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ON THE THEORY OF SURFACES IN THE FOUR-DIMENSIONAL

EUCLIDEAN SPACE

Georgi Ganchev and Velichka Milousheva

Abstract

For a two-dimensional surface M 2 in the four-dimensional Euclidean space E4 we

introduce an invariant linear map of Weingarten type in the tangent space of the surface,

which generates two invariants k and 0.

The condition k ¼ 0 ¼ 0 characterizes the surfaces consisting of flat points. The

minimal surfaces are characterized by the equality 02 � k ¼ 0. The class of the surfaces

with flat normal connection is characterized by the condition 0 ¼ 0. For the surfaces of

general type we obtain a geometrically determined orthonormal frame field at each point

and derive Frenet-type derivative formulas.

We apply our theory to the class of the rotational surfaces in E4, which prove to be

surfaces with flat normal connection, and describe the rotational surfaces with constant

invariants.

1. Introduction

In [4] T. Ōtsuki introduced curvatures l1; l2; . . . ; ln ðl1 b l2 b � � �b lnÞ for
a surface M 2 in a ð2þ nÞ-dimensional Euclidean space E2þn, defining a quadratic
form in the normal space of the surface. In a suitable local frame of the normal
space this quadratic form can be written in a diagonal form and the functions la,
a ¼ 1; . . . ; n are the coe‰cients in the diagonalized form (la is called the a-th
curvature of M 2). These curvatures are closely related to the Gauss curvature K
of M 2:

K ¼ l1 þ l2 þ � � � þ ln:

The local cross-section, which diagonalizes the quadratic form is called a Frenet
cross-section (Frenet-frame) of the surface.

For a surface M 2 in the four-dimensional Euclidean space E4 the curvatures
l1 and l2 are the maximum and minimum, respectively of the Lipschitz-Killing
curvature of the surface [5]. The function l1 is called the principal curvature and
the function l2—the secondary curvature of M 2 in E4.
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Using the idea of the Frenet-frames, Shiohama [6] proved that a complete
connected orientable surface M 2 in E4 with curvatures l1 ¼ l2 ¼ 0 is a cylinder.
The same result is proved in [7] for a surface in a higher dimensional space E2þn.

Our aim is to find invariants of a surface M 2 in E4, considering a
geometrically determined linear map (of Weingarten type) in the tangent space
of the surface, as well as to obtain a geometric Frenet-type frame field of M 2.

In Section 2 we define a geometrical linear map in the tangent space of a
surface M 2 in E4 and determine a second fundamental form II of the surface.
We find invariants k and 0 of M 2 (which are analogous to the Gauss curvature
and the mean curvature of a surface in E3). These invariants divide the points
of M 2 into four types: flat, elliptic, parabolic and hyperbolic.

In Section 3 we give a local geometric description of the surfaces consisting
of flat points, proving that they are either planar surfaces (Proposition 3.1) or
developable ruled surfaces (Proposition 3.2).

In Section 4 we characterize the minimal surfaces in E4 in terms of the
invariants k and 0 (Proposition 4.1).

For the surfaces of general type (which are not minimal and which have no
flat points) in Section 5 we obtain a geometrically determined orthonormal frame
field fx; y; b; lg at each point of the surface and derive Frenet-type derivative
formulas. The tangent frame field fx; yg is determined by the defined second
fundamental form II , while the normal frame field fb; lg is determined by the
mean curvature vector field of the surface.

We also characterize the surfaces with flat normal connection in terms of the
invariant 0 (Theorem 5.1).

In the last section we apply our theory to the class of the rotational surfaces
in E4, which prove to be surfaces with flat normal connection, and describe the
rotational surfaces with k ¼ const.

2. The Weingarten map

We denote by g the standard metric in the four-dimensional Euclidean space
E4 and by ‘ 0 its flat Levi-Civita connection. All considerations in the present
paper are local and all functions, curves, surfaces, tensor fields etc. are assumed
to be of the class Cy.

Let M 2 : z ¼ zðu; vÞ, ðu; vÞ A D ðDHR2Þ be a 2-dimensional surface in E4.
The tangent space to M 2 at an arbitrary point p ¼ zðu; vÞ of M 2 is spanfzu; zvg.

