

by
h

jhj , where h is the mean curvature vector of Mn, and the normalized scalar

curvature R satisfies nðn� 1ÞR ¼ trðRicÞ, where Ric is the Ricci curvature tensor
of Mn.

In this paper, we extend Cheng-Yau’s technique to complete submanifolds in
Qnþp

p ðcÞ in order to prove the following results

Theorem 1.1. Let x : Mn ! Qnþp
p ðcÞ, nb 3, be a substantial isometric

immersion of a complete Riemannian manifold. Assume that the normalized
mean curvature vector of Mn in Qnþp

p ðcÞ is parallel and that Mn has constant

normalized scalar curvature R satisfying Ra c. For xb�nðc� RÞ, set

PRðxÞ ¼
n� 1� p

np
xþ ðn� 1Þðpþ 1ÞðR� cÞ

p
þ ncð1:4Þ

� n� 2

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� nðn� 1ÞðR� cÞÞðxþ nðR� cÞÞ

p
:

If PRðsup SÞb 0, then p ¼ 1. Moreover, if R <
n� 2

n

� �
c, when cb 0, then

either S ¼ nðc� RÞ and Mn is totally umbilical or PRðsup SÞ ¼ 0 and sup S ¼
CnðRÞ, where

CnðRÞ ¼
n½ð�nRþ ðn� 2ÞcÞðn� 2Þðn� 1ÞðR� cÞ þ nððn� 1ÞðR� cÞ þ cÞ2�

ð�nRþ ðn� 2ÞcÞðn� 2Þ :

Corollary 1.1. Let x : Mn ! Qnþp
p ðcÞ, nb 3 and c > 0, be a substantial

isometric immersion of a complete Riemannian manifold. Assume that the normal-
ized mean curvature vector of Mn in Qnþp

p ðcÞ is parallel and that Mn has constant
normalized scalar curvature R satisfying Ra c. For xb�nðc� RÞ, set

PRðxÞ ¼
n� 1� p

np
xþ ðn� 1Þðpþ 1ÞðR� cÞ

p
þ ncð1:5Þ

� n� 2

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� nðn� 1ÞðR� cÞÞðxþ nðR� cÞÞ

p
:
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If PRðsup SÞb 0 and sup S is attained on Mn, then p ¼ 1 and Mn is either totally
umbilical or isometric to a hyperbolic cylinder H1ðsinh rÞ � Sn�1ðcosh rÞ.

Corollary 1.2. Let Mn be a complete spacelike submanifold in Qnþp
p ðcÞ,

nb 3, with parallel normalized mean curvature vector and constant normalized
scalar curvature R satisfying Ra c. If the mean curvature H of Mn satisfies

sup H 2 <
4ðn� 1Þc

ðn� 2Þ2pþ 4ðn� 1Þ
;ð1:6Þ

then Mn is totally umbilical.

We also extend Theorem 4.1 in [30], characterizing the compact spacelike
submanifolds in Snþp

p ðcÞ with parallel normalized mean curvature vector, con-
stant normalized scalar curvature R satisfying Ra c and non-negative sectional
curvatures. More precisely, we prove the following

Theorem 1.2. Let Mn be a compact spacelike submanifold in Snþp
p ðcÞ, with

parallel normalized mean curvature vector, constant normalized scalar curvature
R satisfying Ra c. If Mn has non-negative sectional curvatures, then Mn is
isometric to a sphere Snðc1Þ, c1 > 0.

Corollary 1.3. Let Mn be a complete spacelike submanifold in Qnþp
p ðcÞ,

with parallel normalized mean curvature vector, constant normalized scalar cur-
vature R satisfying Ra c. If Mn has non-negative sectional curvatures, then
either

(i) inf K ¼ 0, where inf K denotes the infimum of the sectional curvatures of
Mn; or

(ii) c > 0 and Mn is totally umbilical.

Remark 1.1. The assumption about parallel normalized mean curvature
vector was introduced by Chen in [10]. Submanifolds with nonzero parallel
mean curvature vector also have parallel normalized mean curvature vector.
The condition to have parallel normalized mean curvature vector is much weaker
than the condition to have parallel mean curvature vector. For instance, every
hypersurface in a semi-Riemannian manifold always has parallel normalized
mean curvature vector.

2. Preliminaries

In this section we will introduce some basic facts and notations that will
appear on the paper.

Let Rnþp
p denotes an ðnþ pÞ-dimensional real vector space endowed with

an inner product of index p given by hx; yi ¼ �
Pp

i¼1 xi yi þ
Pnþp

j¼pþ1 xj yj, where
x ¼ ðx1; x2; . . . xnþpÞ is the natural coordinate of Rnþp

p . The manifold Rnþp
p is
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called semi-Euclidean space and it has constant curvature c ¼ 0. We also define
the semi-Riemannian manifolds Snþp

p ðcÞ, with c > 0, called De Sitter space, and

Hnþp
p ðcÞ, with c < 0, called semi-Hyperbolic space, as follows:

Snþp
p ðcÞ ¼ ðx1; x2; . . . xnþpþ1Þ A Rnþpþ1

p : �
Xp
i¼1

x2
i þ

Xnþpþ1

j¼pþ1

x2
j ¼ 1

c

( )

Hnþp
p ðcÞ ¼ ðx1; x2; . . . xnþpþ1Þ A R

nþpþ1
pþ1 : �

Xpþ1

i¼1

x2
i þ

Xnþpþ1

j¼pþ2

x2
j ¼ 1

c

( )
:

Let Mn be an n-dimensional Riemannian manifold immersed in Qnþp
p ðcÞ.

