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ON THE THEORY OF SURFACES IN THE FOUR-DIMENSIONAL
EUCLIDEAN SPACE

GEORGI GANCHEV AND VELICHKA MILOUSHEVA

Abstract

For a two-dimensional surface M? in the four-dimensional Euclidean space E* we
introduce an invariant linear map of Weingarten type in the tangent space of the surface,
which generates two invariants & and x.

The condition k = » = 0 characterizes the surfaces consisting of flat points. The
minimal surfaces are characterized by the equality %> — k = 0. The class of the surfaces
with flat normal connection is characterized by the condition x = 0. For the surfaces of
general type we obtain a geometrically determined orthonormal frame field at each point
and derive Frenet-type derivative formulas.

We apply our theory to the class of the rotational surfaces in E*, which prove to be
surfaces with flat normal connection, and describe the rotational surfaces with constant
invariants.

1. Introduction

In [4] T. Otsuki introduced curvatures Ay, Zo,..., 4, (A1 =4y >--->J,) for
a surface M? in a (2 + n)-dimensional Euclidean space E**", defining a quadratic
form in the normal space of the surface. In a suitable local frame of the normal
space this quadratic form can be written in a diagonal form and the functions 4,
o=1,...,n are the coefficients in the diagonalized form (1, is called the o-zh
curvature of M?). These curvatures are closely related to the Gauss curvature K
of M?:

K=Ji+ht

The local cross-section, which diagonalizes the quadratic form is called a Frenet
cross-section (Frenet-frame) of the surface.

For a surface M? in the four-dimensional Euclidean space E* the curvatures
A1 and A, are the maximum and minimum, respectively of the Lipschitz-Killing
curvature of the surface [5]. The function 4, is called the principal curvature and
the function A,—the secondary curvature of M? in E*.
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Using the idea of the Frenet-frames, Shiohama [6] proved that a complete
connected orientable surface M2 in E* with curvatures A; = 1, = 0 is a cylinder.
The same result is proved in [7] for a surface in a higher dimensional space E**".

Our aim is to find invariants of a surface M2 in E* considering a
geometrically determined linear map (of Weingarten type) in the tangent space
of the surface, as well as to obtain a geometric Frenet-type frame field of M?2.

In Section 2 we define a geometrical linear map in the tangent space of a
surface M2 in E* and determine a second fundamental form II of the surface.
We find invariants k and » of M? (which are analogous to the Gauss curvature
and the mean curvature of a surface in E*). These invariants divide the points
of M? into four types: flat, elliptic, parabolic and hyperbolic.

In Section 3 we give a local geometric description of the surfaces consisting
of flat points, proving that they are either planar surfaces (Proposition 3.1) or
developable ruled surfaces (Proposition 3.2).

In Section 4 we characterize the minimal surfaces in E* in terms of the
invariants k and x» (Proposition 4.1).

For the surfaces of general type (which are not minimal and which have no
flat points) in Section 5 we obtain a geometrically determined orthonormal frame
field {x, y,b,/} at each point of the surface and derive Frenet-type derivative
formulas. The tangent frame field {x, y} is determined by the defined second
fundamental form 77, while the normal frame field {b,/} is determined by the
mean curvature vector field of the surface.

We also characterize the surfaces with flat normal connection in terms of the
invariant » (Theorem 5.1).

In the last section we apply our theory to the class of the rotational surfaces
in E*, which prove to be surfaces with flat normal connection, and describe the
rotational surfaces with k = const.

2. The Weingarten map

We denote by g the standard metric in the four-dimensional Euclidean space
E* and by V' its flat Levi-Civita connection. All considerations in the present
paper are local and all functions, curves, surfaces, tensor fields etc. are assumed
to be of the class €.

Let M?:z=z(u,v), (u,v) e Z (2 = R?) be a 2-dimensional surface in E*.
The tangent space to M? at an arbitrary point p = z(u,v) of M? is span{z,,z,}.

For an arbitrary orthonormal normal frame field {ej,e,} of M? we have the
standard derivative formulas:

/ 1 2 1 2 .

