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ON THE POLAR QUOTIENTS OF AN ANALYTIC PLANE CURVE
JaANUSZ GWOZDZIEWICZ AND ARKADIUSZ PLOSKI

Abstract

We give explicit formulae in terms of characteristics and intersection multiplicities
of branches for the polar quotients of a plane many—branched singularity.

Introduction

We use standard notations: C{X, Y} is the ring of convergent power series,
ord f is the order of f=f(X,Y)e C{X,Y}, (f,¢), denotes the intersection
multiplicity of f with ¢. Recall that (f,¢), = (ord f)(ord ¢) with equality if
and only if f,¢ are transverse. We put ord 0 = +oo0 and use usual conventions
on the symbol +oo.

Let f = f(X,Y) e C{X, Y} be a reduced power series (i.e. without multiple
factors) and let t =#(X,Y) e C{X, Y} be a regular parameter (i.e. a series of
order 1) such that 7 does not divide f. We consider the set of polar quotients of
f with respect to

(f7 ¢)0
(tv ¢)O

The polar quotients were studied by many authors ([T], [M], [E], [Eph],
[Ca], [LMWI], [LMW2], [Ga], [D], [LP]). Recently, an explicit formula for the
maximal polar quotient g(f, ) =sup Q(f, ) has been given ([P], Theorem 1.3).
In this note we give similar formulae for all polar quotients. Like in [P] our
main tool is the Kuo—Lu lemma ([KL], Lemma 3.3 and Section 2 of this paper).
Instead of using Puiseux’ trees (see [KL], [E]) we make our calculations by means
of Puiseux’ date (Section 3). The notion of symmetric power explained in [Wh],
Appendix V turns out very useful.

Let A4 be a nonempty set. Then AL, is the set of all p-tuples regarded as
unordered. If o=<ai,...,a,) € AL, then || = {ai,...,ay,} is the set corre-

sponding to a. We put dega=p. If a=<ai,...,q,) and f={by,...,b,)

: ¢ is an irreducible factor of

or. = { L

X, Y)
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then « ® f = <ai,...,ay,b1,...,b,>. Clearly |o @ | = |¢|U|f] and deg(a @ f) =
deg o+ deg f. For every positive integer m we put mo=a® --- Do (m

times). Instead of mi{ai1)® - @myay)y =<{ar,...,a1,...,ap,...,a, ) We
write {ay:mi,...,a,:mp). o1 s o times

1. Main result

The semigroup T'o(f) of an irreducible power series f e C{X,Y} is the
set of all intersection numbers (f,¢), where ¢ runs over all power series ¢ €
C{X, Y} such that f does not divide ¢. Let t=1¢(X,Y) be a regular param-
eter. Put p=(1,f), Let bo,...,b; be the p-minimal system of generators of
[o(f) determined by conditions

(1) [ZO =D, _ _

(i) by = min(Fo(_f)\(Nbo + .-+ Nby_y)) for k=1,...,h,

(i) To(f) = Nbg + - - + Nby,.

Let By, = GCD(EO, .. bk) be the greatest common divisor of by, ..., by.

ProposiTioN 1.1 ((M], [Eph]). Let fe C{X,Y} be an irreducible power
series with ord f > 1. Then

Q(f,z):{B":—lg":kzl,...,h}.

bo

The above formula was given by Merle ([M], Théoréme 3.1) in transverse
case. Then Ephraim ([Eph], Lemma 1.6) observed that Merle’s result holds also
for polar quotients with respect to a regular parameter ¢. In Section 4 we give a
new proof of (1.1). Recall that the sequence Bj_ llgk/l;o is strictly increasing.

If ord f =1 then Q(f,t) =0 if f,t are transverse and Q(f,7) = {1} if f,¢
are not.

Remark 1.2.  Using the inversion formulae for plane branches (see [P], proof
of Proposition 1.1) one can calculate the polar quotients of a branch f =0

in terms of the minimal system of generators f,..., B, of To(f). Let e =
GCD(fy,...,p;) for k=0,1,...,9. Then

Q(f’t):{ekﬁ—lﬁk:kzlwuag}uo(f’[)

0
where O(f,t) =0 if (f,1), =B or (f,1); =B, and O(f,) = {ord f} otherwise.