When the indefinite Riemannian metric of Qnþp
p ðcÞ induces a Riemannian metric

of on Mn, the immersion is called spacelike. We choose a local field of semi-
Riemannian orthonormal frames e1; . . . ; enþp in Qnþp

p ðcÞ such that, at each point

p of Mn, e1; . . . ; en span the tangent space TpM to Mn at p. We make the
following standard convention of indices

1aA;B;C; � � �a nþ p; 1a i; j; k; � � �a n; nþ 1a a; b; g; � � �a nþ p:

Take the correspondent dual coframe fo1; . . . ;onþpg so that the semi-
Riemannian metric of Qnþp

p ðcÞ is given by

ds2 ¼
X
A

eAo
2
A; ei ¼ 1; ea ¼ �1; 1a ia n; nþ 1a aa nþ p:

Then the structure equations of Qnþp
p ðcÞ are given by

doA ¼
X
B

eBoAB5oB; oAB þ oBA ¼ 0:ð2:1Þ

doAB ¼
X
C

eCoAC5oCB � 1

2

X
C;D

eCeDKABCDoC5oD:ð2:2Þ

KABCD ¼ ceAeBðdAC dBD � dADdBCÞ:ð2:3Þ
Next, we restrict those forms to Mn. First of all, we get

oa ¼ 0; nþ 1a aa nþ p:ð2:4Þ
So the Riemannian metric of Mn is written as ds2 ¼

P
i o

2
i .

Since 0 ¼ doa ¼
P

i oai5oi, from Cartan’s lemma, we can write

oai ¼
X
j

ha
ijoj; ha

ij ¼ ha
ji :ð2:5Þ

Let B ¼
P

a; i; j h
a
ijoiojea be the second fundamental form. We will denote by

h ¼ 1

n

P
að
P

i h
a
iiÞea and by H ¼ jhj ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
að
P

i h
a
iiÞ

2
q

the mean curvature vector

and the mean curvature of Mn, respectively.
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The structure equations of Mn are given by

doi ¼
X
j

oij5oj; oij þ oji ¼ 0:ð2:6Þ

doij ¼
X
k

oik5okj �
1

2

X
k; l

Rijklok5ol :ð2:7Þ

Using the structure equations we obtain the Gauss equation

Rijkl ¼ cðdikdjl � dildjkÞ �
X
a

ðha
ikh

a
jl � ha

ilh
a
jkÞ:ð2:8Þ

The components of the Ricci curvature tensor Ric and the normalized scalar
curvature R are given, respectively, by

Rjk ¼ cðn� 1Þdjk �
X
a

X
i

ha
ii

 !
ha
jk þ

X
a; i

ha
ikh

a
ji :ð2:9Þ

nðn� 1ÞðR� cÞ ¼ S � n2H 2;ð2:10Þ
where S ¼

P
a; i; jðha

ijÞ
2 denotes the square of the length of the second fundamental

form of Mn.
We also have the structure equations of the normal bundle of Mn

doa ¼ �
X
b

oab5ob; oab þ oba ¼ 0:ð2:11Þ

doab ¼ �
X
g

oag5ogb �
1

2

X
i; j

Rabijoi5oj ;ð2:12Þ

where

Rabij ¼
X
l

ðha
ilh

b
lj � ha

jlh
b
li Þ:ð2:13Þ

The covariant derivatives ha
ijk of ha

ij satisfyX
k

ha
ijkok ¼ dha

ij þ
X
k

ha
ikokj þ

X
k

ha
jkoki �

X
b

h
b
ijoba:ð2:14Þ

Then, by exterior di¤erentiation of (2.5), we obtain the Codazzi equations

ha
ijk ¼ ha

jik ¼ ha
ikj:ð2:15Þ

Similarly, we have the second covariant derivatives ha
ijkl of ha

ij so thatX
l

ha
ijklol ¼ dha

ijk þ
X
l

ha
ljkoli þ

X
l

ha
ilkoljð2:16Þ

þ
X
l

ha
ijlolk �

X
b

h
b
ijkoba:
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By exterior di¤erentiation of (2.14), we can get the following Ricci formulas

ha
ijkl � ha

ijlk ¼
X
m

ha
imRmjkl þ

X
m

ha
jmRmikl þ

X
b

h
b
ijRabkl :ð2:17Þ

The Laplacian sha
ij of ha

ij is defined by sha
ij ¼

P
k h

a
ijkk. From (2.15) and

(2.17), we have

sha
ij ¼

X
k

ha
kkij þ

X
m;k

ha
kmRmijk þ

X
m;k

ha
miRmkjk þ

X
k;b

h
b
ikRabjk:ð2:18Þ

If H0 0, we choose enþ1 ¼
h

H
. Thus

Hnþ1 :¼ 1

n
trðhnþ1Þ ¼ H and H a :¼ 1

n
trðhaÞ ¼ 0; ab nþ 2;ð2:19Þ

where ha denotes the matrix ½ha
ij �.