For an arbitrary orthonormal normal frame field fe1; e2g of M 2 we have the
standard derivative formulas:

‘ 0
zu
zu ¼ zuu ¼ G1

11zu þ G2
11zv þ c111e1 þ c211e2;

‘ 0
zu
zv ¼ zuv ¼ G1

12zu þ G2
12zv þ c112e1 þ c212e2;ð2:1Þ

‘ 0
zv
zv ¼ zvv ¼ G1

22zu þ G2
22zv þ c122e1 þ c222e2;

where Gk
ij are the Christo¤el’s symbols and ckij , i; j; k ¼ 1; 2 are functions on M 2.
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We use the standard denotations Eðu; vÞ ¼ gðzu; zuÞ, F ðu; vÞ ¼ gðzu; zvÞ,
Gðu; vÞ ¼ gðzv; zvÞ for the coe‰cients of the first fundamental form and set

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EG � F 2

p
. If s denotes the second fundamental tensor of M 2, then we

have

sðzu; zuÞ ¼ c111e1 þ c211e2;

sðzu; zvÞ ¼ c112e1 þ c212e2;

sðzv; zvÞ ¼ c122e1 þ c222e2:

We introduce the following functions:

D1 ¼
c111 c112
c211 c212

����
����; D2 ¼

c111 c122
c211 c222

����
����; D3 ¼

c112 c122
c212 c222

����
����;

Lðu; vÞ ¼ 2D1

W
; Mðu; vÞ ¼ D2

W
; Nðu; vÞ ¼ 2D3

W
:

If

u ¼ uðu; vÞ;
v ¼ vðu; vÞ;

ðu; vÞ A D; DHR2ð2:2Þ

is a smooth change of the parameters fu; vg on M 2 with J ¼ uuvv � uvvu 0 0, then

zu ¼ zuuu þ zvvu;

zv ¼ zuuv þ zvvv:

Let

sðzu; zuÞ ¼ c111e1 þ c211e2;

sðzu; zvÞ ¼ c112e1 þ c212e2;

sðzv; zvÞ ¼ c122e1 þ c222e2:

Di¤erentiating (2.2) and taking into account (2.1) we find

ck11 ¼ u2uc
k
11 þ 2uuvuc

k
12 þ v2uc

k
22;

ck12 ¼ uuuvc
k
11 þ ðuuvv þ uvvuÞck12 þ vuvvc

k
22; ðk ¼ 1; 2Þð2:3Þ

ck22 ¼ u2v c
k
11 þ 2uvvvc

k
12 þ v2v c

k
22:

Using (2.3), we obtain

D1 ¼ Jðu2uD1 þ uuvuD2 þ v2uD3Þ;

D2 ¼ Jð2uuuvD1 þ ðuuvv þ uvvuÞD2 þ 2vuvvD3Þ;ð2:4Þ

D3 ¼ Jðu2vD1 þ uvvvD2 þ v2vD3Þ:
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If E ¼ gðzu; zuÞ, F ¼ gðzu; zvÞ and G ¼ gðzv; zvÞ, then we have

E ¼ u2uE þ 2uuvuF þ v2uG;

F ¼ uuuvE þ ðuuvv þ vuuvÞF þ vuvvG;ð2:5Þ

G ¼ u2vE þ 2uvvvF þ v2vG

and

EG � F 2 ¼ J 2ðEG � F 2Þ
or

W ¼ eJW ; e ¼ sign J:ð2:6Þ
Taking into account (2.4) and (2.6), we find

L ¼ eðu2uLþ 2uuvuM þ v2uNÞ;

M ¼ eðuuuvLþ ðuuvv þ vuuvÞM þ vuvvNÞ;ð2:7Þ

N ¼ eðu2vLþ 2uvvvM þ v2vNÞ:

Further we denote

g11 ¼ FM � GL

EG � F 2
; g21 ¼ FL� EM

EG � F 2
;

g12 ¼ FN � GM

EG � F 2
; g22 ¼ FM � EN

EG � F 2

ð2:8Þ

and consider the linear map

g : TpM
2 ! TpM

2

determined by the conditions

gðzuÞ ¼ g11zu þ g21zv;

gðzvÞ ¼ g12zu þ g22zv;
g ¼ g11 g21

g12 g22

� �
:ð2:9Þ

Then a tangent vector X ¼ lzu þ mzv is transformed into the vector X 0 ¼ gðXÞ ¼
l 0zu þ m 0zv so that

l 0

m 0

� �
¼ g t

l

m

� �
:

We have

Lemma 2.1. The linear map g given by (2.9) is geometrically determined.

Proof. Let the change of the parameters be given by (2.2). Then we have

zu

zv

� �
¼ T

zu

zv

� �
; T ¼ uu vu

uv vv

� �
:

186 georgi ganchev and velichka milousheva



If we denote

g ¼ E F

F G

� �
; h ¼ L M

M N

� �
;

then the defining conditions (2.8) imply g ¼ �hg�1.
With respect to the new coordinates ðu; vÞ the linear map g is determined by

the equality g ¼ �hg�1.
On the other hand, the equalities (2.5) and (2.7) express that

g ¼ TgT t; h ¼ eThT t:

Thus we obtain g ¼ �hg�1 ¼ eTgT�1, which implies that g ¼ eg.
Further, let f~ee1; ~ee2g be another orthonormal normal frame field of M 2.