Let ¢,y € C{X, Y} be irreducible power series. The contact coefficient (in
the sense of Hironaka) with respect to a regular parameter t € C{X, Y} is the
rational number

h(g, ¥ t) =
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In [LMWI] this notion is introduced in the case where ¢ and \ are transverse.
Then h(¢, ;1) = (¢, ), /ord ¥ and we write h(¢,y) instead of h(¢,y;1).

Let us consider a reduced power series f =fj---f, with r> 1 irreduc-
ible factors. Fix ie{l,...,r}. For every real number v >0 we put Ji(7) =
{je{l,....r} :h(fi, f;;1) < v} and Ji(x) = {1,...,r}\Ji(7).

By convention h(f;, fi;t) = +oo, hence ie J;(z). We put

jedi(r)¢ JeJi(r)

1 .
qi(7) :m ( Z (l,f/)o)f—i— Z (fis /i) ¢ for T>0.

To write the above formula more explicitly suppose i =1 and assume

h(fi, frst) < h(f, fro13t) < - < h(f, fo30) < h(fi, fi;t) = +00. Then

(’v(f Do Wit Bdo g (g i) <0 < WA i) <
"N oy o
(l’fl)zr if T <h(fi, fr;0)

It is easy to see that the functions ¢; are piecewise linear, continuous and strictly
increasing. Note that ¢; is determined by the intersection multiplicities of i-th
branch f; = 0 with the remaining branches and with the smooth curve t = 0. Let
Hi(f,t)={h(f;, f;;t) - j # i} be the set of contact coefficients of the branch f; =0
with branches f; =0 (j #i). The main results of this paper is

THEOREM 1.3. Let f =fi1---f be a reduced power series with r > 1 irreduc-
ible factors. Then

r

of, 1) = U a(Q(fi, ) UH(f,1)).

i=1

We give the proof of (1.3) in Section 4. We put Q:(f,1) = ¢.:(Q(fi, 1)U
H;(f,?)) and call the elements of Q;(f,f) polar quotients associated with the
branch f; =0.

A polar quotient can be associated with more than one branch. From
Theorem 1.3 it follows that the polar quotients of the curve f = 0 with respect to
a regular parameter ¢ depend only on the equisingularity type of the curve ¢/ = 0.

If t and f are transverse then the polar quotients of f =0 do not depend
on the regular parameter ¢ and are determined by the equisingularity type of
the curve f=0. Then we write Q;(f) instead of Q;(f,¢) and Q(f) instead of
o(f, ).

Using (1.3) we obtain easily the formula for the maximal polar quotient
g(f,1) =sup O(f,1) given in [Pl Obviously q(f,()=max_ {max O,(f,)},
hence it suffices to calculate the maximal polar quotients associated with
branches.
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COROLLARY 1.4.

max 0i(f,0) = max{ gl ) max{hCf S50} + 15 S )

0 j#i

Proof.  Let 7 = max(Q(fi, 1) UHi(f,1)) = max{q(fi, 1), max;.i{h(fi, fj; 1)} }.
Then Ji(z;) ={1,...,r}\{i} and qi(v;) = w + (1/(4, fi)o) 225 2:(fis J)o-  We get
then max Q;(f, ) = ¢i(zr;) for ¢; is an increasing function.

Note that for every i e {1,...,r} the rational numbers ¢(f;,t) + (1/(¢, fi),) -
22ilfis Jj)o (provided that ¢(fi, 1) # —co) and max;.i{h(fi, fj; )} + (1/(2, fi)o) -
>i+i(/i, J})o are polar quotients of f = 0.

CorOLLARY 1.5, If f'=fi---f. (r> 1) with transverse factors f;, f; for i #j
then

r

O(f) = U{ri+ord f —ord f;: 7, € Q(f;)} U{ord f}.

i=1

Proof. Let us calculate Q;(f). Itis easy to see that J1(z) ={je{2,...,r}:
ord fi <t}. Hence Ji(r) =0 if t <ord f; and Jy(7) = {2,...,r} if > ord f;.
Obviously Hi(f) = {ord fi}. Therefore we get

t4ord f—ord f; if 1> ord fi

q1(t) =9 ord f
ordflr

if T <ord f

For every 7; € Q(f1) one gets 71 > ord f;. Consequently Q;(f) = {qi(z1) : 71 €

O(f1)}Ugqi(ord fi) ={r1 +ord f —ord f; : 11 € O(f1)} U{ord f} and the corol-
lary follows.

To give another application of the main result we calculate polar quotients
of “diagonal curves” introduced by Delgado [D].