Putting together (2.14) and (2.19) we getX
k

H nþ1
k ok ¼ dH;

X
k

H a
kok ¼ �Honþ1a; Ea > nþ 1;ð2:20Þ

where dH ¼
P

i Hioi.
The formulas (2.16), (2.19) and (2.20) yield

Hnþ1
kl ¼ Hkl �

1

H

X
b>nþ1

H
b
k H

b
l ;ð2:21Þ

where ‘Hk ¼
P

l Hklol ¼ dHk þ
P

l Hlolk.
It follows from (2.8), (2.13), (2.18) and (2.19) that

shnþ1
ij ¼ nHij þ cnhnþ1

ij � cnHdij þ
X
b;k;m

hnþ1
km h

b
mkh

b
ijð2:22Þ

� 2
X
b;k;m

hnþ1
km h

b
mjh

b
ik þ

X
b;k;m

hnþ1
mi h

b
mkh

b
kj

� nH
X
m

hnþ1
mi hnþ1

mj þ
X
b;k;m

hnþ1
jm h

b
mkh

b
ki;

sha
ij ¼ nH a

ij þ ncha
ij þ

X
b;k;m

ha
kmh

b
mkh

b
ij � 2

X
b;k;m

ha
kmh

b
mjh

b
ikð2:23Þ

þ
X
b;k;m

ha
mih

b
mkh

b
kj � nH

X
m

ha
mih

nþ1
mj

þ
X
b;k;m

ha
jmh

b
mkh

b
ki; Eab nþ 2:
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Since 1
2sS ¼ 1

2

P
a; i; jsðha

ijÞ
2 ¼

P
a; i; j;kðha

ijkÞ
2 þ

P
a; i; j h

a
ijsha

ij , by using (2.22)

and (2.23), it is straightforward to verify that

1

2
sS ¼

X
a; i; j;k

ðha
ijkÞ

2 þ n
X
a; i; j

ha
ijH

a
ij þ ncðS � nH 2Þð2:24Þ

� nH
X
a

trðhnþ1ðhaÞ2Þ þ
X
a;b

½trðhahbÞ�2

þ
X
a;b

Nðhahb � hbhaÞ;

where NðAÞ ¼ trðAAtÞ, for all matrix A ¼ ½aij�.

Remark 2.1. Recall that Mn is a submanifold with parallel normalized mean

curvature vector if ‘? h

H
1 0, where ‘? is the normal connection of Mn in

Qnþp
p ðcÞ. It implies that onþ1a ¼ 0, for all a and by (2.12) and (2.13) it is possible

to show that hnþ1ha ¼ hahnþ1, for all a. Furthermore, (2.20) and (2.21) yield

H a
k ¼ 0; Ek; a > nþ 1; Hnþ1

kl ¼ Hkl :ð2:25Þ

From (2.16) and (2.25) we obtain

X
l

H a
klol ¼ �Hnþ1

k onþ1a ¼ 0 and so

H a
kl ¼ 0; a > nþ 1:ð2:26Þ

We will need the following algebraic lemma, whose proof can be found in
[28].

Lemma 2.1. Let A;B : Rn ! Rn be symmetric linear maps such that
AB� BA ¼ 0 and trðAÞ ¼ trðBÞ ¼ 0. Then

jtr A2Bja n� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n n� 1ð Þ

p NðAÞ
ffiffiffiffiffiffiffiffiffiffiffi
NðBÞ

p
:ð2:27Þ

Moreover, the equality holds if, and only if, n� 1 of the eigenvalues xi of A
and the corresponding eigenvalues yi of B satisfy

jxij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðAÞ

nðn� 1Þ

s
; xixj b 0;

yi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðBÞ

nðn� 1Þ

s
resp: yi ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðBÞ

nðn� 1Þ

s !
:

ð2:28Þ
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Consider the following symmetric tensor

F ¼
X
a; i; j

Fa
ijoiojea;ð2:29Þ

where Fa
ij ¼ ha

ij �H adij.
It is easy to check that F is traceless and

NðFaÞ ¼ NðhaÞ � nðH aÞ2; nþ 1a aa nþ p and

jFj2 ¼
X
a

NðFaÞ ¼ S � nH 2;
ð2:30Þ

where Fa denotes the matrix ½Fa
ij �.

Let T ¼
P

i; j Tijoioj be a symmetric tensor on Mn defined by

Tij ¼ nHdij � hnþ1
ij :ð2:31Þ

According to Cheng-Yau [13], we introduce the operator k associated to T
acting on any C 2-function f by

kð f Þ ¼
X
i; j

Tij fij :ð2:32Þ

Since Tij is divergence-free, if Mn is a compact orientable manifold, it
follows, from Proposition 1 in [13], that k is self-adjoint relative to the
L2-inner product of Mn, i.e,

Ð
M

fkðgÞ ¼
Ð
M
gkð f Þ. In particular, it impliesÐ

M
kð f Þ ¼ 0.
The proof of the next result follows essentially from the pattern of the proof

of Theorem 2.1 in [19].