Then

e1 ¼ cos y~ee1 þ e 0 sin y~ee2;

e2 ¼ �sin y~ee1 þ e 0 cos y~ee2;
y ¼Jð~ee1; e1Þ;

and e 0 ¼ 1 ðe 0 ¼ �1Þ if the normal frame fields fe1; e2g and f~ee1; ~ee2g have the
same (opposite) orientation. The relation between the corresponding functions

ckij and ~cckij , i; j; k ¼ 1; 2 is given by the equalities

~cc1ij ¼ cos yc1ij � sin yc2ij ;

~cc2ij ¼ e 0ðsin yc1ij þ cos yc2ijÞ;
i; j ¼ 1; 2:

Thus, ~DDi ¼ e 0Di, i ¼ 1; 2; 3, and ~LL ¼ e 0L, ~MM ¼ e 0M, ~NN ¼ e 0N, which imply
that ~gg ¼ e 0g. r

The linear map g : TpM
2 ! TpM

2 is said to be the Weingarten map at the
point p A M 2. The following statement follows immediately from Lemma 2.1.

Lemma 2.2. The functions

k :¼ det g ¼ LN �M 2

EG � F 2
; 0 :¼ � 1

2
tr g ¼ EN þ GL� 2FM

2ðEG � F 2Þð2:10Þ

are invariants of the surface M 2.

It is clear that the sign of 0 depends on the orientations of the tangent plane
and the normal space of M 2, while k is an absolute invariant.

The characteristic equation of the Weingarten map g in view of Lemma 2.2 is

n2 þ 20nþ k ¼ 0:ð2:11Þ
If X1 and X2 are two tangent vectors at a point p A M 2, then gðgðX1Þ;X2Þ ¼

gðgðX2Þ;X1Þ, i.e. g is a symmetric linear operator and hence

02 � kb 0:ð2:12Þ
Using the defining equalities (2.10), it follows that
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4ð02 � kÞ ¼ g11 � g22 þ 2
F

E
g21

� �2

þ 4
EG � F 2

E2
ðg21Þ

2:

This equality implies that the condition 02 � k ¼ 0 is equivalent to the equalities
g11 ¼ g22 , g21 ¼ 0, i.e. to the conditions

L ¼ rE; M ¼ rF ; N ¼ rG; r A R:ð2:13Þ
Thus we get the following equivalence at a point p A M 2:

L ¼ M ¼ N ¼ 0 , k ¼ 0 ¼ 0:ð2:14Þ

As in the classical case (for a surface M 2 in E3), the invariants k and 0
divide the points of M 2 into four types. A point p A M 2 is said to be:

flat, if k ¼ 0 ¼ 0;
elliptic, if k > 0;
parabolic, if k ¼ 0, 00 0;
hyperbolic, if k < 0.
Let X ¼ lzu þ mzv, ðl; mÞ0 ð0; 0Þ be a tangent vector at a point p A M 2.

The Weingarten map g determines a second fundamental form of the surface M 2

at p A M 2 as follows:

IIðl; mÞ ¼ �gðgðXÞ;XÞ ¼ Ll2 þ 2MlmþNm2; l; m A R:

First we study the class of surfaces whose points are flat.

3. Surfaces consisting of flat points

In this section we consider surfaces M 2 : z ¼ zðu; vÞ, ðu; vÞ A D consisting of
flat points, i.e. surfaces satisfying the conditions

kðu; vÞ ¼ 0; 0ðu; vÞ ¼ 0; ðu; vÞ A D:ð3:1Þ
We give a local geometric description of these surfaces.
For the sake of simplicity, we shall assume that the parametrization of M 2 is

orthogonal, i.e. F ¼ 0. Denote the unit vector fields x ¼ zuffiffiffiffi
E

p , y ¼ zvffiffiffiffi
G

p . Then
we write (2.1) in the form

‘ 0
xx ¼ g1yþ

c111
E

e1 þ c211
E

e2;

‘ 0
xy ¼ �g1x þ c112ffiffiffiffiffiffiffi

EG
p e1 þ

c212ffiffiffiffiffiffiffi
EG

p e2;

‘ 0
yx ¼ �g2yþ

c112ffiffiffiffiffiffiffi
EG

p e1 þ
c212ffiffiffiffiffiffiffi
EG

p e2;

‘ 0
yy ¼ g2x þ c122

G
e1 þ c222

G
e2

:ð3:2Þ
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Obviously, the surface M 2 lies in a 2-plane if and only if M 2 is totally
geodesic, i.e. ckij ¼ 0, i; j; k ¼ 1; 2.