CoROLLARY 1.6. Let f =fi---f. be a reduced power series. Suppose that
To(fi) and (¢, fi), do not depend on ie{l,...,r}, To(fi)=<bo,b1,...,by) and
(fis /)0 = Bu-1by + ¢ with ¢ >0, for i #j. Then

(.1 = {er:—1b":k= 1,...,h}u{rw}.
by 5

Proof. By Proposition 1.1 we get Q(f;,t) = {Bi_1hi/bo: k=1,...,h} on
the other hand H;(f, ) = {(Bi_1by + ¢)/bo}. It is easy to check that ¢;(z) = rr if
T < (By_1by +¢) /by and qi(t) =+ (r — 1)(By_1b, + ¢)/bo if T > (Bj,_1by + ¢)/by.
Now we get (1.6) from Theorem 1.3.
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2. Zeros of a derivative

Let C{X}" =, ., C{X"/"} be the ring of Puiseux series. If /=f(X,Y)e
C{X,Y} is a power series Y-regular of order p > 0 i.e. such that ord f(0, Y) =
then the equation f(X,Y) =0 has in C{X}" p roots y; = y1(X),..., yp = yp(X)
of positive order counted with multiplicities. We put Zer f = {(y1,...,y,»>. Let
S < C{X}" be a set of Puiseux series. If yi,...,y, €S and ygi1,..., ¥, ¢S
then we put Zer f NS = <yi1,...,y4). Let us recall

THE Kuo-Lu LemMmA ([KL], Lemma 3.3). Suppose that f=f(X,Y) is
Y-regular of order p>1. Let Zer f={yi,...,yp) and Zer(of/0Y)=
{z1,...,zp-1). Then for every ie{l,...,p}:

Cord(zy — yi), ..., Ord(zpfl — i)y
= Cord(y1 — 1), .., ord(y; — y1), - cyord(y, — i)y

It is convenient to prove the lemma for formal power series with coefficients
in C{X}". Replacing f(X,Y) by f(X,Y +y;) we may assume y; =0. Then
the series f(X,Y)/Y and Jf/0Y have the same Newton diagram (see [Wal,
Chapter 1V) and the lemma follows from the fact that the Newton diagram
determines the orders of roots and the number of roots of given order. For
more details see [GP1].

For every ue C{X}" and r >0 we put

S(u,r) ={ve C{X}" : ord(u — v) = r},
B(u,r) ={ve C{X}" : ord(u — v) > r},
B(u,r) = {ve C{X}" : ord(u — v) > r}.
According to the given definitions deg(Zer /N S) is equal to the number of

roots counted with multiplicities of the equation f(X,Y) = 0 lying in the set S of
Puiseux series. If |Zer f|NS = then we put deg(Zer fNS) = 0.

LemMmA 2.1.  Suppose that [ =f(X,Y) is Y-regular of order p > 1. Then
for every yeZer f and for every r >0

(i)  deg(Zer fNS(y,r)) = deg(Zer(df /0Y) N S(p,7)),
(ii) deg(Zer fNB(y,r)) = deg(Zer(3f /0Y)NB(y,r)) + 1,
(iii) deg(Zer f N B(y,r)) = deg(Zer(df /oY) N B(y,r)) + 1.

Proof.  The part (i) is a reformulation of the Kuo—Lu lemma, (ii) and (iii)
follow from (i).

PROPOSITION 2.2.  Under assumptions of Lemma 2.1:
(i) for every ze|Zer(0f/0Y)| there exist yi,y, € Zer f, yi # yy such that
ord(z — y1) = ord(y; — y2) = ord(z — y) for all ye|Zer f|,
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(i) for every yy,y, €Zer f, y1 # yo there exists z € |Zer(0f /0Y)| such that
ord(z — y1) = ord(y; — y2) = ord(z — y) for all ye|Zer f|.

Proof. (i) Fix z € |Zer(df/0Y)|. Let y; € |Zer f] be such that ord(z — y;) =
max{ord(z — y) : y € |Zer f|}. By the Kuo—Lu lemma there exists y, € |Zer f]|
such that ord(z — y;) = ord(y; — y») and we are done.

(i) Suppose y; # y, are given roots of the equation f(X,Y)=0.

Let B = B(y;,ord(y; —y2)). Let By,...,B; be a sequence of pairwise
disjoint balls such that (), B; = | J{B(y,ord(y, — y2)) : y € |Zer f|NB}.