Lemma 2.2. Let Mn be a spacelike submanifold in Qnþp
p ðcÞ. Suppose that

the normalized scalar curvature R is constant and Ra c. ThenX
i; j;k;a

ðha
ijkÞ

2 � n2j‘Hj2 b 0ð2:33Þ

and the symmetric tensor T defined by (2.31) is positive semi-definite. Moreover
i) when R� c < 0, if the equality holds on Mn, then H is constant and T is

positive definite;
ii) when R� c ¼ 0, if the equality occurs on Mn, then either H is constant

or Mn lies in a totally geodesic subspace Qnþ1
1 ðcÞ of Qnþp

p ðcÞ and, in the
former case, the matrix hnþ1 has rank 1.

We also will need the well known generalized Maximum Principle due to H.
Omori [26].

Lemma 2.3. Let Mn be an n-dimensional complete Riemannian manifold
whose sectional curvature is bounded from below and f : Mn ! R be a smooth
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function which is bounded from above on Mn. Then there is a sequence of points
fpkg in Mn such that

lim
k!y

f ðpkÞ ¼ sup f ; lim
k!y

j‘f ðpkÞj ¼ 0 and

lim sup
k!y

maxfð‘2f ðpkÞÞðX ;XÞ : jX j ¼ 1ga 0:

The next proposition has an essential role in the proofs of our results.

Proposition 2.1. Let Mn be a complete spacelike submanifold in Qnþp
p ðcÞ

with parallel normalized mean curvature vector and constant normalized scalar
curvature R, Ra c. Then the following inequality holds

kðnHÞb jFj2 jFj2

p
� nðn� 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðn� 1Þ
p HjFj þ nðc�H 2Þ

 !
:ð2:34Þ

Proof. Take a local field of orthonormal frames fe1; . . . ; enþpg such that

enþ1 ¼
h

H
. By (2.32), kðnHÞ takes the form

kðnHÞ ¼ nHsðnHÞ �
X
i; j

hnþ1
ij ðnHÞij:ð2:35Þ

Notice that

nHsðnHÞ ¼ 1

2
sðnHÞ2 � n2j‘Hj2:ð2:36Þ

Combining (2.35) and (2.36), we get

kðnHÞ ¼ 1

2
sðnHÞ2 � n2j‘Hj2 � n

X
i; j

hnþ1
ij Hij:ð2:37Þ

Moreover, as R is constant, from (2.10), we have sS ¼sðnHÞ2.
Therefore, from (2.24) and (2.37) we can write

kðnHÞ ¼
X
a; i; j;k

ðha
ijkÞ

2 � n2j‘Hj2 þ n
X
a; i; j

ha
ijH

a
ijð2:38Þ

� n
X
i; j

hnþ1
ij Hij þ ncðS � nH 2Þ � nH

X
a

trðhnþ1ðhaÞ2Þ

þ
X
a;b

½trðhahbÞ�2 þ
X
a;b

Nðhahb � hbhaÞ:

Since Mn has parallel normalized mean curvature vector, (2.25), (2.26) and
(2.38) yield
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kðnHÞ ¼
X
a; i; j;k

ðha
ijkÞ

2 � n2j‘Hj2ð2:39Þ

þ ncðS � nH 2Þ � nH
X
a

trðhnþ1ðhaÞ2Þ

þ
X
a;b

½trðhahbÞ�2 þ
X
a;b

Nðhahb � hbhaÞ:

From (2.19) and (2.30), we get

Fnþ1
ij ¼ hnþ1

ij �Hdij ;

NðFnþ1Þ ¼ trðFnþ1Þ2 ¼ trðhnþ1Þ2 � nH 2 ¼ Nðhnþ1Þ � nH 2;

trðhnþ1Þ3 ¼ trðFnþ1Þ3 þ 3HNðFnþ1Þ þ nH 3

Fa
ij ¼ ha

ij ; NðFaÞ ¼ NðhaÞ; ab nþ 2:

ð2:40Þ

By (2.40), (2.39) and Lemma 2.2, we see that

kðnHÞb njFj2ðc�H 2Þ þ
X
a;b

½trðFaFbÞ�2ð2:41Þ

� nH
X
a

trðFnþ1ðFaÞ2Þ þ
X
a;b

NðFaFb �FbFaÞ:

As it was already seen in Remark 2.1, the matrix hnþ1 commutes with every
matrix ha, for all a and, therefore, by definition, the traceless matrix Fnþ1 com-
mutes with the traceless matrices Fa, for all a. Hence we can apply Lemma 2.1
in order to obtainX

a

trðFnþ1ðFaÞ2Þa n� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðFnþ1Þ

q
jFj2ð2:42Þ

a
n� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p jFj3:

Moreover, Cauchy-Schwarz inequality implies that

jFj4 a p
X
a

ðNðFaÞÞ2 a p
X
a;b

ðtr FaFbÞ2:ð2:43Þ

By putting (2.42) and (2.43) into (2.41), we arrive to (2.34). r

The following proposition appeared in [6] and [7], for p ¼ 1 and c > 0.

