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§ 0. Introduction.

Studies of G-structures and connections concerned with differential systems
on a manifold have been deeply developed by N. Tanaka in these ten years
[Tl, 2, 3, .- . ] .

Classical examples of G-structures are the projective and the conformal
structures on a differentiate manifold. The former is a geometry with model
space Pn(R) and group PL{n, R), [KN], the latter is with model space Sn, the
Mobius space, and group PO(n + l, 1), [0] .

Here, we study a Lie contact structure considered by H. Sato [S, SY], which
is a geometry over {2n—l)-dimensional contact manifolds with model space
TxS

ny the unit tangent bundle of the n-dimensional standard sphere, and group
PO(n+l, 2). Since the grading of the Lie algebra of O(n + 1, 2) is from —2 to
2 (of the second kind), the structure is much more complicated than the clas-
sical ones.

In this paper, we give basic facts on Lie contact structures in § 1. In § 2,
we discuss on some examples. In particular, the structure given on the unit
tangent bundle T1M of a riemannian manifold M is important because it is
related with both conformal structure of M and contact structure of 7ΊM[M2].
To investigate the relation, we must calculate the curvature of the normal
Cartan connection defined in § 3. In fact, by the connection theory due to N.
Tanaka [Tl, 2, 3], which is thoroughly applicable to Lie contact structures, the
normal Cartan connection determines the structure completely (§ 4). Nevertheless,
the concrete description of its torsion and curvature have not yet been done.
In § 5, we give an explicit description of these objects, proving at the same time
the existence of the connection in a constructive way. All of these results are
used in [M2] to calculate the curvature of the normal Cartan connection of the
Lie contact structure on TXM. Note that the definition of normal Cartan con-
nections in [T2] is different from the one in [T3], the latter would be preferable
theoretically. We adopt here the definition in [T3].
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Except for elementary facts, the argument in this paper is self-contained
the theory itself depends on [T2]. A resume of the present paper and [M2] is
given in [M3]. The author would like to thank to Professors H. Sato, K. Ya-
maguchi, S. Tanno and K. Sakamoto for their valuable suggestions.

§ 1. Preliminaries.

Let R"+5={χ=(χ°, •-. χn+2), xι(=R} be an (n+3)-dimensional real vector
space endowed with a scalar product <,> with signature ( + , • • • , + , — , — ) a n d
let Λ ? + a = { *€=Λ 3 + 8 , xn+2=0}. Denote by Pn+2 and Pn+1 the associated projective
spaces. Furthermore, let Rn+1={x^Rΐ+\ χn+1=0}. By <,>, we denote the
induced scalar product on J B ? + 2 or on Rn+1. Now, the unit sphere Sn=
{x^Rn+1\(x, Xs)—1} is naturally embedded in Pn+1 as a Mόbius space Qn,

by x-+(x, I)ei2? + 2 . On the other hand, let Σ be the set of all oriented hy-
perspheres in Sn ^—{{mf # ) e S π x [ 0 , π) | an oriented hypersphere with center
m and radius θ}. Then Σ is naturally embedded in Pn+2 as a quadratic Qn+1,

by (m, θ)->{n
The Mobius group L is, by definition, a group consists of projective trans-

formations of Pn+1 preserving Qn, and we have L—PO(n+l, 1). The Lie trans-
formation group G is, by definition, a group consists of projective transforma-
tions of Pn+2 preserving Qn+1, and we get G = P O ( n + l , 2)[P]. Clearly we have
LaG. Now, let Λ2n~λ= {lines in Qn+1 generated by ([fej, [k{])ϊΞQn+ιxQn+ί,
(ku k2>=0\. Then we have

T1S
n={(u, v)£ΞSnxSn\<u, v}=0}^A2n-1

under a mapping (u, v)-»([&i], [^2]), where ki=(u, 1, 0), k2=(v, 0, 1). Since G
preserves <, >, it induces an action on Λ2n'\ It is easy to see that G acts on
Λ2n~ι transitively and Λ2n-ι-G/Gf for an isotropy subgroup G' of G.

Choosing a suitable base of JR§+3 so that <w, v>=tMev, where

/ 0 0 - 7 ,

e=(β«is)= 0 7 n . ! 0

\-/ 2 0 0

we have O(n + 1, 2)={S<=GL(n+3, R)\tSεS=ε} and G = P O ( n + l , 2). The Lie
algebra g of G is then given by g = { Z e g ϊ ( n + 3 , R)\ιXε+εX=0}. Note that g
is a graded Lie algebra with grading g=g-2+g-i+g0+giH-g2, [g», gj]=g ι +j, where
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LEMMA 1.2. TTzg isotropy subgroup G' is given by

r* i

A

gd

0

- " r f

0

0

tΛ-i

g(Ξθ(n-l), A<ΞGL(2, R)

The Lie algebra of G' is 9'=go+9i+92, and dimG/=-ό-(n2+n+8).

Proof. This follows from [T2, Lemma 2.5, 6], In fact, we have

A

0

0

0

g

0

0

0

tA-i

expZo—

1 0 0

= 0 1 0

/ 0 1

where A, g, d, f are given above.

L 0 0\

, e x p Z 1 = | d 1 0

ίdd_
2

1 = 0, 1, 2,

q. e. d.

Now, we give an explicit description of the isotropy representation p: G'-*

GL(2n —1). Note that g=g r+m where m=T0(G/G') We choose a base

0i, 02, •••, 02n-i of m a s fo l lows

0

0

0

0

0

0

£

0

0

1 ° 1

0
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0 bi 0

0 0 %

0 0 0

Ό, - , 0, 1, 0, - , 0

,0, ,0,
, j = 2 , •••, n ,

0

0

0

bl

0

0

0

Ψi

0

0,

, - , 0 , 1,0, ...,
, ί = 2 , •••, ft.