Now, let at least one of the coe‰cients ckij not be zero. Then

rank
c111 c112 c122
c211 c212 c222

 !
¼ 1

and the vectors sðx; xÞ, sðx; yÞ, sðy; yÞ are collinear. Let fb; lg be a normal
frame field of M 2, consisting of orthonormal vector fields, such that b is collinear
with sðx; xÞ, sðx; yÞ, and sðy; yÞ. It is clear that the normal frame field fb; lg is
invariant. Then the derivative formulas of M 2 can be written as follows:

‘ 0
xx ¼ g1yþ n1b; ‘ 0

xb ¼ �n1x� ly þ b1l;

‘ 0
xy ¼ �g1x þ lb; ‘ 0

yb ¼ �lx� n2y þ b2l;

‘ 0
yx ¼ �g2yþ lb; ‘ 0

xl ¼ �b1b;

‘ 0
yy ¼ g2x þ n2b; ‘ 0

yl ¼ �b2b;

ð3:3Þ

for some functions n1, n2, l, b1, b2, g1, g2 on M 2.

The Gauss curvature K of M 2 is expressed by

K ¼ n1n2 � l2:ð3:4Þ
Further we denote b ¼ b2

1 þ b2
2 . It follows immediately that b does not

depend on the change (2.2) of the parameters.
Since the curvature tensor R 0 of the connection ‘ 0 is zero, then the equalities

R 0ðx; y; bÞ ¼ 0 and R 0ðx; y; lÞ ¼ 0 together with (3.3) imply that either K ¼ 0 or
b ¼ 0.

A surface M 2 is said to be planar if there exists a hyperplane E3 HE4

containing M 2. First we shall characterize the planar surfaces.

Proposition 3.1. A surface M 2 is planar if and only if

k ¼ 0; 0 ¼ 0; b ¼ 0:

Proof. I. Let M 2 HE3 and b be the usual normal to M 2 in E3.
Choosing l to be the normal to the hyperplane E3, from (3.3) we get
L ¼ M ¼ N ¼ 0 and b ¼ 0.

II. Under the conditions k ¼ 0 ¼ b ¼ 0, from (3.3) it follows that l ¼ const
and M 2 lies in a hyperplane E3 orthogonal to l. r

A ruled surface M 2 is a one-parameter system fgðvÞg, v A J of straight lines
gðvÞ, defined in an interval JHR. The straight lines gðvÞ are called generators
of M 2. A ruled surface M 2 ¼ fgðvÞg, v A J is said to be developable, if the
tangent space TpM

2 at all regular points p of an arbitrary fixed generator gðvÞ is
one and the same.

Each ruled surface M 2 can be parameterized as follows:
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zðu; vÞ ¼ xðvÞ þ ueðvÞ; u A R; v A J;ð3:5Þ

where xðvÞ and eðvÞ are vector-valued functions, defined in J, such that the
vectors eðvÞ and x 0ðvÞ þ ue 0ðvÞ are linearly independent for all v A J. The tangent
space of M 2 is spanned by the vectors

zu ¼ eðvÞ;
zv ¼ x 0ðvÞ þ ue 0ðvÞ:

The ruled surface M 2 determined by (3.5) is developable if and only if the
vectors eðvÞ, e 0ðvÞ and x 0ðvÞ are linearly dependent.

We shall characterize the developable ruled surfaces in terms of the
invariants k, 0 and the Gauss curvature K .

Proposition 3.2. A surface M 2 is locally a developable ruled surface if and
only if

k ¼ 0; 0 ¼ 0; K ¼ 0:

Proof. I. Let M 2 be a developable ruled surface, defined by the equality
(3.5), where eðvÞ, e 0ðvÞ and x 0ðvÞ are linearly dependent. Without loss of generality
we assume that keðvÞk ¼ 1. Then, the vector fields eðvÞ and e 0ðvÞ are orthogonal
and the tangent space of M 2 is spanfeðvÞ; e 0ðvÞg. Since x 0ðvÞ A spanfeðvÞ; e 0ðvÞg,
then x 0ðvÞ is decomposed in the form x 0ðvÞ ¼ pðvÞeðvÞ þ qðvÞe 0ðvÞ for some
functions pðvÞ and qðvÞ. Hence, the tangent space of M 2 is spanned by

zu ¼ e;

zv ¼ peþ ðuþ qÞe 0:

Considering only the regular points of M 2 (where u0�q), we choose an
orthonormal tangent frame field fx; yg of M 2 in the following way:

x ¼ e ¼ zu;

y ¼ e 0

ke 0k ¼ � p

ðuþ qÞke 0k zu þ
1

ðuþ qÞke 0k zv:
ð3:6Þ

Since the tangent space of M 2 does not depend on the parameter u, then the
normal space of M 2 is spanned by vector fields b1ðvÞ, b2ðvÞ. With respect to the
basis feðvÞ; e 0ðvÞ; b1ðvÞ; b2ðvÞg the derivatives of b1ðvÞ and b2ðvÞ are decomposed in
the form

b 0
1 ¼ �c1e

0 þ c0b2;

b 0
2 ¼ �c2e

0 � c0b1;
ð3:7Þ

where c0, c1, c2 are functions of v.
Then the equalities (3.6) and (3.7) imply
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‘ 0
xb1 ¼ 0;