Proposition 2.2. Let Mn be a complete spacelike submanifold in Qnþp
p ðcÞ

with constant normalized scalar curvature R, Ra c. If the mean curvature H
of Mn is bounded, then there is a sequence of points fpkg A Mn such that
limk!y nHðpkÞ ¼ n sup H, limk!yj‘nHðpkÞj ¼ 0 and lim supk!yðkðnHÞðpkÞÞ
a 0.
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Proof. Choose a local orthonormal frame field e1; . . . ; en at p A Mn such

that hnþ1
ij ¼ lnþ1

i dij . Thus, by (2.32), kðnHÞ ¼
P

iðnH � lnþ1
i ÞðnHÞii, Ei.

As Ra c, (2.10) implies that S � n2H 2 ¼ nðn� 1ÞðR� cÞa 0 andP
a; i; jðha

ijÞ
2 ¼ Sa n2H 2. Hence ðlnþ1

i Þ2 aSa n2H 2, which shows that

0a nH � lnþ1
i

�� ��; Ei:ð2:44Þ

From (2.8) and (2.44), we have

Rijij ¼ c�
X
a

ðha
iih

a
jj � ðha

ijÞ
2Þb c� pn2H 2:ð2:45Þ

Since H is bounded, it follows from (2.45) that the sectional curvatures are
bounded from below. Therefore, we may apply Lemma 2.3 to nH, obtaining a
sequence of points fpkg A Mn such that

lim
k!y

nHðpkÞ ¼ n sup H; lim
k!y

j‘nHðpkÞj ¼ 0

and lim sup
k!y

ðnHiiðpkÞÞa 0:
ð2:46Þ

By evaluating (2.44) at points pk of the sequence above, we get

0a nHðpkÞ � jlnþ1
i ðpkÞja nHðpkÞ � lnþ1

i ðpkÞð2:47Þ
a nHðpkÞ þ jlnþ1

i ðpkÞja 2nHðpkÞ:

Using once more that H is bounded, from (2.47) we infer that
fnHðpkÞ � lnþ1

i ðpkÞg is non-negative and bounded.
By applying kðnHÞ at pk, taking the limit and using (2.46) and (2.47), we

get

lim sup
k!y

ðkðnHÞðpkÞÞa
X
i

lim sup
k!y

ðnH � lnþ1
i ÞðpkÞ lim sup

k!y
ðnHiiðpkÞÞa 0: r

Set hx the second fundamental form with respect to the normal direction
x. Given an isometric immersion c : Mn

s ! Qnþp
t ðcÞ, the first normal space of

c at p A Mn
s , N1ðpÞ, is defined to be the orthogonal complement of the set

fx A TpM
?; hx ¼ 0g.

We recall the following indefinite version of a theorem due to Erbacher (see
[15] and [16]).

Theorem 2.1. Let c : Mn
s ! Qnþp

t ðcÞ be an isometric immersion of a con-
nected indefinite Riemannian manifold into a space form. If there exists a k-
dimensional parallel normal subbundle LðpÞ which contains the first normal space
N1ðpÞ for all p A Mn

s , then there exists a ðnþ p� kÞ-dimensional totally geodesic
submanifold Qnþp�k of Qnþp

t ðcÞ such that cðMn
s ÞHQnþp�k, i.e., c admits a reduc-

tion of codimension to k.
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3. Proofs of the results

Proof of Theorem 1.1. The following relations may be readily deduced from
the Gauss equation (2.10) and the formula (2.30):

H 2 ¼ S � nðn� 1ÞðR� cÞ
n2

;ð3:1Þ

jFj2 ¼ ðn� 1ÞS þ nðn� 1ÞðR� cÞ
n

:ð3:2Þ

jFj2 ¼ nðn� 1ÞðR� cþH 2Þ:ð3:3Þ

Set PðH; jFjÞ ¼ jFj2

p
� nðn� 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðn� 1Þ
p HjFj þ nðc�H 2Þ and QðH;RÞ ¼

nðn� 1� pÞ
p

H 2 þ nðn� 1Þ
p

ðR� cÞþ nc� nðn� 2ÞH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R� cþH 2

p
. If PRðxÞ given

by (1.4), by virtue of (3.1), (3.2) and (3.3), it is straightforward to verify that

PRðSÞ ¼ PðH; jFjÞ ¼ QðH;RÞ:ð3:4Þ
Taking into account our assumption, we will show that if pb 2, then H

is bounded. From (3.1), (3.4) and that R is constant, we get PRðsup SÞ ¼
Qðsup H;RÞ and, therefore,

0aQðsup H;RÞ ¼ nðn� 1� pÞ
p

sup H 2 þ nðn� 1Þ
p

ðR� cÞð3:5Þ

þ nc� nðn� 2Þ sup H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R� cþ sup H 2

p
:

Thus,

ðn� 2Þ sup H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R� cþ sup H 2

p
a

ðn� 1� pÞ
p

sup H 2ð3:6Þ

þ ðn� 1Þ
p

ðR� cÞ þ c:

Squaring the last inequality, we obtain

ðsup H 2Þ2 ðn� 2Þ2 � n� 1� p

p

� �2" #
ð3:7Þ

þ sup H 2 ðn� 2Þ2ðR� cÞ � 2
ðn� 1� pÞ

p
R� 2

n� 1� p

p

� �2
ðR� cÞ

" #

� n� 1� p

p

� �
ðR� cÞ þ R

� �2
a 0:

Solving inequation (3.7), we arrive to
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sup H 2
aA�1

"
�ðn� 2Þ2 þ 2

n� 1� p

p

� �2 !
ðR� cÞð3:8Þ

þ 2
n� 1� p

p

� �
Rþ

ffiffiffiffi
s

p
#
;

where

s¼ ðn� 2Þ2 ðR� cÞ2ðn� 2Þ2 þ 4
n� 1� p

p

� �
ðR� cÞRþ 4R2

� �
and

A ¼ 2 ðn� 2Þ2 � n� 1� p

p

� �2" #
:

Hence, H is bounded.
By our assumptions, Proposition 2.1 and equality (3.4), we may write

kðnHÞb jFj2PRðSÞ:ð3:9Þ
Moreover, as H is bounded, we may apply Proposition 2.2 to obtain a

sequence of points pk in Mn such that

lim
k!y

ðnHðpkÞÞ ¼ n sup H andð3:10Þ

lim sup
k!y

ðkðnHÞðpkÞÞa 0:ð3:11Þ

As R is constant, it is clear from (3.1) and (3.3) that limk!y SðpkÞ ¼ sup S
and limk!yjFjðpkÞ ¼ supjFj.

By evaluating inequality (3.9) at the points pk of the sequence obtained by
Proposition 2.2 and taking lim supk!y, it gives

0b lim sup
k!y

ðkðnHÞðpkÞÞb supjFj2PRðsup SÞ:ð3:12Þ

As we are assuming PRðsup SÞb 0, we infer from (3.12)

supjFj2PRðsup SÞ ¼ lim sup
k!y

ðkðnHÞðpkÞÞ ¼ 0:ð3:13Þ

Then supjFj2 ¼ 0 or PRðsup SÞ ¼ 0. If pb 2, we shall prove that supjFj ¼ 0.
If the equality holds in (3.12), all the estimates employed to derive this

inequality are, actually, equalities. In this way, the inequalities used to prove
Proposition 2.1 become equalities. In particular, from (2.42) and (2.43), we
deduce that

lim sup
k!y

ðNðFnþ1ðpkÞÞÞ ¼ lim sup
k!y

ðjFj2ðpkÞÞ ¼ supjFj2:ð3:14Þ

supjFj4 ¼ p
X
a

lim sup
k!y

ðNðFaÞÞ2ðpkÞ ¼ p
X
a

lim sup
k!y

NðFaÞðpkÞ
� �2

:ð3:15Þ
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Let C a ¼ lim supk!yðNðFaÞðpkÞÞ, ab nþ 1. Notice that
P

a C
a ¼ supjFj2.

It follows from (3.14) that C a ¼ 0, for all ab nþ 2, which together with (3.15)
yield supjFj4 ¼ p

P
aðC aÞ2 ¼ pðCnþ1Þ2 ¼ p supjFj4. Since pb 2, we conclude

that supjFj ¼ 0.
Keeping in mind Theorem 2.1, it is easy to see that the codimension of the

immersion can be reduced which contradicts our initial hypothesis. It shows that
the substantial codimension of the immersion x is one.

If p ¼ 1 and R <
n� 2

n

� �
c, when cb 0, from (3.7) we obtain

sup H 2
a

½ðn� 2ÞðR� cÞ þ R�2

ðn� 2Þð�nRþ ðn� 2ÞcÞ :ð3:16Þ

Therefore, H is bounded and we can follow the pattern of the preceeding
proof to conclude that supjFj ¼ 0 or PRðsup SÞ ¼ 0.

It follows from (3.2) that Sa nðc� RÞ and the equality holds if, and only if,
Mn is totally umbilical. Moreover, PRðsup SÞ ¼ 0 if, and only if,

sup S ¼ n½ð�nRþ ðn� 2ÞcÞðn� 2Þðn� 1ÞðR� cÞ þ nððn� 1ÞðR� cÞ þ cÞ2�
ð�nRþ ðn� 2ÞcÞðn� 2Þ :

This completes our proof. r

Remark 3.1. As already pointed out in the Introduction, in [7] we proved
that a complete spacelike hypersurface in Snþ1

1 ð1Þ, nb 3, with constant normalized

scalar curvature R satisfying
n� 2

n
aRa 1 and with bounded mean curvature is

totally umbilical.

Remark 3.2. When R ¼ c ¼ 0 and p ¼ 1, PRðSÞ is the zero polynomial and
cylinders over plane curves are non totally umbilical examples of hypersurfaces in
Rnþ1

1 with vanishing scalar curvature. However, if we assume in addition that
the mean curvature H is constant, we claim that Mn is either totally umbilical or
isometric to a cylinder Rn�k � Sk, 1a ka n� 1.