Note that

1) 5> 2 for B(y,ord(y1 —»2)) N B(y2,0rd(y1 —32)) =0, _ _

2) B;< B (i=1,...,s) because the center of B; belongs to B and B;, B have

the same radius.

3) Ui, (BiN|Zer f]) = BN|Zer f| for B; cover BN |Zer f| and are pairwise

disjoint.

Using Lemma 2.1 we calculate deg((B\|J,_, Bi)NZer(df/0Y)) =
deg(BNZer(df/0Y)) — .., deg(B;NZer(df/0Y)) = (deg(BﬂZer -1
— > (deg(BiNZer f) —1) = deg(BNZer f) — .o, deg(B;NZerf) +
(s—1)=s—1>0.

Therefore the set (B\|J;,B:)N|Zer(df/0Y)| is nonempty. Let ze

(B\\,_, B))N|Zer(of /0Y)|. Then ord(z —y1) = ord(y; —y2) = ord(z—y) for
all ye |Zer fINB. In particular ord(z — y;) = ord(y; — y2). If ye|Zer f|\B

then ord(y—y;) < ord(y; —y2) =ord(z—y;). Hence we get ord(z—y;) >
ord(z — y) for all ye|Zer f|. Thus (ii) follows.

For given yi, y, € |Zer f|, y1 # y2» we put
Ly, y, = |Zer f| ﬂB(yl,OI'd(yl - 1)),

L;l Y2 ‘ZGI’ f|\L}’1,yzv
by, = Z ord(y1 —y) + (8Ly,,5,) ord(y1 — »2).

yelL¢

V1.2

THEOREM 2.3. Let f=f(X,Y) be a reduced Y-regular power series with
ord f(0,Y) > 1. Then {l, y, : y1,y2€|Zer f|,y1 # y2} = {ord f(X,z(X)) : z €
Zex(of [ )}

Proof. For every z=z(X)e C{X}" without constant term one has
() ord f(X,2(X))= Y  ord(z—y)= > ordiz—y)+ Y  ord(z—y).
ye|Zer f| yeLg ., VeLy .y,

Let yj, y2 € Zer f and z € |Zer(df /0Y)| be such that ord(z — y;) = ord(z — y2) >
ord(z — y) for all ye|Zer f|. We will check that

ord(y —y1) ifyelLf
2 ord(z — y) = J] »
2 =) {Ord(yz —-n) ifyelL, ,,
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Indeed, if ye Ly |, then ord(z — y) = ord(y — y1) for ord(y — y1) < ord(y2 — 1)
=ord(z — y1).
If yeL,, ,, then
ord(z — y) = min{ord(z — y;),ord(y; — y)} = min{ord(y, — y1),ord(y;1 — y)}
= ord(y2 — yl).

On the other hand ord(z — y) < ord(z — y) for all y e |Zer f| and ord(z — y) <
ord(y, — y1). Hence ord(z — y) = ord(y» — y1) for y e L, ,,. Now, Theorem 2.3
follows from (1), (2) and Proposition 2.2.

3. Puiseux’ date

We use the notations and definitions from [P], Section 3. Let f =
f(X,Y)e C{X, Y} be an irreducible power series Y-regular of order p > 0. Let
(bo,...,by) be the characteristic of f. We put By = GCD(by,...,b;) for
k=0,1,....h and by =b;+ (1/Bi )5 (Bi.y — B)b; for k=0,1,...,h
Then the sequence by = p, by,...,b; is the p-minimal system of generators of
the semigroup T'o(f) (see [P], Proposition 3.2). We put P(f) = <{bi/by:
By —By,...,by/by : By_1 — By, +0o0 : 1) and call P(f) Puiseux’ date of the branch
f=0. Clearly |P(f)| ={bi1/bo,...,bn/bo,+o0}. If p=1 then P(f)= {(+o0).

ProposITION 3.1, Let Zer f = <{y1,...,yp)>. Then for every ie{l,..., p}:
ord(y1 = y1), ..., 0rd(yp — yi))> = P(f).
Proof. 1t is a reformulation of Proposition 3.1 from [P].