PROPOSITION 1.3. l#7i/i respect to this base, the isotropy representation G—
p(Gf) is obtained by

G=

0 0

\—sls\+s\sl sis) sis)

, ( s ? ) e G ' , ι , / = 2 , - , n

Remark. With respect to a natural embedding O(n — l)dCO(n — l)(Z.G', we
have

(1.1) O ( n - l ) c C O ( n - l ) C G .

Proof. For S = ( S J ) G C , we will calculate Se^'1 modulo gr, / = 1 , ••• , 2 n - l .
By Lemma 1.2, we have

0 0 \

s=

so that

Then we have

A-1

-dA-1

I* - ,

: *

\*

* Ab

ί = 2 , •••, n,
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and

Noting

we get

that

the

/cn+i cn+ί\

1 r
\sn+1 sn+2/

proposition.

* Abί

* *

* *

Ίsl

~ \sl

>

'g

ί

<;0\ -

1
sύ

0

y tb'ιt

*

A

f

>

ςl
Si

Us?

1=2,

-si

, 7 2 .

q. e.d.

DEFINITION. For a (2n—l)-dimensional differentiate manifold Af, a G-
reduction of the linear frame bundle of M is called a Lie frame bundle over M
or a G-structure on M.

Now, we define a Lie contact structure. For a G-structure (P, fl on a
(2n —l)-dimensional manifold, the basic (usually, called a canonical) form θ is,
by definition, an m-valued 1-form on P given by

θίXu^u^π^X, X^TUP, π:P-^M, the projection.

DEFINITION. Let (P, θ) be a G-structure on a (2n —l)-dimensional manifold
M. Let θp be the gp-component of θ, where m=g_ 2+8-i. When θ satisfies

(1.2) -i, 0-I]Ξ=O (modi..),

the G-structure is called of type m, or equivalently, α L/e contact structure.

Clearly, a Lie contact structure is the G-structure of type m discussed in
[Tl, 2, 3] when G = P O ( n + l , 2). It is mentioned by H. Sato [S] that there
exists a Lie contact structure on the unit tangent bundle TXM of any n-dimen-
sional Riemannian manifold. We show this in the next section. More generally,
the structure possibly exists, on a (2n—l)-dimensional contact manifold, as we
investigate in § 2.

§2. The Lie contact structure.

In [Tl, p. 10], for a regular differential system D on M, Tanaka constructed
a graded Lie algebra m(x) at each point x of M, and when m(x) is isomorphic
to a fixed fundamental graded Lie algebra tn= Σ! 9P for all x, he calls D of

type m. Moreover, he shows that if (M, D) is a regular differential system of
type m, then it corresponds to a G0(m)#-structure (P # , θ) of type tn over M,
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that is, a G0(m)*-structure over M with the basic form θ, satisfying

<2.1) dθP+^ Σ [9r, ί.]Ξθ (modθr(r<p);θrΛθs,r+s<p, p<r,s<0),

where p<—2 and θv denotes the gp-component of θ. For the definition of
{P#, θ) and G0(m)#, in general cases, see [ T l ] . This is a beautiful geometric
interpretation of (M, D), and the more important is the existence of a normal
Cartan connection on (P*, θ) when the structure group satisfies a certain condi-
tion.

When D is, in particular, a contact structure of a (2n — l)-dimensional mani-
fold My (2.1) is reduced to a simple equation (1.2). We will explain this case
in detail. At each point x of M, put Q^(x)=TxM/DXf Q-i(x)=Dx and tn(x)=
0-2(x)+9-iU). A Lie bracket in m(x) is defined by [m(x), g_2(x)]=:0, and for
X, Feg.xOO, [*, F ] = π ( [ Z , F]), where π : TxM-^g_2(x) is the projection. This
is well-defined since π([fX, Y~\)=fπ([_X> Y~]) for a function on M. We put a
generic assumption that m(x) is isomorphic to a fundamental graded Lie algebra
m, at each *<=M. Now, let P # be the set of frames on M satisfying

(1) z\ g_!->g_i(x) a linear isomorphism,
(2) z: m->m(x) a Lie algebra isomorphism,

where z is a map naturally induced from z: m-*TxM. Let G0(m) be the auto-
morphism group of m, iVo={ceGL(m)|c7»2ΞF_2 (modg.i), c F - i = F - i , F p e 0 p }
and Go(m)#=:Go(m) ΛΓo. Actually, P # is a G0(m)#-bundle over M.

LEMMA 2.1. Lei (Aί811-1, D) fo? α conίαcί manifold and let (P # , ί ) 6̂  ίAe as-
sociated Go(m)*'structure with basic form θ. Then it satisfies

(2.2) d 0 - i + 4 [ 0 - i , 0 - I ] Ξ O (mod0_2).

Proof. As is well known [S2], with a contact manifold M is associated a
contact metric structure (η, φ, ξ, #), ̂  the contact form, φ is an endomorphism
of TM, ξ is a vector field on M and g z. metric on M satisfying

g(φX, φY)=g(X, Y)-η{X)η{Y), X, Y^TM,

(2.3) dη(X,Y)=g(X,φY), X,YELTM.

Let ^ be the canonical form on P # . We can choose a local section σ: M-+P*,
σ(x)=(zίf Zi> "-, zn, zj, -" , Zn) where Zι=2ξ, z2 is a unit vector orthogonal to
ξ, Z2=φz2, zz is a unit vector orthogonal to zu z2 and z^, •••, and so forth. Note
that ^ ί — 0 and η(z%)=η(zz)=0 for / = 2 , •••, n [B, p. 20]. Construct a Lie algebra
m consisting of a base #i, •••, en, e-ζ, -~ > en where the Lie bracket is defined by

(2.4) Ox, β t ] = [ > i , «»]=[«», ^ ] = [ « Ϊ , e j ] = 0 , [e t , e
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Then from (2.3), we have

(2.5) dη(zt, Zj)= — -^η{\_zl} zf\)=g(zt, φz])=—δυ,

and dη(za, zβ)=Q for other pair (za, zβ), which implies that D is of type m.
Put θ=σ*θ. Since we have an isomorphism σ(x): m->TxM, X G M , given by
σ(x)(aβeβ)—aβzβ for aβZβ^TxM, where β is summed over 1, •••, n, 2, ••• , n, we
see that

θ(aβZβ)=θ(σ*aβzβ)=σ(x)-1aβZβ=aβeβ.