V.. zu =z = Uzu + T 20 + 101 + ¢ €2

(2.1) V! 2y =z = Tlyzu + Thzo + cher + chyen;

. 70 = Zw =Lz 2o + cppe1 + ciren;
V/ _ _ l—*l 1—*2 ‘1 ,2

220 = Zo = DopZu + 1920 + cxpe1 + ¢35,

where Ff]f are the Christoffel’s symbols and c{;, i, j,k = 1,2 are functions on M?.
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We use the standard denotations E(u,v) = g(zy,z4), F(u,v) = g(z4,zs),
G(u,v) = g(zy,2y) for the coefficients of the first fundamental form and set

W =VEG — F2. 1If ¢ denotes the second fundamental tensor of M?2, then we
have

1 2
O-(Zu,zu) =c¢ppe + e,

| 2
0(zy, 2p) = Cppe1 + e,

1 2
0(zy, zp) = Cyp€1 + C€2.

We introduce the following functions:

el el el
Ap=| I €zl A, [T 2l A 2 a
i b i ch
2A A 2A
L(“v”):#7 M(u,U):Vi, N(“vv):ﬁ'
If
u=u(1,v); _ s
(2.2) (n,0) e, Y <R
v=v(#,D),

is a smooth change of the parameters {u, v} on M? with J = uzv; — uzv; # 0, then
Zj = Zylly + Zpp,
Z5 = ZyUy + ZyUp.
Let
a(zz,zz) = ¢le1 + &3yea,
0(z,2;5) = Clhe1 + Chea,
0(z3,2;5) = Casel + Cres.
Differentiating (2.2) and taking into account (2.1) we find
&ty = ugely + 2uvact + vpck,
(2.3) ety = uguzet; + (ugvs + uzvz) ey + vgvscs,,  (k=1,2)
&3 = uzcty + 2ugvsct; + v3cs).
Using (2.3), we obtain
Ay = J(U2A; + uzogAs + 02A3);
(2.4) Ay = JQuzuz Ay + (uzvy + uzvg)As + 20505A3);
Az = J (Ui A1 + uzu;As + v2A3).
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If E=g(zi,zz), F=9g(za,z;) and G = g(z;,z;), then we have

E = u2E + 2uz0;F + v2G,

(25) F = ugugE + (H[,Uf + vl;ug)F + UﬁUﬁG,
G= ufE + 2uzvF + ng

and

EG - F? = J*(EG — F?)
or
(2.6) W =¢eJW, ¢=signl.

Taking into account (2.4) and (2.6), we find

L = e(ulL + 2uzv;M + viN),
(2.7) M = e(uzu; L + (uzv; + vguz )M + vzvpN),
N = e(u2L + 2uzo; M + v2N).

Further we denote
, FM-GL , FL—EM
NTEG—F2 "NTEG_F?
, FN-GM  , FM —EN
nTEG-Fr T EG-F?

and consider the linear map

(2.8)

y: T,M* — T,M?
determined by the conditions
P(zu) = Vllzu + }/1221,, _ <yll Vlz)
“\, 2 )
y(z0) = Vzlzu + V%Zva 72 72

Then a tangent vector X = Az, + uz, is transformed into the vector X' = p(X) =
Nz, +u'z, so that
2 A
e l4 :
Iz 2

LemMmA 2.1.  The linear map y given by (2.9) is geometrically determined.

(2.9)

We have

Proof. Let the change of the parameters be given by (2.2). Then we have

Zi Zy Uy Uy
(2)=r(2) ()
Zp Zy Uy Up
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_(EF\ , (L M
I9=\r ¢) ""\m N )

then the defining conditions (2.8) imply y = —hg~!.

With respect to the new coordinates (i, 7) the linear map 7 is determined by
the equality 7 = —hg~'.

On the other hand, the equalities (2.5) and (2.7) express that

g=TgT', h=¢eThT".