‘ 0
yb1 ¼ � c1

uþ q
yþ c0

ðuþ qÞke 0k b2;

‘ 0
xb2 ¼ 0;

‘ 0
yb2 ¼ � c2

uþ q
y� c0

ðuþ qÞke 0k b1:

Consequently, L ¼ M ¼ N ¼ 0 and K ¼ 0.
II. Let M 2 be a surface for which L ¼ M ¼ N ¼ 0 and K ¼ 0. We

consider an orthonormal frame field fx; y; b; lg of M 2, satisfying the equalities
(3.3). Since K ¼ 0, then n1n2 � l2 ¼ 0. If n1 ¼ n2 ¼ 0, then M 2 lies in a plane
E2. So we assume that there exists a neighborhood ~DDHD such that n2j ~DD 0 0 (or
n1j ~DD 0 0) and we consider the surface ~MM 2 ¼ M 2

j ~DD.
Let fx; yg be the orthonormal tangent frame field of ~MM 2, defined by

x ¼ cos jxþ sin jy;

y ¼ �sin jxþ cos jy;

where tan j ¼ � l

n2
. Then sðx; xÞ ¼ 0, sðx; yÞ ¼ 0. So the formulas (3.3) take

the form

‘ 0
xx ¼ g1y; ‘ 0

xb ¼ b1l;

‘ 0
xy ¼ �g1x; ‘ 0

yb ¼ �n2y þ b2l;

‘ 0
yx ¼ �g2y; ‘ 0

xl ¼ �b1b;

‘ 0
yy ¼ g2x þn2b; ‘ 0

yl ¼ �b2b;

where n2 0 0.
Since the curvature tensor R 0 is zero, then the equalities R 0ðx; y; bÞ ¼ 0 and

R 0ðx; y; lÞ ¼ 0 imply that

g1 ¼ 0; b1 ¼ 0:

Hence,

‘ 0
xx ¼ 0; ‘ 0

xb ¼ 0;

‘ 0
xy ¼ 0; ‘ 0

xl ¼ 0:

Let p ¼ zðu0; v0Þ, ðu0; v0Þ A ~DD be an arbitrary point of ~MM 2 and c1 : zðuÞ ¼
zðu; v0Þ be the integral curve of the vector field x, passing through p. It follows
from ‘ 0

xx ¼ 0 that c1 is contained in a straight line. Hence, ~MM 2 lies on a ruled
surface. Moreover, since ‘ 0

xb ¼ 0 and ‘ 0
xl ¼ 0 then the normal space spanfb; lg

of ~MM 2 is constant at the points of c1 and hence, the tangent space spanfx; yg of
~MM 2 at the points of c1 is one and the same. Consequently, ~MM 2 is part of a
developable surface. r

From now on we exclude the flat points from our considerations.
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4. Minimal surfaces

We recall that a surface M 2 is said to be minimal if the mean curvature
vector H ¼ 0. In this section we characterize the minimal surfaces in terms of
the invariants k and 0.

Proposition 4.1. Let M 2 be a surface in E4 without flat points. Then M 2

is minimal if and only if

02 � k ¼ 0:

Proof. Without loss of generality we assume that F ¼ 0 and denote the unit

vector fields x ¼ zuffiffiffiffi
E

p , y ¼ zvffiffiffiffi
G

p . Then we have

‘ 0
xx ¼ g1yþ

c111
E

e1 þ c211
E

e2;

‘ 0
xy ¼ �g1x þ c112ffiffiffiffiffiffiffi

EG
p e1 þ

c212ffiffiffiffiffiffiffi
EG

p e2;

‘ 0
yx ¼ �g2yþ

c112ffiffiffiffiffiffiffi
EG

p e1 þ
c212ffiffiffiffiffiffiffi
EG

p e2;

‘ 0
yy ¼ g2x þ c122

G
e1 þ c222

G
e2:

I. Let H ¼ 1
2 ðsðx; xÞ þ sðy; yÞÞ ¼ 0. Then

D2 ¼
c111 c122
c211 c222

����
����¼ 0;

D3

G
¼ D1

E
:

Therefore

L ¼ rE; M ¼ rF ; N ¼ rG;

where r is a function on M 2. Hence 02 � k ¼ 0.
II. Let 02 � k ¼ 0. Then

L ¼ rE; M ¼ rF ; N ¼ rG; r0 0:

The condition F ¼ 0 implies that M ¼ 0. Then
c111 c122
c211 c222

����
���� ¼ 0 and c122 ¼ ~rrc111,

c222 ¼ ~rrc211. Further, the equality
L

E
¼ N

G
implies that ~rr ¼ �G

E
. Hence tr s ¼ 0,

i.e. H ¼ 0. r

5. Surfaces of general type

From now on we consider surfaces, satisfying the condition
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02 � k0 0

and call them surfaces of general type.
As in the classical di¤erential geometry of surfaces in E3 the second

fundamental form determines conjugate tangents at a point p of M 2. A tangent
g : X ¼ lzu þ mzv is said to be principal if it is perpendicular to its conju-
gate. The equation for the principal tangents at a point p A M 2 is

E F

L M

����
����l2 þ E G

L N

����
����lmþ F G

M N

����
����m2 ¼ 0:

A line c : u ¼ uðqÞ, v ¼ vðqÞ; q A J on M 2 is said to be a principal curve if its
tangent at any point is principal.

The surface M 2 is parameterized with respect to the principal lines if and
only if

F ¼ 0; M ¼ 0:

Let M 2 be parameterized with respect to the principal lines and denote the

unit vector fields x ¼ zuffiffiffiffi
E

p , y ¼ zvffiffiffiffi
G

p .

Since the mean curvature vector field H0 0, we determine the unit normal

vector field b by the equality b ¼ H

kHk . Further we denote by l the unit normal

vector field such that fx; y; b; lg is a positive oriented orthonormal frame field
of M 2. Thus we obtain a geometrically determined orthonormal frame field
fx; y; b; lg at each point p A M 2. With respect to the frame field fx; y; b; lg we
have the following Frenet-type derivative formulas:

‘ 0
xx ¼ g1yþ n1b; ‘ 0

xb ¼ �n1x� ly þ b1l;

‘ 0
xy ¼ �g1x þ lbþ ml; ‘ 0

yb ¼ �lx� n2y þ b2l;

‘ 0
yx ¼ �g2yþ lbþ ml; ‘ 0

xl ¼ �my� b1b;

‘ 0
yy ¼ g2x þ n2b; ‘ 0

yl ¼ �mx � b2b;

ð5:1Þ

where g1 ¼ �yðln
ffiffiffiffi
E

p
Þ, g2 ¼ �xðln

ffiffiffiffi
G

p
Þ and m0 0.

Hence we have

k ¼ �4n1n2m
2; 0 ¼ ðn1 � n2Þm; K ¼ n1n2 � ðl2 þ m2Þ:ð5:2Þ

Remark 1. We note that we determine the tangent frame field fx; yg by the
Weingarten map (the second fundamental form II ) and the normal frame field
fb; lg—by the mean curvature vector field, while the Frenet-cross section in the
sense of Ōtsuki diagonalizes a quadratic form in the normal space. In general
the geometric frame field fb; lg is not a Frenet-cross section. Finding the
relation between fb; lg and the Frenet-cross section of Ōtsuki we derive the
following relation between the invariant k and the curvatures l1 and l2 of Ōtsuki:
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k ¼ 4l1l2:

The same formula is valid in the cases of minimal surfaces and surfaces consisting
of flat points.

Using (5.1) we find the length kHk of the mean curvature vector field and
taking into account (5.2) we obtain the formula

kHk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
02 � k

p

2jmj ;

which shows that jmj is expressed by the invariants k, 0 and the mean curvature
function.

Let z ¼ gðz; xÞxþ gðz; yÞy be an arbitrary tangent vector field of M 2. We
define the one-form y by the equality

yðzÞ ¼ gð‘ 0
zb; lÞ:

Then the formulas (5.1) imply that

yðzÞ ¼ gðb1xþ b2y; zÞ;
which shows that the one-form y corresponds to the tangent vector field b1xþ b2y
and

kyk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
1 þ b2

2

q
:

Using that R 0ðx; y; xÞ ¼ 0, R 0ðx; y; yÞ ¼ 0, R 0ðx; y; bÞ ¼ 0 and R 0ðx; y; lÞ ¼ 0,
we get the following integrability conditions:

n1n2 � ðl2 þ m2Þ ¼ xðg2Þ þ yðg1Þ � ððg1Þ
2 þ ðg2Þ

2Þ;
2mg2 þ n1b2 � lb1 ¼ xðmÞ;
2mg1 � lb2 þ n2b1 ¼ yðmÞ;
2lg2 þ mb1 � ðn1 � n2Þg1 ¼ xðlÞ � yðn1Þ;
2lg1 þ mb2 þ ðn1 � n2Þg2 ¼ �xðn2Þ þ yðlÞ;
g1b1 � g2b2 þ ðn1 � n2Þm ¼ �xðb2Þ þ yðb1Þ:

ð5:3Þ

At the end of this section we shall characterize the surfaces with flat normal
connection in terms of the invariant 0.