Thus we can write
1 _ U _. _-r

2 1 = 2

Then from (2.3) and (2.4), we obtain

(2.6) dθ-2+ -K [0-i, 0-i]=O.

Now, at u=σ(x)a~1^P*, a —be, b^G0(m), c^N0, identifying θ—π^θ, we have

i.e.
θ-2=bθ-2, and

Therefore, we get

but since

(2.7)

we have

On the other hand, form θ^^b^θ^ (mod^_2), (2.6) and (2.7), it follows

dβ_2=-λte_u ^ j s - l j r i ^ ΘΛ (mod 5-s),

and we get the lemma. q. e. d.

By using the base (elf eιy eϊ) of m above, the structure group G0(m)# can be
represented as

),aΦ0\,
* CSP{n-lyR)J

and so contains G.
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COROLLARY 2.2. For a contact manifold (M 2"" 1, D), a G-reduction of(P*, θ)
is a Lie contact structure.

Noting (1.1), we show:

PROPOSITION 2.3. Let (M, g) be an n-dimensional Riemannian manifold. Then
on the unit tangent bundle TXM of M exists a Lie contact structure.

Proof. Let Qg be the principal fiber bundle over M with structure group
O(n). Then by [KNI, p. 57], P8=(Qs/0(n-l), O(w-l)) is the principal fiber
bundle over TλM. Noting (1.1), we define an extended buncle

In order to show that this G-structure is of type m, recall the geometry of TXM
when M i s a riemannian manifold [SI, 3 ] : For Z^ΞQ g, where z=(zlf •••, zn),
let zj, z\<=TTM be the horizontal and the vertical lift of each vector zt. Then
for ZxCΞTiM, w(z)=(zf, zj, zj), 2<i<n, is an orthonormal base of T^TΊM with
respect to the induced Sasakian metric Sg on TXM. Thus Pg—{u{z)\z^Qg} is
an O(n — l)-principal bundle over TλM under the action σ of h^Ξθ(n-l) given
by σ{h)u{z)—u{zh) where

~ ft °\
\0 h)

Now, on the contact structure (TXM, D) defined by

D={X£ΞTZlT1M\Sg(zϊ, X)=0},

the associated contact metric structure (rj, ξ, φ, g) is given by

g=—Sg, ξ=2z1}, η is t h e d u a l t o ξ w.r.t.g

<p(ξ)=0, p ( z f ) = z ϊ , φ(zt)=-zh

z, i=2,— , n ,

[B, p. 133], using M(Z), Z G Q 5 . Thus (2.5) is satisfied for z t =2zj , zj=2zj,
l<i<n, 2<j<n, and hence we get [zf, z%\—z\y which implies that M(Z) is a
frame adapted to the structure. Thus the proposition follows from Corollary
2.2. q.e.d.

Remark 2.4. The Lie contact structure on TXM defined as above depends,
in fact, only on the conformal structure of M [see SY].

§ 3. A normal Cartan connection of type GIG'.

To a Lie contact structure, we can apply the theory of N. Tanaka [T3]
which guarantees the existence of a normal Cartan connection of type G/Gf.
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In §5, we prove this fact directly in a constructive way. This section is a
preliminary for it.

2

We fix a base of g= Σ gp as follows; let eu et, ei=en+l_lf 2<i<n, be the
p=-2

base of m defined in § 1. Define β ί = ^ i , 2 ? = ^ and ef=ιeι (i=2, ••• , n) which
form a base of m*=gi+g 2. Furthermore, let £ j denote the 2x2 matrix with
(/, y)-component = 1 and the others zero. Define

eγ-

el=

El

0

0

0

0

0

0

0

0

0

F)

0

0

0

-E\

0

0

0

E\

0

0

0

0

0

0

0

-El

where F), 2<i<j<n, is the (n — l )x(n — 1) matrix with (/, y)-component ——(j,i)-
component = 1 and the others zero. Put e)——e{ if i>j. The following is
elementary.

LEMMA 3.1. The Lie bracket [α, b~\ of g is given in this base by the follow-
ing table:

b

a

βx

eϊ

el

e\

el

e\

e\a

e*

e*

e\

0

0

0

βi

0

0

ei

0

e~x

-et

-E

e3

0

0

-δι

je1

e3

0

ej

0

— F ι

e)-W

-δ)e\

ef

e-3

0

δ)ex

0

0

-e,

0

e>

-δjel

e)-δι

3e\

-el

el

-ex

—e%

0

0

-el

el

0

0

e*

0

el

el

0

0

e%

el

0

-F

-el

0

et

0

0

eΌ

0

—eι

0

-«ί

F

0

el

0

0

0

e\

—e,

0

— β£

0

e\

—el

0

0

0

ef

β?

0

P-k

0

0

0

0

F ί?

£ »

0

- e j

δJ«8+«J

3}ei

-«?
0

0

-E%

0

0

e,

δjel

δ)e\+ej

0

0

-e*

- « ?

-ίjβt

0

0

£

-et

e*

- β ί

0

0

-ef

0

0

0

0
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where

E=e°0+el F=el-el £{}=ej3i-0#i, E\*=e$\-e\i)9

ε=nothing or *, A^b)ef-\-bte)-bfe\-h\ef.

From this table, we get

LEMMA 3.2. 77i£ Killing form B of Q gives the duality between m and m*:

B(eίf ef)=2(n+l), B(β>, e*)=B(*ϊ, ^ ) = 2 ( n + l ) ί < ; ,

and Z?(, )=0, /or aί/zer />α/rs.