Indeed, by Proposition 2.1 we may write

0 ¼kðnHÞb
X
i; j;k

h2ijk þ jFj2 jFj2 � nðn� 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p HjFj þ nðc�H 2Þ
 !

¼
X
i; j;k

h2ijk þ jFj2PRðSÞ ¼
X
i; j;k

h2ijk:

It yields hijk 1 0, Ei; j; k. Consequently, Mn is a hypersurface of Rnþ1
1 with

constant principal curvatures and, according to the congruence theorem of Abe-
Koike-Yamaguchi [1], Mn is either totally umbilical or isometric to a cylinder
Rn�k � Sk, 1a ka n� 1.
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Proof of Corollary 1.1. As R is constant and 0 < R <
n� 2

n

� �
c, by Lemma

2.2 it means that k is positive definite and so k is a second order elliptic
operator. By virtue of our assumptions and Proposition 2.1, we get kðSÞb
2nHkðnHÞb 0. Since sup S is attained on Mn, by applying the Maximum
Principle to elliptic equations (see [17]), we obtain that S is constant on Mn and
it is clear from (3.1) that H is also constant.

As H is constant and PRðSÞb 0 by assumption, from (3.9) we have
0 ¼kðnHÞb jFj2PRðSÞb 0. Hence the equality in Proposition 2.1 holds and
all the inequalities used to prove this proposition become equalities. It turns out
that X

i; j;k

h2ijk ¼ 0 and jtrðFnþ1Þ3j ¼ ðn� 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þ

p jFj3:ð3:17Þ

Lemma 2.1 and that equality show that Mn is a spacelike hypersurface of Snþ1
1

with at most two constant principal curvatures everywhere. Hence, it follows
from the congruence theorem of Abe-Koike-Yamaguchi [1] that Mn is either
totally umbilical or isometric to the hyperbolic cylinder H1ðsinh rÞ � Sn�1ðcosh rÞ,
which finishes our proof. r

Remark 3.3. We give now a brief exposition of a method developed hy
Hu, Scherfner and Zhai [20] of constructing hypersurfaces with constant scalar
curvature in Snþ1

p with two principal curvatures and constant scalar curvature R

satisfying 0 < R <
n� 2

n

� �
c. It will follow from Example 1 that the assumptions

in Corollary 1.1 on the sup S can not be dropped.

Example 1. Let us consider Snþ1
1 ð1Þ as Snþ1

1 ð1ÞHRnþ2
1 ¼ Rn

1 � R2, and
denote the standard immersion by x : Hn�1ð�1Þ ,! Rn, with fe1; . . . ; eng being a
local orthonormal frame field in Rn such that fe1; . . . ; en�1g is tangent to
Hn�1ð�1Þ and x ¼ en is the timelike normal vector field.

Let us take a plane curve x in R2 ¼ C with a given supporting function
hðyÞb 0.

The generic point qðyÞ of x is expressed as

qðyÞ ¼ eiðy�p=2ÞðhðyÞ þ ih 0ðyÞÞ:ð4:3Þ
The Frenet frame of x is given by

enþ1 ¼ eiy; enþ2 ¼ eiðyþp=2Þð4:4Þ
and the arc length u of x is given by

du ¼ fhðyÞ þ h 00ðyÞg dy:ð4:5Þ
Using enþ1 and enþ2, we have

q ¼ h 0enþ1 � henþ2; dq ¼ enþ1 du:ð4:6Þ
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Supposing x is in the outside of the unit circle, we define a function rðyÞ > 0
by

r2 ¼ kqk2 � 1 ¼ h2 þ ðh 0Þ2 � 1:ð4:7Þ
From now on, we assume hþ h 00 > 0. Define a spacelike hypersurface Mn by

j : Hn�1ð�1Þ � R ! Snþ1
1 ð1ÞHRnþ2;

with

j ¼ ren þ q ¼ ren þ h 0enþ1 � henþ2:ð4:8Þ
From a standard computation, we obtain the following second order

di¤erential equation

nðh2 � 1Þ½Rðh2 � 1Þ þ 1� d
2h

dy2
� 2h

dh

dy

� �2
ð3:18Þ

þ hðh2 � 1Þ½nRðh2 � 1Þ þ n� 2� ¼ 0:

Therefore, by assuming R constant, we can solve (3.18) and determine h.

Proof of Corollary 1.2. Since ðsup SÞ2 ¼ sup S2, ðsup HÞ2 ¼ sup H 2 and

ðsupjFjÞ2 ¼ supjFj2 from (3.4), we get

PRðsup SÞ ¼ Pðsup H; supjFjÞ:ð3:19Þ

Consider the quadratic polynomial PðxÞ ¼ x2

p
� nðn� 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðn� 1Þ
p sup Hxþ

nðc� sup H 2Þ and denote by D its discriminant. It is easily seen that the

assumption sup H 2 <
4ðn� 1Þc

ðn� 2Þ2pþ 4ðn� 1Þ
yields D < 0. Then (3.19) shows that

PRðsup SÞ ¼ Pðsup H; supjFjÞ > 0. By applying Theorem 1.1, we conclude that
Mn is totally umbilical. r