If we denote

Thus we obtain 7 = —hg ! = ¢TyT~', which implies that 7 = ¢y.
Further, let {é;,é;} be another orthonormal normal frame field of M2
Then
e1 = cos 0¢; + ¢’ sin 0é,; 3
. - , - 0= L(el 3 61)7
ey = —sin 0e; + &' cos ey,
and ¢ =1 (¢ =—1) if the normal frame fields {e,e;} and {é;,é,} have the
same (opposite) orientation. The relation between the corresponding functions
ci and ¢f, i,j,k=1,2 is given by the equalities
S 1 oop 2.
¢; = cos Oc;; —sin Ocy;; i =12
¢&; = &'(sin Ocj; + cos Ocy); ’ ’
Thus, A; =¢'A;, i=1,2,3, and L=¢'L, M =¢'M, N =¢'N, which imply
that y = &’y. O

The linear map y: T,M? — T,M? is said to be the Weingarten map at the
point p e M?. The following statement follows immediately from Lemma 2.1.
LeEmMMA 2.2. The functions

LN — M? L. L _EN+GL-2FM
= P T TT(EG - Y

are invariants of the surface M?>.
It is clear that the sign of » depends on the orientations of the tangent plane

and the normal space of M?, while k is an absolute invariant.
The characteristic equation of the Weingarten map y in view of Lemma 2.2 is

(2.11) Vi 4+ 2y + k = 0.

If X, and X, are two tangent vectors at a point p € M2, then g(y(X1), X2) =
g(y(X2), X1), i.e. p is a symmetric linear operator and hence

(2.12) » —k>0.
Using the defining equalities (2.10), it follows that
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F \* EG-F?
408 — k) = <V11 —V§+2E712> +4T(V12)2~

This equality implies that the condition x> — k = 0 is equivalent to the equalities
71 =73, 92 =0, ie. to the conditions

(2.13) L=pE, M=pF, N=pG, pek
Thus we get the following equivalence at a point p e M?:
(2.14) L=M=N=0 & k=x=0.

As in the classical case (for a surface M? in E?), the invariants k and x
divide the points of M? into four types. A point pe M? is said to be:

flat, if k=»=0;

elliptic, if k > 0;

parabolic, if k=0, » #0;

hyperbolic, if k < 0.

Let X = Az, + uzy, (A,1) # (0,0) be a tangent vector at a point pe M2
The Weingarten map y determines a second fundamental form of the surface M?
at pe M? as follows:

T u) = —g(p(X), X) = LA* + 2MJu+ Nu?, A,ueR.

First we study the class of surfaces whose points are flat.

3. Surfaces consisting of flat points

In this section we consider surfaces M?: z = z(u,v), (u,v) € Z consisting of
flat points, i.e. surfaces satisfying the conditions

(3.1) k(u,v) =0, x(u,v) =0, (u,0)eg.

We give a local geometric description of these surfaces.
For the sake of simplicity, we shall assume that the parametrization of M? is

orthogonal, i.e. F =0. Denote the unit vector fields x = Z"E, y = “_ Then

we write (2.1) in the form v VG
1 2
¢ ¢
Vix = V1J’+%€1 +%€z,
1 2
c c
Viy=—px G2, 4 R,
62 S VEG ' T VEG”
. | , .
c c
V/,X: _ + 12 e + 12 e,
y YT EG! T VEG
1 2

¢ ¢
Viy= mx +%e1 —i—%ez
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Obviously, the surface M? lies in a 2-plane if and only if M? is totally
geodesic, ie. cf =0, i,j,k=1,2.
Now, let at least one of the coefficients cf; not be zero. Then

1 1 1
c c c
rank 121 122 %2 =1
c c 1
i1 ‘n D

and the vectors o(x,x), o(x,y), o(y,») are collinear. Let {b,/} be a normal
frame field of M?, consisting of orthonormal vector fields, such that b is collinear
with a(x, x), o(x, ), and a(y, y). It is clear that the normal frame field {b,/} is
invariant. Then the derivative formulas of M? can be written as follows:

Vix= yy+wb, Vib=—vix—Ay + B,
Viy=—px +4b, Vb= —lx—vy + B,
3.3
(3:3) Vx= —py+ b, Vil= —B.b,
V}/,y = X + v2b7 V)/;l = _ﬁ2b7

for some functions vy, va, 4, By, Ba, 1, 72 on M2
The Gauss curvature K of M? is expressed by

(34) K = ViVy — ;Lz.