Now, we give the Mauer-Cartan equation of G, taking a local coordinate
(s£+2, sj+ 1, s^+2, sj, s?, sj, si, s*, s5, s}, sn

0

+2), 2<i, j<n, of G, where (sa

β)(ΞG.

LEMMA 3.3. Let ωa

β be the left invariant 1-form on G which coincides with
dsf at id^Gy where (a, β) moves so that (sj) gives the local coordinate defined
above. Then the Mauer-Cartan equation is given by

dω\—— (ft>o—ω])/\0)\—α)n+iΛα>

dωl—(ω°0—ω\)A(ol—ω^+2Aωι

0,

dω\—— α>oΛα>ϊ—ωl+2/\ω\—ω%+

Proof. Let ω—s'^ds, s=(sf). Then it is obvious that ώ is left invariant,
ajβ=a)β at idt=G and

dώf——ώ?Aώrβ .

Noting the relation among ωj obtained in § 1, we get the lemma. q.e.d.

A Cartan connection (P, ω) of type G/Gr over a manifold M with dim M—
dim G/G', is by definition
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Cl) P is a principal fiber bundle over M with structure group G',
C2) ω is a g-valued 1-form on P satisfying

( i ) If ω(X)=0, then X=0.
(ii) Rtω=Ad((Γι)ω,
(iii)

In our case, let (P, ω) be a Cartan connection of type G/Gf with 0=ω_2
where ωp denotes the gp-comρonent of ω. We put θr, ωζ, and ωγy the com-
ponents of ω with respect to the base of g given above. Then the structure
equations of ω are given by

dωoo=-ωo

1Aωl-θtAωi-θ1Aω1-\-Ω°o

(3.1) dωl=(ωoo-ω1

1)Aωl~θιAωi+Ω1

o,

dωϊ=-ωlAM-θι Aωi-Θ1

where ί=2, •••, n, iφj and Ωr, Ωζ, Ωr are the curvature forms of ω.

In the same way as [KN, p. 220], we can write

where /£U)eg(g)Λ2m*, Z<ΞP. For this curvature, Tanaka defines the ^curva-
ture K*: P->g(g)m* by

, K{z){eγy

up to scalar multiple 2(n+l) (see Lemma 3.2), where γ is summed over 1, •••,
n, 2, ••• , ή. In [T2] he calls a Cartan connection of type G/G' is normal when
its *-curvatures vanish. On the other hand, he gives another definition of
normal Cartan connections in [T3], and shows the meaning of the definition
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from the harmonic theory on the cohomology of Lie algebras. Here, we give
and adopt the latter definition and apply it to the Lie contact structures.

For a simple graded Lie algebra g= Σ qp of non-compact type with

subalgebra m= Σ QP, Tanaka constructed in [T3] a cochain complex (C5(m,g),d)
P<0

where C5(m, g)=g®Λ5(m*), and d:Cq->Cq+1 is the coboundary operator (see
also [K]). Let 3*: Cq+1-+Cq be the adjoint operator with respect to the metric
(X, Y)=—B(X, σY) defined by the Killing form B and the involution σ of g.
Explicitely, they are given by

, c(X1/\

- AXq+1)

where ceC5(tn, g), I b •• , I 5 + 1 G m , [>*, Z t ]_ denotes the m-component of

[ej, Xtl, {£?} is the base of m*= Σ 9p dual to a base f^} of m with respect

to B. Define

3

where the summation is taken over rx, •••, rq<0, Σrk=i. Then we have
Λ*(m*)=ΣΛ?. Put

%

Now, in our case, the curvature Ω=(l/2)KθAθ of a Cartan connection ω on
(P, θ) is regarded as ϋf(»eC2(m, g), z<=P. Let ^ be the Cp-^component of
ϋf. Then in [T3], ω is called normal if

1) i f -^O,
2) d*ff*=0 ( ί>0).

We will express them using the components of K with respect to the base de-
fined above, i.e.

where γ is summed over 1, •••, n, 2, ••• , n, (μ, v)=(0, 0), (0, 1), (1, 0), (1, 1), (i, /),
2<i<j<n. Now, note that
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since m=g_2+8-i. Noting also that dimg_ 2 =l, we have

On the other hand, since we have

[ef, * ] _ =

the second term of the right hand side of (*) where c—Kv is written as

e,> βj) for X=eu and 0 for l e g . ! .

Therefore, using the g^-component K% of the ^-curvature, we get

id*K*XX)=K*(X),
and

^Knie^K^M- Σ KVM» e5).

Now we have

PROPOSITION 3.4. A Cartan connection ω on {P, θ) is normal in the sense
[T3] if and only if

(3.2) K-^0 - Kl=Klj=Kh=0 ,

(3.3) V

(3.4)
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(3.5)

(3.6)

(3.7)

(3.8)

(3.9) (d*K s)(βl)=0 *-> Σ (-/iΓ I, ι+K t ΐ ι-K ι t ΐ)=0.
X

Proof. Since K-λ^C'ιΛ=Q.2®/\2-2> we have ϋC-^O—/C2(Ar, F)=0, X, Y
^0-i<->(3.2). Now, we calculate *-curvature ϋΓ* using the table of Lemma 3.1:

A'ί(βI)=ΣCβϊ,

= Σ

X . I

X, k

X, k

X,k

X, k
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4 Σ K

Cι J, k

Now, for 3*ΛΓ°=0, noting that

Σ/f-i(e., β,-)= Σ

we get (3.3). (3.4) is clear. For 3*iΓ=0, from

eoi+/fo1^o1+A'hϊeί+-ί Σ #}iϊ*}),

we obtain (3.5) and (3.6). Similarly we get (3.7), (3.8) and (3.9). q.e.d.