The following notation will be useful. Let ae R? and let K >0 be a

sym

real number. Write o = {ay,...,aq,a441,-..,a,) wWhere ay,...,a;, < K and K <
Gg+1,--.,a,. Then we put ocK:<a1,...,aq,K,...,K>eRSPym with K repeated
p—q times. We let or,)=a Clearly («@ )y =ox @ Px and (ag)gx =
Omin(K, K')-

Let g =¢(X,Y) e C{X, Y} be an irreducible Y-regular power series. Let
Zer g =<{z1(X),...,z4(X))>. Then the order of contact of f and g is defined to
be

cont(f,g) = max{ord(y;(X) — z;(X)) : 1 <i<p,1<j<gq}.
Note that for every K >0
b bi_
P(f)g = <b_l : By —Bl,-u,% i By o —By_1,K: Bk—1>
0 0
where k > 0 is the smallest integer such that K < b /by. We put b1 /by = +00.

PropPoSITION 3.2. Let z=2z(X) € |Zer g|. Then
<OI‘d(Z - yl)v ce ,OI’d(Z - y]?)> = P(f)cont(f,g)'
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Proof. It is easy to check that max”  {ord(z —y;)} = cont(f,g). We may
assume that cont(f,g) = ord(z —»,). Then

ord(z = y1),...,0rd(z = yp)> = Cord(y1 = yp), ..., 0rd(¥p = ¥p)dord(z-y,)
and (3.2) follows from (3.1).

Foreveryo = {ai,...,a,) € RE  weputd o =37, a. Clearly) (2@ f)=
> a+>. . Note that K — Y og Is strictly increasing for K > 0.

ProposITION 3.3. Let f=f(X,Y)eC{X,Y} and g=yg(X,Y)e C{X,Y}
be irreducible Y-regular power series. Suppose f is of characteristic (by, ..., by).

Then o
) 22 P )b b, = Br—1br/bo,
11) ZP( )cont (f.9) (f q) /(Xa g)0>
111) ( ) P(q)cont (fi9) — (X C]) P(f)cont(f‘g)’
iv) lfK<00nt(f g) then 3 P(g)x = ((X,9)o/ (X, f)o) 22 P(f)x-

Proof. Property (i) follows from the definitions. To check (ii) recall that
(f,9)0/(X.g), = ord f (X, =(X)) where z —=(X) € |Zer g|.

Hence (£,9)/(X,9)y = 320, otd(=(X) — 3i(X)) = 5 P(f)eon .0y BY Prop-
osition 3.2.

Let k£ > 0 be the smallest integer such that cont(f,g) < b;/by and let us
consider the characteristic (b),...,b;,) of g. Then k <h’, cont(f,g) < b, /b
and b]/bj = b;/by for i < k. Consequently byB; = byB; for i <k and (iii) fol-
lows. Property (iv) is an easy consequence of (iii).

(
(
(
(

Remark 3.4. Properties (i), (ii) and (iii) listed in Proposition 3.3 are equiv-
alent to the classical formula for the intersection multiplicity of two branches
(see [P]).

Consider a reduced power series f = f;---f, with r > 1 factors. For every
ie{l,...,r} we put Kj; =cont(f;, f;) if i #j and K;; = +c0. We define Puiseux’
date P;(f) of f with respect to the irreducible factor f; by putting

Pi(f) = P(fl)K,-1 ®--- @ P(fr)K,-,.-

Proposition 3.5 justifies our definition of Puiseux’ date.

ProrosITION 3.5. With the notation introduced above
@) PO = PU)IU{Ki, ..., K},
(ii) Let y; € |Zer f;| for some je{l,...,r}. Then

<Ord(yi _yl)v"'70rd(yi _yi)v"'aord(yi _yP)> :P](f)

Proof. We have |P;(f)|= UJ P )K,,|—UJ 1[P(fi)g,| by Proposition
3.3(iii). Let bo,...,bs be the characteristic of the branch fi. Then |P(fi)g | =
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|P(f,)| = {bl/bo, e ,b/,/b(), +OO} and |P(ﬁ)Ku| = {b]/bo, Ce 7bk(_/')—1/b07Kij} where
k(j) is the smallest integer k > 0 such that K; < bi/by. Summing up we get
|P(f)| = {b1/bo, ..., bn/bo,Ki,...,K;} which proves (i). Part (ii) follows from
(3.1), (3.2) and from the definition of P;(f).

4. Proof

A local isomorphism @ is a pair of power series without constant term such
that Jac ®(0,0) # 0. It is easy to check the following

Lemma 4.1. Let ® be a local isomorphism. A rational number ¢ is a polar
quotient of f with respect to a regular parameter t if and only if q is a polar
quotient of f o ® with respect to to ®.