Further we denote = ﬂlz +ﬁ§. It follows immediately that f does not
depend on the change (2.2) of the parameters.

Since the curvature tensor R’ of the connection V' is zero, then the equalities
R'(x,y,b) =0 and R'(x, y,I) = 0 together with (3.3) imply that either K =0 or
p=0.

A surface M? is said to be planar if there exists a hyperplane E3  E*
containing M?. First we shall characterize the planar surfaces.

PROPOSITION 3.1. A surface M?* is planar if and only if
k=0, »=0, f=0.

Proof. 1. Let M?>c<E® and b be the usual normal to M2 in E3.
Choosing / to be the normal to the hyperplane E®, from (3.3) we get
L=M=N=0 and f=0.

II. Under the conditions k = % = =0, from (3.3) it follows that / = const
and M? lies in a hyperplane E* orthogonal to . O

A ruled surface M? is a one-parameter system {g(v)}, v e J of straight lines
g(v), defined in an interval J = R. The straight lines g(v) are called generators
of M?. A ruled surface M? = {g(v)}, veJ is said to be developable, if the
tangent space 7, M 2 at all regular points p of an arbitrary fixed generator g(v) is
one and the same.

Each ruled surface M? can be parameterized as follows:
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(3.5) z(u,v) = x(v) + ue(v), ueR, vel,

where x(v) and e(v) are vector-valued functions, defined in J, such that the
vectors e(v) and x'(v) + ue’(v) are linearly independent for all v e J. The tangent
space of M? is spanned by the vectors

zy = e(v);
zp = x'(v) 4 ue'(v).

The ruled surface M? determined by (3.5) is developable if and only if the
vectors e(v), €’(v) and x'(v) are linearly dependent.

We shall characterize the developable ruled surfaces in terms of the
invariants k, » and the Gauss curvature K.

PROPOSITION 3.2. A surface M? is locally a developable ruled surface if and
only if
k=0, =0, K=0.

Proof. 1. Let M? be a developable ruled surface, defined by the equality
(3.5), where e(v), €’(v) and x'(v) are linearly dependent. Without loss of generality
we assume that ||e(v)|| = 1. Then, the vector fields e(v) and e’(v) are orthogonal
and the tangent space of M? is span{e(v),e’(v)}. Since x'(v) € span{e(v),e’(v)},
then x’(v) is decomposed in the form x'(v) = p(v)e(v) + g(v)e’(v) for some
functions p(v) and ¢(v). Hence, the tangent space of M? is spanned by

=6
z, = pe+ (u+qe'.

Considering only the regular points of M? (where u # —¢), we choose an
orthonormal tangent frame field {x, y} of M? in the following way:

X=e=z,;
(3.6) e’ p 1
S 2 ] P R ) 2
Since the tangent space of M? does not depend on the parameter u, then the
normal space of M? is spanned by vector fields b;(v), b(v). With respect to the

basis {e(v), e’ (v), b1(v),by(v)} the derivatives of by (v) and b,(v) are decomposed in
the form

b{ = —Clel + coba,
(3.7 b ,
) = —c2e’ — coby,

where ¢y, ¢1, ¢ are functions of v.
Then the equalities (3.6) and (3.7) imply
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Vb =0,
/,b — _ Cl + CO b7
T T w9
Viby =0,

(&) Co
Vb, = — — by.
T T wt e

Consequently, L=M =N =0 and K =0.