LEMMMA 3.5. When K^^O, (3.2)~(3.4) are equivalent with

(3.4/

Proof. For convenience, denote by (3./)* the fe-th formula in (3.;). Sum-
ming up / = / in (3.4)10 and (3.4)5, we get
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Noting (3.4)8 and (3.4)9, (3.4)! and (3.4)7, we get the lemma. q.e.d.

§4. Tanaka theory.

When (P, ω) is a Cartan connection of type G/G' over a manifold M, a
principal fibre bundle (P, θ) over M with structure group G is defined by P=
P/ker p, θ is a unique m-valued 1-form on P with β=ρ*θ, where θ=ω.2+(o^i
and ^ : P-^P is the bundle homomorphism corresponding to the homomorphism
p : G'—>G. Then (P, θ) is a G-structure on M and every isomorphism ^ : (P, ώ)
->(P', ω') induces an isomorphism &: (P, θ)-*(Pf, θf) [T2, 1.2]. When K.-χ=09

the G-structure is of type m, which is the case when (P, ω) is a normal Cartan
connection.

The purpose of this section is to construct a normal Cartan connection
(P, ω) of type G/G' corresponding to a given G-structure (P, θ) of type m,
uniquely up to isomorphism.

[la 0 0\ ]
Tobeginwith, let §0={X<=QQ\p_2(X)=0} = \ 0 e 0 eg 0, Trα=0k and let

l\o o - W j
Ho be a closed subgroup of Go corresponding to %, i.e. //0={αGG0 |det jθ(α)=±l}

[(A 0 0 \ 1 / - / 2 0 0
= -̂  0 ^ 0 , d e t i 4 = ± l k Note that QO=RE+Ϊ)O, where E= 0 0 0

l\0 0 M"1/ J \0 0 /,.
Moreover let ί)=g_2+9-i+^o, with a corresponding group H=G_ HOf where G_
is the Lie subgroup of G generated by the subalgebra m. Then since G/Ho is
homeomorphic to RXQU there exists an //0-reduction (Q, ζ) of (P, /?). In the
riemannian case, this is given by, for instance, Q=PgXocn-vH0.

Now, we introduce the theory in [T2] on the uniqueness of the normal
Cartan connection on a given G-structure (P, θ) step by step.

Step 1 [T2, Proposition 6.1 J. Take an i/0-reduction (Q, ζ) satisfying

(4.1) dζ-.+ y K - i , C - i ] = 0 .

Step 2. Extend ((?, ζ) naturally to a G'-bundle (P, ί ) by

Step 3. Let 1 be any Cartan connection of type H/Ho on (Q, ζ), compatible
with ζ.

Step 4 [T2, Lemma 1.6]. Extend X uniquely to a Cartan connection ω of
type GIG1 on (P, θ).

Step 5. Noting that iC 2 =0 for ω in Step 4, we can make an ^-system
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(P, θ, ωE) from ω.

Step 6 [T2, Proposition 7.1 (1)]. This £-system (P, 0, ω )̂ induces the
original G-structure (P, 0) of type nt.

Step 7 [T2, Proposition 7.1 (2)]. If two G-structures of type m induced by
two ^-systems are isomorphic, then the two ^-systems are isomorphic. In this
sense, the ^-system in Step 6 is unique.

Step 8 [T2, Proposition 7.2]. For a given £-system (P, θ, ωE), there exists
a unique normal Cartan connection of type G/G', (P, ω).

Step 9 [T2, 7.2]. Following Step 1-8, we can construct a normal Cartan
connection (P, α>) corresponding uniquely to a given G-structure of type G/Gf

from a specified X on (Q, ζ) of Step 1.

Now we briefly investigate each step: we prove Step 1 in §5. Step 2-4 are
elementary. An E-system (P, θ, a) is by definition,

EO) P is a principal fibre bundle over a manifold of dimension 2n — 1 with
structure group G', θ is an m-valued 1-form on P and a is an JRZs-valued 1-
form on P.

El) Θ(X)=O if and only if X is vertical, JSΓeΓP.
E2) R*θ=p(a~1)θ for Q G G ' .
E3) i ^ a ^ α + G ^ C α " 1 ) ^ for α e G ' , where ( )^ denotes the ^-component.
E4) « ( * * ) = * * for

E5) d ^ + l ^ , β .J + Eα, β.β]=0.

Note that θ_2—θιeί, θ.1=θtei+θϊe-ι. Now, Step 5 is obvious since /f_2=0 is a
consequence of (4.1). As for Step 6, since we have p(x)=x for x<=Q, it fol-
lows £*#—ζ=c*(p*θ) where ^: ( J ^ P is the inclusion map, we get θ — p*θ. Step
7 is important and we show it in detail. By a simple calculation, we obtain:

L E M M A 4 . 1 . Let i e g 2 and let ely ••• , en, e^, ••• , en be the base of m given
in § 1 ατ2(i 3. T/ẑ n

(Ad (exp x)e1)E= — le1, x~] ,

(Ad (exp x)er)E=0 , y—i, i, 2£z£n .

Now, Let (P, 0, Λ) (resp. (P r, ^ r , «r)) be an ^-system on M (resp. M') and let
(P, ^) (resp. (P r, 0')) be the corresponding G-structure of type m on M (resp.
M'). We show that if φ is an isomorphism (P, <9)—>(Pr, ^r)> there is a unique
isomorphism ^>: (P, 0, α)->(P', 0', αr) which induces the given ^. In fact, for
the uniqueness; Let φx and φ2: (P, θ, a)->(P', θ', a') be two isomorphisms
which induce the given isomorphism φ. We can find a unique map a: P-^G'
such that ψ2{z)=ψ1{z)σ{z) for z ε P . Clearly σ(z)^Ker p, and so we may ex-
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press σ(z)=expτ(z), τ : P->g2. For Z(ΞP and X^TP, we can decompose

where F s g 2 . Using Lemma 4.1 and E3), we can show

(4.2)