Proof of Theorem 1.2. By using (2.13), it is easily checked thatP
a;b; i; j;k h

a
ijh

b
kiRabjk ¼ 1

2

P
a;b Nðhahb � hbhaÞ, thus (2.18) implies

1

2
DS ¼ 1

2

X
a; i; j

Dðha
ijÞ

2 ¼
X
a; i; j;k

ðha
ijkÞ

2 þ
X
a; i; j

ha
ijDh

a
ijð3:20Þ

¼
X
a; i; j;k

ðha
ijkÞ

2 þ n
X
a; i; j

ha
ijH

a
ij þ

1

2

X
a;b

Nðhahb � hbhaÞ

þ
X

a; i; j;k;m

ha
ijh

a
kmRmijk þ

X
a; i; j;k;m

ha
ijh

a
miRmkjk:

As R is constant, by (2.10), we havesS ¼sðnHÞ2. From (2.37), we get also

kðnHÞ ¼ 1

2
sS � n2j‘Hj2 � n

X
i; j

hnþ1
ij Hij:ð3:21Þ
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Note that the normalized mean curvature vector h is parallel, from (2.26) we
have

P
a; i; j h

a
ijH

a
ij ¼

P
i; j h

nþ1
ij Hij , which together with (3.20) and (3.21) imply

kðnHÞ ¼
X
a; i; j;k

ðha
ijkÞ

2 � n2j‘Hj2 þ 1

2

X
a;b

Nðhahb � hbhaÞð3:22Þ

þ
X

a; i; j;k;m

ha
ijh

a
kmRmijk þ

X
a; i; j;k;m

ha
ijh

a
miRmkjk:

Next, we will obtain a pointwise estimate for the last two terms. For each
fixed a, let la

i be an eigenvalue of ha, i.e. ha
ij ¼ la

i dij , and denotes by inf K the

infimum of the sectional curvatures at a point p of Mn. Then

2
X

i; j;k;m

ha
ijh

a
kmRmijk þ

X
i; j;k;m

ha
ijh

a
miRmkjk

 !
ð3:23Þ

¼
X
i;k

ð�2la
i l

a
kÞRikik þ

X
i;k

ððla
i Þ

2 þ ðla
kÞ

2ÞRikik

¼
X
i;k

ðla
i � la

kÞ
2
Rikik b ðinf KÞ

X
i;k

ðla
i � la

kÞ
2

¼ ðinf KÞð2nNðhaÞ � 2n2ðH aÞ2Þ ¼ 2nðinf KÞNðFaÞ:

Therefore X
a; i; j;k;m

ha
ijh

a
kmRmijk þ

X
a; i; j;k;m

ha
ijh

a
miRmkjkð3:24Þ

b nðinf KÞ
X
a

NðFaÞ ¼ nðinf KÞjFj2:

In view of Rijij b 0, from (3.22), (3.23) and Lemma (2.2), we get

kðnHÞb
X
a; i; j;k

ðha
ijkÞ

2 � n2j‘Hj2 þ nðinf KÞjFj2ð3:25Þ

þ 1

2

X
a;b

Nðhahb � hbhaÞb 0:

As Mn is compact and k is self-adjoint, from (3.25), we deduce that

0b

ð
M

X
a; i; j;k

ðha
ijkÞ

2 � n2j‘Hj2 þ 1

2

X
a;b

Nðhahb � hbhaÞ
 !

dM:

It turns out that hahb ¼ hbha Ea; b and so the normal bundle of Mn is
flat. Furthermore, we have the equality

P
a; i; j;kðha

ijkÞ
2 ¼ n2j‘Hj2, hence, from

Lemma 2.2 we obtain that either H is constant or Mn lies in a totally geodesic
subspace Snþ1

1 ðcÞ of Snþp
p ðcÞ and, in this case, the matrix hnþ1 has rank 1.

If H is constant, then Mn has mean parallel vector and flat normal bundle
thus, according to Theorem 1 in [3], we conclude that Mn is totally umbilical.
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Otherwise, hnþ1 has rank 1 and, from (3.23), we may write

2
X

i; j;k;m

hnþ1
ij hnþ1

km Rmijk þ
X

i; j;k;m

hnþ1
ij hnþ1

mi Rmkjk

 !
ð3:26Þ

¼
X
i;k

ðlnþ1
i � lnþ1

k Þ2Rikik ¼ 2n2ðn� 1ÞH 2:

Inserting (3.26) into (3.22) and taking into account that
P

a; i; j;kðha
ijkÞ

2 ¼
n2j‘Hj2, Nðhahb � hbhaÞ ¼ 0 and the self-adjointness of k, we obtain

0 ¼
ð
M

kðnHÞ dM ¼ n2ðn� 1Þ
ð
M

H 2 dM:ð3:27Þ

It shows that H1 0, which leads to a contradiction. Consequently, Mn is
totally umbilical. Since the sphere Snðc1Þ is the only compact totally umbilical
spacelike submanifold of Snþp

p ðcÞ, our proof is finished. r

Proof of Corollary 1.3. Corollary 1.3 follows immediately from Myers’
Theorem and Theorem (1.2).
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