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ON SURFACES OF FINITE TYPE IN EUCLIDEAN 3-SPACE
By FRANKI DILLEN?, JOHAN PAS” AND LEOPOLD VERSTRAELEN

Abstract

We prove an extension of T. Takahashi’s result on minimal submanifolds
in Euclidean spaces and in spheres, and as a corollary obtain support for B.Y.
Chen’s conjecture which claims that the round spheres are the only compact
surfaces of finite type in Euclidean 3-space.

Let M™ be a (connected) n-dimensional submanifold in E™, the m-dimensional
Euclidean space. Let x, H and A respectively be the position vector field, the
mean curvature field and the Laplace operator of the induced metric on M™.
Then, as is well known (see e.g. [2]),

(1.1) Ax=—nH,

which shows, in particular, that M™ is a minimal submanifold in E™ if and
only if its coordinate functions are harmonic (i.e. they are eigenfunctions of A
with eigenvalue 0). Moreover, in this context, T. Takahashi [6] proved that
the submanifolds M™ for which

1.2) Ax=Ax,

i.e. for which all coordinate functions are eigenfunctions of A with the same
eigenvalue A= R, are precisely either the minimal submanifolds of E™ (1=0) or
the minimal submanifolds M™ of hyperspheres S™* in E™ (the case when 40,
actually 2>0). In terms of B.Y. Chen’s theory of submanifolds in E™ of finite
type, condition (1.2) asserts that M™ is of I-type in E™. In general, a submani-
fold M™ in E™ is said to be of finite type if its spectral decomposition of x is
finite, i.e. if

q
(1.3) x=xo+t§‘_,pxt
where p and ¢ are natural numbers, such that x,=R™ is a fixed vector and

(1.4) Axt=2;xt N
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where A, denotes an eigenvalue of A [1] [2]; when there are exactly 4 non-
constant eigenvectors x. appearing in (1.3), which all belong to different
eigenvalues 4,, then M™ is said to be of k-type in E™. Many important sub-
manifolds in Euclidean spaces turn out to be of finite type in this sense. To
find out whether or not a compact submanifold M™ in E™ is of finite type, the
following result is very useful.

THEOREM A. (B.Y. Chen [2])

(i) M™ is of finite type in E™ if and only if there exists a non-trivial poly-
nomial Q (of one variable) such that Q(A)H=O.

(ii) If M™ is of finite type, then there exists a unique monic polynomial P
(of ome variable), of least degree and such that P(A)H=O.

(iii) If M™ is of finite type, then M™ is of k-type if and only if degree P=k.

The same results hold if H is replaced by x—x,, x, being the center of mass
of M™ in E™.

In [3], B. Y. Chen studies the following problem.

QUESTION. Other than minimal surfaces and ordinary spheres, which surfaces
in E® are of finite type?

Restricting attention to surfaces in E?®, the above result on Ax=21x, A€R,
can be stated as follows (which also somewhat clarifies the previous Question).

THEOREM B. (T. Takahashi [6])
A surface in E® is of 1-type if and only if it is a sphere or a mimmal sur-
face.

With respect to the Question, the following result is quite interesting.

THEOREM C. (B.Y. Chen [3])
A tube in E*® is of finite type 1f and only if it is a circular cylinder (which
actually is of 2-type).

As a corollary we mention the following,
CoroLLARY D. (B.Y. Chen [3])

Every closed tube in E® is of infinite type,
Which offers a partial solution to the following

CONJECTURE OF B.Y. CHEN.
Ordinary spheres are the only compact finite type surfaces in E*.

Of course, since there are no compact minimal surfaces E°, Theorem B
settles the matter for 1-type surfaces.
In [5], O. Garay studies the hypersurfaces M" in E™*' for which
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(1.5) Ax=Ax,
where A is a diagonal matrix

A

2

(1.6) A s ziER) ZE{]., 27 Tty n+l}}

Zn+l

(see also [4] for the case of surfaces of revolution M? in E®). This means that
he imposes the condition that the coordinate functions of M™ are eigenfunctions
of their Laplacian A with possibly distinct eigenvalues A,; hence, O. Garay’s
condition ((1.5), (1.6)) can be seen as a generalization of T. Takahashi’s condi-
tion (1.2), in which case all A, are equal. O. Garay proved that if a hyper-
surface M™ of E™*! satisfies his condition, it is either minimal in E™*' or it is
a sphere or it is a spherical cylinder. In this respect, we want to observe how-
ever that his condition is not coordinate-invariant; e. g. in E® a circular cylinder
satisfies this condition if and only if its axis of symmetry is one of the coordi-
nate axes.
In this paper, we will study the surfaces in E® which satisfy

(*) Ax=Ax+B,

where A= R**® and BeR?® This setting generalizes T. Takahashi’s condition,
following O. Garay’s idea, in a way which is independent of the choice of
coordinates. Our main result is the following.