Since φ*θ' — θ and ψ\a' — α, i=ί, 2, we get [0_2, r ] = 0 or r—0. Now, we con-
struct the isomorphism φ from any bundle isomorphism φ1: P—»P'* By the
uniqueness, we may assume P and P' are trivial. In order to be φ*a'=a, we
must find a function r : P—>g2 satisfying a—φ*<xf = \_θ-2, r ] (note (4.2)). Since
we have ( α - p ί α ' J Λ f l ^ O from E5) and φ:fθf=θ> we get α - p f α ^ ^ E for
some function A on P. Now, since (a-φfa')(X)=A(z)ΘKX)E=lθKX)eu A{z)ef]
for ^ e P , and X^ίTP, we obtain τ-=Ae%. Because of R%(a—φta')τ=a—φ$ar,
using i4d(α)0?eg2 and (Ad{a~1)E)E=E, we see that i4d(α)rUα)=ί>U) ft>r ^ G ?
and CGG'. Then for <r(^)=expτ(^), we get <7(2rα)=α"1<7(2r)α. Thus we obtain
the desired bundle isomorphism φ: P-^Pr by φ{z)=φ1(z)σ(z).

In the next section, we prove Step 1 and construct a normal Cartan con-
nection from this ϋfo-reduction, proving Step 8 at the same time.

§ 5. The construction.

In this section, we prove the following three propositions to obtain the
normal Cartan connection corresponding to a Lie contact structure (P, θ).

PROPOSITION 5.1. For any H0-reduction (Qr, ζ')of (P, θ), there exists an Ho-
reduction (Q, ζ) with basic form ζ, satisfying

(5.1) dζ-»+-g-K-i,ζ-i]=O.

PROPOSITION 5.2. Let n > 3 . Then on (Q, ζ) of Proposition 5.1, there exists
a unique Cartan connection 1 of type H/Ho satisfying ζ=3L2+X-i, T-ι^d*TQ-
(9*T1)(g1)=0, where T denotes the curvature of X.

PROPOSITION 5.3. Let n>3. Extend (Q, ζ) of Proposition 5.1 to α Gf-

principal bundle P by

P=QχHG' .

a unique normal Cartan connection (P, ω) of type G/Gf in the
sense [T3], w/ifd induces the Lie contact structure (P, 3).

Proof of Proposition 5.1. Let (Q, ζ) and (Q', ζ') be any two i/0-reductions
of (P, ^). Then, there exists a map <τ: Q-^expi^Eexpgi such that xσ(x)^Q'9
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. Note that an element s=(sβ) in exρi?£exρgi is written as

s=

λh 0 0 \ //, 0 0
o /„., o yd 0

'dd ,0 0

λh 0 0
d /,., 0
'dd ιd 1
2A λ2

and so from Lemma 1.3, we get

/ λ% 0 0

p(s)=i-λsl λl» i 0

\ λsl 0 λlnj

Now, since we have ζ'=o-'ζ, ζ'=Z'1eί+ζnei+ζ'ϊe-ι and ζ=ζ1β1+ζ ie i+ζ lβϊ, put-
ting σ'1=p(s), we obtain

ζ' = σ-iζ=σ-\Qe1+ζiei+ζιe-t)

=ζ,\λtβι-λs\et+λslβϊ)+ζ*λβi+ζϊλβi

and so

From the structure equation, we obtain

therefore

(5.2)

Now, since (P, ̂ ) is of type m, we can write

Ωn=T'\τζ
ιf\ζr, r=2,-,n,2,-,n.

Noting this fact, from an arbitrary //(.-reduction ((?', ζ') which exists by the
reason stated in the beginning of § 4, we construct the desired ((?, ζ) as follows:
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Define

where

a

So

map

and

τ

S i

: Q->gi by

τ(x')=

are given

0

d

0

by

REIKO

0

0

%d

0

0

0

MIYAOKA

t

, d=
•5?

S?

From RtT'=Ad(a'1)Tf for a^H0, we get τ{xfa)—Ad{a'1)τ{xt). Now, for σ{x')
—expτ(x'), since σ(x/a)=a~1σ(xf)a and so xfaσ(x'a)=x'σ{xf)a hold, we obtain
a subbundle (Q, ζ)={x'σ(x'), X ' G Q ' } . NOW, from (5.2), where λ=l for this σ,
we get (5.1) on (<?, ζ). q.e.d.

Remark. In the Riemannian case, the basic form of PgXocn-ΌH0 satisfies
(5.1) [M2].

Proof of Proposition 5.2. By (5.1) and X°0+X\=0, note that a Cartan con-
nection (Q, X) of type H/Ho such that ζ=X_2+X_1 satisfies T_ 2 =0. Then by
Lemma 3.2, we may check (3.4)' and (3.5) for X to satisfy T"1=d*T0=(β*T1Xeι)
- 0 .

Uniqueness: Let X and X' be two Cartan connections satisfying the condi-
tions in the proposition. Then Z_2=X-2, X_i=Xii. Since XO—XΌ=O on the fiber,
we can write

χ*β-x'aβ=A*β7ι?,

where (α, j8)=(0, 0), (0, 1), (1, 0), (1, 1), (ι, /), 2<i<j<n, Xi+Xl=X'i+X'l=O and
γ is summed over 1, •••, n, 2, •••, n. Let Ψ and F ' be the corresponding cur-
vature forms. Then by the structure equations (3.1), we get

(5.3) ¥"-¥*=-A)/? AV+

(5.4) ψn_ψi=_ i 4j r ζr Λ ζJ+

Here and hereafter, i, j , k are summed over 2, ••• , n, and f is summed over
1, ••• , n, 2, ••• , n, by using Einstein convention. Now, using the components
T%r and Tra