II. Let M? be a surface for which L=M =N =0 and K=0. We
consider an orthonormal frame field {x, y,b,[} of M?, satisfying the equalities
(3.3). Since K =0, then v;v, — 2=0. Ifvy=mn =0, then M? lies in a plane
E?. So we assume that there exists a neighborhood 2 = & such that V5 # 0 (or
vy5 #0) and we consider the surface M> = M?. )

Let {X, 7} be the orthonormal tangent frame field of M?, defined by

X = cos px + sin ¢y;
y = —sin ¢x + cos ¢y,

where tan ¢ = —i. Then o(X,%) =0, o(X,y) =0. So the formulas (3.3) take
the form V2

Vix = 7y, Vib = Bil,
Viy = —9%, Vib=-0j  +pl,
Vix = —72); Vil = —Bb,
Vig = 7ox +ib, Vil = —pyb,

where v, # 0.
Since the curvature tensor R’ is zero, then the equalities R'(X, y,b) = 0 and
R'(x,7,1) =0 imply that
N = 0, ﬂl =0.
Hence,
Vix=0, Vib=0,

Viy=0, V=0

Let p = z(itg, Do), (to,T0) € 2 be an arbitrary point of M> and ¢ : z(it) =
z(1, D) be the integral curve of the vector field X, passing through p. It follows
from V.X = 0 that ¢; is contained in a straight line. Hence, M? lies on a ruled
surface. Moreover, since Vb =0 and Vi/ =0 then the normal space span{b,/}

D . 7 . R
of M~ is constant at the points of ¢; and hence, the tangent space span{X, y} of
M? at the points of ¢, is one and the same. Consequently, M? is part of a
developable surface. O

From now on we exclude the flat points from our considerations.
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4. Minimal surfaces

We recall that a surface M? is said to be minimal if the mean curvature
vector H = 0. In this section we characterize the minimal surfaces in terms of
the invariants k and .

PROPOSITION 4.1.  Let M? be a surface in E* without flat points. Then M?
is minimal if and only if

w—k=0.

Proof. Without loss of generality we assume that F = 0 and denote the unit

Zuy Zy

vector fields x=—, y= . Then we have
VE T VG
1 2
c c
vy — ‘u ‘i
XX V1y+ E €] + E €,
ol
Viy=— ‘12
W=y d e
ch
Vs e,
5 E
V= oy ga e

Therefore
L=pE, M=pF, N=pG,

where p is a function on M?2. Hence x> —k = 0.
II. Let x> —k=0. Then

L=pE, M=pF, N=pG; p+#0.
1

The condition F =0 implies that M =0. Then 2| 0 and ¢}, = pcl,,
‘1 n
.. L N. - G
¢3, = pc3,.  Further, the equality e implies that p = —4- Hence ro =0,
ie. H=0 O

5. Surfaces of general type

From now on we consider surfaces, satisfying the condition
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® —k#0

and call them surfaces of general type.

As in the classical differential geometry of surfaces in E* the second
fundamental form determines conjugate tangents at a point p of M2. A tangent
g:X = Az, +uz, is said to be principal if it is perpendicular to its conju-
gate. The equation for the principal tangents at a point p e M? is

E F E G
Lol

2
—0.
L M L N K

PP
K N

A line ¢ : u=u(q), v=1v(q); geJ on M? is said to be a principal curve if its
tangent at any point is principal.

The surface M? is parameterized with respect to the principal lines if and
only if

F=0, M=0.
Let M? be parameterized with respect to the principal lines and denote the
unit vector fields x = Fu _
\/E’ y \/6

Since the mean curvature vector field H # 0, we determine the unit normal

H
vector field b by the equality b = m Further we denote by / the unit normal

vector field such that {x, y,b,/} is a positive oriented orthonormal frame field
of M?. Thus we obtain a geometrically determined orthonormal frame field
{x,y,b,I} at each point pe M?. With respect to the frame field {x, y,b,l} we
have the following Frenet-type derivative formulas:

Vix = 1Y+ ib; Vib=—vix— Ay + Byl

Viy=—yx +2b+ul; Vib=—ix—y + Bsl;
G-l Vix= —py+ib+pul; V= —uy — Byb;

Viy= nx + v2b; Vil = —px — B,

where y; = —y(In VE), y, = —x(In v/G) and u # 0.
Hence we have

(5.2) k=—4viu®, w=01—w)u, K=vv,— (0 +p).