A surface M 2 is said to be of flat normal connection [3] if the normal
curvature R? of M 2 is zero. The equalities (5.1) imply that the normal
curvature R? of M 2 is expressed as follows:

R?
b ðx; yÞ ¼ DxDyb�DyDxb�D½x;y�b ¼ ðxðb2Þ � yðb1Þ þ g1b1 � g2b2Þl;

R?
l ðx; yÞ ¼ DxDyl �DyDxl �D½x;y�l ¼ �ðxðb2Þ � yðb1Þ þ g1b1 � g2b2Þb:

ð5:4Þ

Taking in mind (5.4) and the last equality of (5.3) we get:
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R?
b ðx; yÞ ¼ �0l;

R?
l ðx; yÞ ¼ 0b;

i.e.

0 ¼ gðR?
l ðx; yÞ; bÞ ¼ gðR?ðx; yÞl; bÞ:

The function gðR?ðx; yÞl; bÞ is the curvature of the normal connection D of
M 2. Hence, the invariant 0 is the curvature of the normal connection.

Thus the surfaces with flat normal connection are characterized by the
following

Proposition 5.1. A surface M 2 in E4 is of flat normal connection if and only
if

0 ¼ 0:

Obviously, M 2 is a surface with flat normal connection if and only if
n1 ¼ n2 ¼: n. So, the Frenet-type formulas (5.1) of a surface M 2 with flat normal
connection take the form:

‘ 0
xx ¼ g1yþ nb; ‘ 0

xb ¼ �nx� ly þ b1l;

‘ 0
xy ¼ �g1x þ lbþ ml; ‘ 0

yb ¼ �lx� ny þ b2l;

‘ 0
yx ¼ �g2yþ lbþ ml; ‘ 0

xl ¼ �my� b1b;

‘ 0
yy ¼ g2x þ nb; ‘ 0

yl ¼ �mx � b2b:

ð5:5Þ

Hence the invariants k and K are expressed by

k ¼ �4n2m2; K ¼ n2 � ðl2 þ m2Þ:

Remark 2. The curvature of the normal connection of a surface M 2 in E4 is
the Gauss torsion 0G of M 2 [1]. The notion of the Gauss torsion is introduced
by É. Cartan [2] for a p-dimensional submanifold of an n-dimensional Rieman-
nian manifold and is given by the Euler curvatures. In case of a 2-dimensional
surface M 2 in E4 the Gauss torsion can be expressed in terms of the ellipse of
normal curvature at a point p A M 2.

According to the theorem of Rodrigues, a curve c on a surface M 2 in E3 is a
line of curvature if and only if the tangential component of the derivative of the
normal vector field to M 2 along c is collinear with the tangent of c. Using this
geometric characterization of the lines of curvature for surfaces in E3, É. Cartan
generalized in [2] the notion of lines of curvature for a surface M 2 in E4.
However, the lines of curvature in the sense of Cartan exist only in the class of
the surfaces with zero Gauss torsion ð0G ¼ 0Þ, i.e. in the class of the surfaces with
flat normal connection.
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6. Rotational surfaces

Now we shall apply our theory to the class of the rotational surfaces in E4.
We denote by Oe1e2e3 a fixed orthonormal base of E3. Let c : ~zz ¼ ~zzðuÞ,

u A J be a smooth curve in E3, parameterized by

~zzðuÞ ¼ ðx1ðuÞ; x2ðuÞ; rðuÞÞ; u A J:

We denote by c1 the projection of c on the 2-dimensional plane Oe1e2.
Without loss of generality we can assume that c is parameterized with respect

to the arc-length, i.e. ðx 0
1Þ

2 þ ðx 0
2Þ

2 þ ðr 0Þ2 ¼ 1. We assume also that rðuÞ > 0,
u A J. Let us consider the rotational surface M 2 in E4 given by

zðu; vÞ ¼ ðx1ðuÞ; x2ðuÞ; rðuÞ cos v; rðuÞ sin vÞ; u A J; v A ½0; 2pÞ:ð6:1Þ
The tangent space of M 2 is spanned by the vector fields

zu ¼ ðx 0
1; x

0
2; r

0 cos v; r 0 sin vÞ;
zv ¼ ð0; 0;�r sin v; r cos vÞ:

Hence,
E ¼ 1; F ¼ 0; G ¼ r2ðuÞ; W ¼ rðuÞ:

We consider the following orthonormal tangent vector fields

x ¼ ðx 0
1; x

0
2; r

0 cos v; r 0 sin vÞ;
y ¼ ð0; 0;�sin v; cos vÞ;

i.e. zu ¼ x; zv ¼ ry. The second partial derivatives of zðu; vÞ are expressed as
follows

zuu ¼ ðx 00
1 ; x

00
2 ; r

00 cos v; r 00 sin vÞ;
zuv ¼ ð0; 0;�r 0 sin v; r 0 cos vÞ;
zvv ¼ ð0; 0;�r cos v;�r sin vÞ:

Let k and t be the curvature and the torsion of the curve c (considered as a
curve in E3). We consider the normal vector fields e1 and e2, defined by

e1 ¼
1

k
ðx 00

1 ; x
00
2 ; r

00 cos v; r 00 sin vÞ;

e2 ¼
1

k
ðx 0

2r
00 � x 00

2 r
0; x 00

1 r
0 � x 0

1r
00; ðx 0

1x
00
2 � x 00

1x
0
2Þ cos v; ðx 0

1x
00
2 � x 00

1x
0
2Þ sin vÞ:

Now it is easy to calculate that

L ¼ 0; M ¼ �ðx 0
1x

00
2 � x 00

1x
0
2Þ; N ¼ 0:

Hence,

k ¼ �ðx 0
1x

00
2 � x 00

1x
0
2Þ

2

r2
; 0 ¼ 0:

Applying Proposition 5.1 we get
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Corollary 6.1. Any rotational surface M 2 in E4, defined by (6.1), is a
surface with flat normal connection.

Let us denote the curvature of the plane curve c1 by k1 ¼ x 0
1x

00
2 � x 00

1x
0
2.

Then with respect to the frame field fx; y; e1; e2g the derivative formulas of M 2

look like:

‘ 0
xx ¼ ke1; ‘ 0

xe1 ¼ �kx þ te2;

‘ 0
xy ¼ 0; ‘ 0

ye1 ¼
r 00

kr
y;

‘ 0
yx ¼ r 0

r
y; ‘ 0

xe2 ¼ �te1;

‘ 0
yy ¼ � r 0

r
x � r 00

kr
e1 �

k1

kr
e2; ‘ 0

ye2 ¼
k1

kr
y:

So, the Gauss curvature of M 2 is:

K ¼ � r 00

r
:

Obviously M 2 is not parameterized with respect to the principal lines. The
principal tangents of M 2 are:

x ¼
ffiffiffi
2

p

2
xþ

ffiffiffi
2

p

2
y;

y ¼
ffiffiffi
2

p

2
x�

ffiffiffi
2

p

2
y

:

With respect to the geometric frame field fx; y; b; lg the Frenet-type formulas
(5.5) hold good, where

g1 ¼ g2 ¼ �
ffiffiffi
2

p

2

r 0

r
; n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2r� r 00Þ2 þ ðk1Þ2

q
2kr

;

l ¼ k4r2 � ðr 00Þ2 � ðk1Þ2

2kr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2r� r 00Þ2 þ ðk1Þ2

q
; m ¼ kk1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk2r� r 00Þ2 þ ðk1Þ2
q :

Consequently, the invariants k, 0 and K of the rotational surface M 2 are:

k ¼ �ð01Þ2

r2
; 0 ¼ 0; K ¼ � r 00

r
:

At the end of the section we shall describe all rotational surfaces, for which
the invariant k is constant.

1. The invariant k ¼ 0 if and only if k1 ¼ 0, which means that the projection
of the curve c on the plane Oe1e2 lies on a straight line. There are two subcases:
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1.1. If K ¼ 0, i.e. r 00 ¼ 0, then M 2 is a developable ruled surface.
1.2. If K0 0, i.e. r 00 0 0, then M 2 is a planar surface.
2. The invariant k ¼ const ðk0 0Þ if and only if rðuÞ ¼ aðx 0

1x
00
2 � x 00

1x
0
2Þ,

a ¼ const. Moreover, if rðuÞ satisfies r 00ðuÞ ¼ crðuÞ, then the Gauss curvature K
is also a constant.
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[ 5 ] T. Ōtsuki, Surfaces in the 4-dimensional Euclidean space isometric to a sphere, Kodai Math.

Sem. Rep. 18 (1966), 101–115.

[ 6 ] K. Shiohama, Surfaces of curvatures l ¼ m ¼ 0 in E 4, Kodai Math. Sem. Rep. 19 (1967), 75–

79.

[ 7 ] K. Shiohama, Cylinders in Euclidean space E 2þN , Kodai Math. Sem. Rep. 19 (1967), 225–

228.

Georgi Ganchev

Bulgarian Academy of Sciences

Institute of Mathematics and Informatics

Acad. G. Bonchev Str. bl. 8

1113 Sofia

Bulgaria

E-mail: ganchev@math.bas.bg

Velichka Milousheva

Bulgarian Academy of Sciences

Institute of Mathematics and Informatics

Acad. G. Bonchev Str. bl. 8

1113, Sofia

Bulgaria

E-mail: vmil@math.bas.bg

198 georgi ganchev and velichka milousheva