βr of ¥ and F ' , we can write the left hand side of (5.3) and (5.4),

| (T'J rTJ r)^ΛP and -ί(

where we may assume that Tι

βγ— — Tι

γβy T/7

βr= — Tn

rβ. For simplicity, put
fa

βΐ=T'aβr-Ta

βr. Then we have

'T'ί — Λi A 0 Xi
1 lj -*~Ljl -<101t-'.7 f

Ti—-_ do *t
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Φl A1 ft1

ψϊ Λl Λl Xl

Note that Alr+A\r=0, Aι

n- — A\r, A\r=0. Then (3.4) implies

(5.5) O=Σ,fi

]i=Σ,Aι

ίi+AlJ-(n-l)A$J <->

(5.6) O=nTU=Al}-(n-l)Al, ̂  Al,=0

(5.7) O= ΣTlι=ΣA}ι+Al)-{n-l)Al ^>

(5.8) O=nTU=A}}-(n-l)Al, ^+ Al3-(n-l)A\j=0

(5.9)
ih-Ait-Alt (i=jΦk)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14) jw j ,
-ZA}ι-Alt-A{, (i=jΦk)

From (5.5) and (5.11), we have —(n—3)A°Oj+(n—l)Alj=0, and so with (5.8), we
get ^ , = ^ - = 0 , if n>:3. Then from (5.7) and (5.13), we get —(n-3)Ao

ΰj-(n-l)Ao

1}

=0, and so with (5.10), we have Aoj=A°1}=O, if n>3. From the upper formula
in (5.6) and ?<-»/ there, we know that A)k is skew in any two indices, and so
again from (5.6) we get A)k—0, iΦjΦkΦi. From the lower formula in (5.6),
we get Alι=Q (iφk). Similarly from (5.11), we have A)g=0, iΦjΦkΦi, and
Aι

kϊ=0, iφk.
Now, for (3.5), we have
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Noting that Xl+X\=X'l+X'\-O, we have similarly,

Since we have from (5.3) and (5.4),

'ΣtU=-(n-l)Alι, fii-fij+(tii-f\j)=-2A{1+2A}1=4:A)1 (iΦj),

Σtί,=-(n-lM}1, Σ?ί!=-(n-l)ΛΪ,,

(3.5) is written by

(5.15) Σ(fU-flι)=-2(n-l)Alι,

(5.16)

(5.17)

(5.18)

Thus we have A%x=A\y= A\x= A)X=Q and Z=Z/.
Existence: For any Cartan connection ΊJ of type H/Ho on ζ) such that ζ

XLϊ+V-2, we construct a new Cartan connection X" by setting 3^ 1+Z^ 8=ζ and

where ^4 r̂ are given by, using the curvature T' of T',

j γ i τ ι / ϊ /to

72—2 ^ ' ;'~~ n — 2
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Δk _JT/t. Tit. Til
•fili— o X1 ii >• ki * {

To obtain A)k, take a cyclic sum of the upper formula in (5.9), noting that
T%-T}k + Tk-Th=0,

®t.,.kSt)=-6S,

where S}i=T'}1-7"J» + T'* ι—T'jj, and S=Λ}»+i4*,+Λί,. Since S},=-3Λί,-S,
we get

Similarly from (5.14), we get

Let 0"=(l/2)7"ζΛζ be the curvature form of X". Define a connection Z by
χ_2=XΊ2, i_x=ifu and

where Afx is given by (5.15)~(5.18), in which T is replaced by T". Then we
can see easily that the obtained 1 satisfies T"1=3> i cT0=3 : ί ίT1(β1)=0. Since there
always exists a Cartan connection T of type H/Ho with basic form ζ by the
local triviality of the bundle, we get 1 actually by above procedure, q. e. d.

Proof of Proposition 5.3. Let (Q, ζ) be an ϋ/0-reduction of (P, θ) satisfying

(5.1) dζ-2+yK-i ,C-i]=0,

and let 1 be the Cartan connection of type H/Ho constructed in Proposition 5.2.
Now, let ω' be a connection on P naturally i. e. flattly extended from X. Then
ω' restricted to Q satisfies

(5.19) (ω'\ ω'\ ω'\ ω'2)=(ζ\ ζ*, ζ\ Xf),

where ι = l , ••• , n, {a, i8)=(0, 0), (0, 1), (1, 0), (/, ), 2<iΦj^n. Using this ω',
we construct a unique normal Cartan connection ω of type G/Gr such that

(5.20) (a)1, ft)1, ft)1", ω?)=(ω/1, ft)/ι, ω'\ j)'f),

where (α, j8)=(0, 0), (0, 1), (1, 0), (/, j), 2£iφj£n. We denote the basic form
on P by θ=ω-2+o)-i=ω.2+(o.ί} c^θ—ζ.
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Uniqueness: Let ω and ω' be two normal Cartan connections of type G/G'',
satisfying (5.20). Since ω—ω'—0 on each fibre and by (5.20). We can write

ω\-ω'\=A\γθ
r,

(Of U)'i= Axγθ^ ,

ω1—ωί=Alrθ
r'

Now, from

we get A{,=Alj=0, 2£j^n. Then from

Ωn-Ωt--=A-%ΐθ
rAθ1,

we have, denoting K=K'-K, K\3=-A-X3, ft\,=Ax), K\^-A-%h K\y-=Aι-j-A\ιδ),
and other Kfr=0. From

Ω'°0-Ω{=-θ%ΛAtrθ
r-θ1ΛAlrθ

r,

Ω'\-Ω\=-θx/\Aιrθ
r,

ΩΊ-Ω1

0=-θiΛAtrθ
r,

Ωn

1-Ω1

1^~d(A\1θ
1)-θϊAA-ιrθ

r-θ1AAlΐθ
r,

we have by (3.5),

(1) O=

(2) 0 =

(3) 0=

(4) 0 =

(5) o = i ? ! ί -

From (1) and (4), we get i4h=0. Note that (2), (3), (5) hold trivially. Then
(3.6) is written from !t\i=AX}, ft%X]=-Axi+AjU Rk,=-At}, Ki

mk}=-Atkδiι+
Atjδξί-Amjδl+Amkδ

i

},
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(6) O=Ajt-nAtj-ΣAkkδi,

from R\,=-A'%3, K\%J=-A-%j+A-jU K\-XJ^-A-ιJy

-Arnjδl

(7) 0=-(n+l)Λ- i +Λi-Σi4*«

from R\j=At;, K°0l;=-Alj, K1

oϊj=-Aιj+Ajh %*„>;=At3δ? -AiA-Am-fil+
Anhδ).