Remark 1. 'We note that we determine the tangent frame field {x, y} by the
Weingarten map (the second fundamental form II) and the normal frame field
{b,I}—Dby the mean curvature vector field, while the Frenet-cross section in the
sense of Otsuki diagonalizes a quadratic form in the normal space. In general
the geometric frame field {b,/} is not a Frenet-cross section. Finding the
relation between {b,/} and the Frenet-cross section of Otsuki we derive the
following relation between the invariant k and the curvatures 4; and 1, of Otsuki:
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k=4/12,.
The same formula is valid in the cases of minimal surfaces and surfaces consisting

of flat points.

Using (5.1) we find the length ||H|| of the mean curvature vector field and
taking into account (5.2) we obtain the formula

Vn? —k

H| = :
I =5

which shows that |u| is expressed by the invariants k, » and the mean curvature
function.

Let z = g(z,x)x + ¢g(z, y)y be an arbitrary tangent vector field of M2 We
define the one-form 6 by the equality

0(z) = g(V.b,1).
Then the formulas (5.1) imply that
0(z) = g(Brx+ By, 2),
which shows that the one-form 0 corresponds to the tangent vector field f;x + £,y

and
10l = \/B? + 53
Using that R'(x, y,x) =0, R'(x,y,y) =0, R'(x, y,b) =0 and R'(x, y,[) =0,
we get the following integrability conditions:
vivs = (22 +48%) = X(22) + y(1) = (1) + (12)*);
2ppy + 1Py = APy = x(u);
2uyy — APy +nafy = y(w);
20y +upy = (vi = v2)yr = x(4) — y(n);
221+ wBy + (vi = v2)yy = —x(v2) + y(4);
By = 12Br + (Vi = v2)u= —x(B,) + y(B)

At the end of this section we shall characterize the surfaces with flat normal
connection in terms of the invariant x.

A surface M? is said to be of flat normal connection [3] if the normal
curvature Rt of M? is zero. The equalities (5.1) imply that the normal
curvature Rt of M? is expressed as follows:

RbL(X, y) = D\Dyb — DyDb — D[xﬁy]b = (x(By) — y(B1) + 1B — 1B,
Rzl(xa y) = DDyl — DyDyl — D[x.,y]l = —(x(B2) — ¥(B1) + 711 — 252)b.

Taking in mind (5.4) and the last equality of (5.3) we get:

(5.4)
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Rir(x,y) = —x,
R} (x,y) = xb,
1e.
%= g(Ri (x,¥),b) = g(R*(x, p)L,b).

The function g(R*(x,y)l,b) is the curvature of the normal connection D of
M?. Hence, the invariant x is the curvature of the normal connection.

Thus the surfaces with flat normal connection are characterized by the
following

PROPOSITION 5.1. A surface M? in E* is of flat normal connection if and only
if
% =0.
Obviously, M? is a surface with flat normal connection if and only if

vi = vy =:v. So, the Frenet-type formulas (5.1) of a surface M? with flat normal
connection take the form:

Vix = Y1y + vb; Vib=—vx—Jly + pil;

Viy=-nx  +ib+ul; Vib=—ix—vy + Bol;
(5:3) V;,x = —py+ib+pul; Vil= —uy — B1b;

V}',y = px + vb; V;Z = —ux — B,b.

Hence the invariants k& and K are expressed by

k=422, K=v— 0+

Remark 2. The curvature of the normal connection of a surface M2 in E* is
the Gauss torsion xg of M? [1]. The notion of the Gauss torsion is introduced
by E. Cartan [2] for a p-dimensional submanifold of an n-dimensional Rieman-
nian manifold and is given by the Euler curvatures. In case of a 2-dimensional
surface M2 in E* the Gauss torsion can be expressed in terms of the ellipse of
normal curvature at a point p e M2,

According to the theorem of Rodrigues, a curve ¢ on a surface M2 in E* is a
line of curvature if and only if the tangential component of the derivative of the
normal vector field to M? along c is collinear with the tangent of c. Using this
geometric characterization of the lines of curvature for surfaces in E*, E. Cartan
generalized in [2] the notion of lines of curvature for a surface M2 in E*.
However, the lines of curvature in the sense of Cartan exist only in the class of
the surfaces with zero Gauss torsion (% = 0), i.e. in the class of the surfaces with
flat normal connection.
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6. Rotational surfaces