Therefore to prove (1.1) and (1.3) it suffices to consider the case ¢ = X.

PrROPOSITION 4.2. Let [ =fi---f. be a reduced power series with irreducible
factors fi. Suppose that f is Y-regular of order p >0 and let p;: R, — R be
given by the formula

K)=>Pi(f)x for K>0.
Let pi(|Pi(f)|) = {pi(K) : K € |[Pi(/)[NR}.  Then Q(f,X) =, pi(|1Pi(/)]).

Proof. Let Zer f =<{yi,...,ypy and Zer(0f/0Y)=<z1,...,zp-1y. It is
easy to see that Q(f,X) = {ord f(X,zi1(X)),...,ord f(X,z,-1(X))}. Indeed, if
¢ is an irreducible factor of df/0Y and z; = z;(X) € Zer ¢ then (f,¢),/(X,¢), =
ord f (X, z;(X)).

Let [, ,, (i #j) be the quantities introduced in Section 3 of this paper. It is
easy to see that

}, = Z <0rd ord(y; — yp)>ord(y,»fy,ﬂ)
for i #j.
Now suppose that y; € |Zer fi| and let K; =ord(y; —y;) for a j#i. By
Proposition 3.5 we get

YI)"j ZPI 7p1 Kl)

and consequently {l,,._,y/. cj#i ={pi(Ky): Ky €|Pi(f)]} =pi(IP1(f)])-

Similarly {4, ,, : j # i} = pe(IPc(f)]) if  yie|Zer fi| for k=2,....r
Therefore by Theorem 2.3 we get O(f, X) ={l,,,:j#i} =pi(|P1(f))U--- U
P12 (D)

Now we can give

Proof of Proposition 1.1. We assume ¢t = X. Let f be an irreducible power
series Y-regular of order p > 1. Let (by,b1,...,b,) be the characteristic of f.
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According to Proposition 4.2 we have Q(f,X) = p(|P(f)|) where p: R, — R
is given by the formula p(K) =) P(f)x for K >0. Recall that |[P(f)| =
{b1/by,...,by/by,+0} and p(bk/bg) = > P(/ )b/, = Bi—1bi/bo by Proposition
3.3(1). Therefore Q(f,X) = {Bix_1bx/bo:k=1,... h}.

Proof of Theorem 1.3. We assume ¢t = X. We need to calculate p;(|P;(f)])
for i=1,...,r. Without restriction of generality we assume i =1. Let K > 0.
By definition of Puiseux’ date we get

Pi()k = P(Mmink. k) @ @ P )min(k. k1)

Therefore

K)=> Pk Z(zp P
- (X.f)
= ;ﬁ (Z P(.f] )min(Kquj))

by Proposition 3.3(iv).
Recall that Kj; < K if and only if ZP(fl) < > P(fi)x. On the other
hand by Proposition 3.3(ii) we get

(f1:/i)o
Z (fl)K], (X fj)

Let pu(K)=> P(fi)g- Thus Kj;; <K if and only if (fi,f),/(X,f), <
pii(K). By definition of the set Ji(r) we see that K;; < K if and only if
jeJi(p11(K)). Then, we can rewrite the formula for p;(K) as follows

pl(K) = Z ((:;(Y:;jl))(; (Z P(fl)min(K,Klj))

j=1

_ - j:) (Zp(ﬁ)mmucm») + Z (Zp(ﬁ)mi““*’“’))

jeJt(pn(K)) (X, fido jeli(pn(K))

(Xvﬁ)o (va/)o (flaﬁ)o
JjeJ{(pn(K)) (X,fl)o ( ) +j€«71(§1’;(1<)) (X7fl)0 (X,fj)o
_ (X f)o (o fo _
: (/eJ%I:M K)) (X’ﬁ)o)pn(KH/eJ%:«K)) (X, /1) Do)

Recall that ‘Pl(f)| = |P(f1)|U{K12,...,K1r}. Thus p11(|P1(f)|):
pu(|Pi(N))U{pu(Ki2), ..., pu(Kir)} = O(fi, X)UH(f,X) by Proposition
3.3(1), (i) and pi(IP1(N)]) = qi(pu([Pr(N)]) = ¢1(Q(N, X) U Hi(f, X)).  Analo-
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gously we get p;(|P;(f)]) = ¢:(Q(fi, X\)UH:(f,X)) for i=2,...,r and the the-
orem follows from Proposition 4.2.
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