(8) O^-

and from Kij=-AΪJf Ro

lt]=-A-tJ-, K1

lϊj=-Aϊ]+Ajh Kί

m-kj=-Anδlrl+A'ιjδZι-

(9) 0=^-71^

By (6) and ι^*j in (6), when iΦj, we get AtJ=0. Similarly from (9), we have
Aij=0 iΦj. Putting t=j in (6) and in (7), we get AH=Aπ=0. Now, from (7),
(8) and *«->/ in (7), (8), we get Aij=Atj=0 (iΦj). Putting i—j in (7) and in
(8), we get Aΰ=Aιt=0. Note that (1) and (4) are satisfied. Therefore we can
write

(ϋi—ω^Anθ1, ωi—ω^Ajiθ1, and ω1—ω[=Alrθ
r.

and

Ωn

0-Ωl=-θιAAtίθ\ Ω n

1 - Ω i = - r

Ω')-Ω)=-Ailθ
1/\θ>-Aι1θ

1Aθι-θxAAjιθ
ι-θιAA]lθ

1,

Ωf

i-Ωi=~d(Aίlθ
ί)-Aίlθ

1Aωoo-Aϊίθ
ίAωl+ωιjAAj1θ

1-θιAAlΐθ
r,

fl'i-flt-= -diAnθ1)-Anθ1 Aωί-Anθ2 Aωl+ωί A Aj.θ'+θ1 A Alrθ
r.

Noting that dθι=-ΣΘ%Aθι (mod θι), we have

Thus togather wτith

we obtain for (3.7)

(10) 0=-(2«

Similarly from Rln^-Aiu K1

lϊl--^-A-iι+Alϊ> K}m=AiJl-AjJl it follows

(11) 0=-(2n-l) i4 ? 1 .
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On other hand, for (3.8), we have from Klu—Aji—Au, K\ιj = — Aijt K-ιjk =
Aιki)-A1fil K^^-Anδl-A^δ]

(12) 0=-(2n-l)AίJ,

and from Kl^-A^, K\ίj=Aj1-A1j, KϊkJ=Aϊlδi+A1jδl KiSj=-A1βl+Aliδ)f

(13) 0=-(2n-l)i4 l j .

Finally, from

we get Kni=An and (3.9) is given by

(14) 0=-3(n-l) i4n.

Thus we obtain ωr~ω.

Existence: Let ωf be any Cartan connection of type G/G on P, satisfying
(5.19). We make the desired normal connection ω satisfying (5.20) by

ωi=ω'i+A\rθ
r, α>t=ωί+Atrθ

7', ω-t=ω'i+A-ιγθ
r, ωi=ω[+Alrθ

r,

where A\r, Aιγ and A-tγ are chosen as follows: Since we put K—K' — K in
above calculation, in order that the new ω is normal, we have for (3.5).

(1/

(4)'

for (3.6),

(6)' -K

(7)' KΊ

(8)' -K

(9)' K'l

From (6)', and i*-*j in (6)' where iφj, we get

1 — n k

Summing over / = / in (6)', we get

thus put

'iϊi- Σ KU%),
ι,k
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ΔiL—n) % k )

Similarly from (9), we obtain

'U^

for iφj, and

1—72 1 — n ) .? * J

Now, when /=£/, (7)', (8)', /<-•/ in (7)', (8/ are the equations among four vari-
ables Aijy Aft, Atj, Afl. Denoting by Ll3 and MtJ the left hand sides of (7)'
anp (8)', respectively, we solve the equations and get

When z=j, from (1)' and (4)', we get

A ^

Now, putting S=Σ^*« and T = 2 ^ 4 Ϊ ^ , we obtain

Σ(i«+M«)=-2(n

Since S—T is given by (1)', we have

Finally from (7)' and (8)',

and we get

1-n

and similarly,

Aϊt=τ—Γt(nLii+Mii+nS+T-(n-l)A1

n),
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Now, let ω" be a connection on (P, θ) such that (ω"\ ω"\ ω"\ ω"$)=
(ωn, ω'\ ωfl, ω'f), (a, β) as in (5.20), and

1, ω"t=ω'i+Atjθ>+At3θ>,

-t}θ>, ωϊ=ω\,

where A\u AtJ, A%-3> A-XJy A-tj are obtained above, using the curvature of ω' and
A. Then ώ given by

ώi=ω/f

i+Ailθ
1, ώi^ω'Ί

satisfies K~1=d*K°=d*K1=0, where K is the curvature of ώ. Moreover, it
satisfies (d*K2)(e1)=Q, if

(10)' K'Z

(11)' K"ίi

and (3*^2)(g.1)=0, if

(12)' (K"ll

(13)' (/fΊ

Determine An, A-ily Aυ and Ax-3 by these formulas. Finally, let ω be such that
ω=ώ except for

ω1=ώ1+Anθ
1,

where An is given by, using the curvature i t of ώ,

Since

Ui-Ω\=d(Ailθ
1)+A1Jθ

ϊAθ',

ΰι-Ω'-%=-Auθ
x/\θ>,

we get

(14)' H(-K"-ιiι+K"in+d-tAn-K"ul+d-iAu)=-Z(n-l)An.

Then by above construction, starting from ωr satisfying (5.19) which exists by
the local triviality of the bundle, we get a normal Cartan connection ω of type
GIG' on P. q.e.d.
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