Now we shall apply our theory to the class of the rotational surfaces in E*.
We denote by Oejese; a fixed orthonormal base of E. Let ¢:z = Z(u),
ueJ be a smooth curve in E*, parameterized by

2(u) = (v1(w), %o (), r(w)); we .
We denote by ¢; the projection of ¢ on the 2-dimensional plane Oee;.
Without loss of generality we can assume that ¢ is parameterized with respect
to the arc-length, ie. (x])*+ (x})>+ () = 1. We assume also that r(u) > 0,
ueJ. Let us consider the rotational surface M? in E* given by
(6.1) z(u,v) = (x1(u), x2(u), r(u) cos v, r(u) sinv); wuel,vel0;2n).
The tangent space of M? is spanned by the vector fields
zy = (x],x3,r" cos v, r' sin v);
z, = (0,0, —r sin v, r cos v).

Hence,
E=1;, F=0; G=r*u); W=r().

We consider the following orthonormal tangent vector fields
X = (x{, x5, 7" cos v,r' sin v);
7= (0,0, —sin v, cos v),

ie. z, =X; z, =rp. The second partial derivatives of z(u,v) are expressed as
follows

Zu = (X7, x5, 7" cos v, r" sin v);
Zuw = (0,0, —r sin v, 7’ cos v);
zw = (0,0, —r cos v, —r sin v).
Let x and 7 be the curvature and the torsion of the curve ¢ (considered as a
curve in E3). We consider the normal vector fields ¢; and e, defined by
1

er =—(x{, x5, r" cos v, r" sin v);
K

1
_ [/ "1 "1 [/ 1 ", 1 ", .1 :
e = ;(xzr —xyr x{r" — xr”, (x)x3 — x7x3) cos v, (x1x7 — x{'x3) sin v).

Now it is easy to calculate that
L=0; M=—(xjxj—x{x3); N=0.

Hence,

] "1\ 2
X1X7 — X1 X
k:_(lz 21 2) : = 0.
r

Applying Proposition 5.1 we get
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COROLLARY 6.1. Any rotational surface M? in E*, defined by (6.1), is a
surface with flat normal connection.

Let us denote the curvature of the plane curve ¢; by x; = x{xj — x{x5.
Then with respect to the frame field {X, y, e1,e,} the derivative formulas of M?
look like:

Vix = Ke; Vie| = —kX + 1e;
"
Viy=0; Viee=" —J;
r/

Vix = —V; Vie, = —Tey;

! "
Viy—-"x —r—el —ﬂez, Vier = Ej.

r Kr Kr Kr

Obviously M? is not parameterized with respect to the principal lines. The
principal tangents of M? are:

e V2 V2L
2 27
V2_ V2

U

With respect to the geometric frame field {x, y,b,/} the Frenet-type formulas
(5.5) hold good, where

V21 \/(Kzr — ") + (k1)
Vl—Vz——77, V= 2Kr ’
K42 (r”)2 KK

2
— (1) \/(KZV—V/')2+(K1)2§ u= :
\/(Kzr—r”)2+(1€1)2

Consequently, the invariants k, » and K of the rotational surface M? are:

L \2 7
<Al) %:O; :7}’_

k= —
r2 r

At the end of the section we shall describe all rotational surfaces, for which
the invariant k is constant.

1. The invariant k = 0 if and only if x; = 0, which means that the projection
of the curve ¢ on the plane Oeje; lies on a straight line. There are two subcases:
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1.1. If K=0, ie. " =0, then M? is a developable ruled surface.

1.2. If K+#0, ie. r" #0, then M? is a planar surface.

2. The invariant k =const (k #0) if and only if r(u) = a(x{x) — x{'x}),
a = const. Moreover, if r(u) satisfies ”(u) = cr(u), then the Gauss curvature K
is also a constant.
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