THEOREM. A surface M? in E® satisfies (*)if and only if it is an open part
of a minimal surface, a sphere or a circular cylinder.

In particular, this yields the following

COROLLARY. A compact surface in E® satisfies (*) if and only if it is a
Sphere.

We want to mention that this Corollary supports the above Conjecture of
B.Y. Chen. Indeed, the compact surfaces M? in E® satisfying (*) are particular
surfaces of finite type (£3); actually, the following arguments, which will make
this clear, also hold more generally for any compact submanifold M* in E™
which satisfies a condition of the form (*). Namely, integrating (*) over M?,
and using the divergence jheorem, implies that

1.7 Axy+B=0.

Using this, then (*) further implies that

(1.8) Alx—x0)=A(x—x0),
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and, hence, that
(1.9) P(AYx—x0)=P(AXx—x0),

where P is any polynomial in one variable. In particular, choosing for P the
characteristic polynomial of A, by the Cayley-Hamilton theorem P(A)=0, and
thus (1.9) shows that

(1.10) PA)(x—x,)=0.
Finally, Theorem A then asserts that M? is a surface of type <3 in E°*.

We first show that the surfaces mentioned in the theorem indeed satisfy
condition (*).

Examples.

(1) Minimal surface

In this case we have that the mean curvature is zero, so by (1.1) a minimal
surface satisfies (*) with A=0.

(2) Sphere
The sphere S¥») with center 0 and radius » satisfies (*) with
% 0 0
>
A=l0 2 o]
"2
0 0 =
7

Indeed, the sphere has mean curvature —1/r and (1/7)x is a unit normal on
Sir). So by (1.1)
2
Ax= r—zx .

) Circular cylinder

We consider the cylinder on the circle of radius » with center 0 lying in
the {e,, e;}-plane. This surface has mean curvature —1/2r. A unit normal is
given by (1/7)n(x), where = is the projection on the {e,, ¢;}-plane. Hence by
(1.1)

Ax=—12—n'(x).
r

So this cylinder satisfies (*) with

b

Il
o o X+
o Y|+~ o
(=] () (]



14 FRANKI DILLEN, JOHAN PAS AND LEOPOLD VERSTRAELEN

Proof of the Theorem. We consider two cases.

First case: M? is a cylinder.
In this case, the position vector x of M? can be given by
x=y(s)+t&

where s, t are parameters, & is a constant vector and 7(s) is a curve, with arc-
length parametrization, in a plane orthogonal to £.
From the definition of the Laplacian, one checks that

Ax=7"

where 7” is the acceleration vector of 7.
Without loss of generality we may suppose that £=(0, 0, 1) and that 7(s)=
(1:(s), 72(8), 0). If we write

ay @ Ay b\
A=| as as as| and B=|b, |,
A3, sz Qs by
then equation (*) becomes
ri=aulitanletast+by,
2.1) 73 =aal1+ Aol + Qost +b2
0=as 714 aslotagt+0b, .

Since 7%, 4 do not depend on ¢, we find that a;3=a;;=a;;=0.

If a5,#0 or a,,+#0, the curve 7 is a line, so M? will be part of a plane and
hence minimal. So we suppose further that a,;—=a,;,=0 and that 7 isn’t a line.
This implies that b;=0. System (2.1) reduces to

ri=aur+anr.+b:,

T49=Qs71+ a2l +b:,
or, in vector notation

2.2) r"=Ar+B,

~ Ay Qre ~ b,
A= and B= .
Az; Qo2 be

We now use the Frenet frame {T, N} of the curve y. The curve has arc-length

where
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parametrization, so T=7’, the velocity vector of 7.
Equation (2.2) becomes

T'=Ar+5.
Using the Frenet formula T'=xN where « is the curvature function of 7, we get
lcN=f~17’+§ .
Derivation of this equation gives
£'N+eN'=AT .
From the second Frenet formula N'=—«T we obtain
(2.3) &' N—e?T=AT .
We derive again to obtain

k" N+k'N' =255’ T —*T' = AT’
or

(2.4) (k" —k*)N—3kx’' T=r AN .

From (2.3) and (2.4) we can compute the entries of the matrix A with respect
to the frame {T, N}

AT . T=—x?,
AT.N=x',
AN.T=-3«",

AN.N:%—(/:”——I?).

The determinant (AT.TYAN.N)—(AT.NYAN.T)and the trace (AT.T)+(AN.N)
of the matrix A are constant, so there exist constants ¢ and d such that

(2.5) —kk” £ +3(k"¥=c,
(2.6) f‘; —2%=d.

Eliminating k” from these two equations we find that
1
(Iz’)2=§(c+dl:2+lt4\.
Deriving this last equation gives

£'k" = —é—(d/clc'—l-Z/c”/c’) .
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If we suppose that £’=0, then we have
x”=-§(dlc+2/c3).
Substitution in (2.6) gives
£(d+2£%)=0

which contradicts the assumption that &’ wasn’t identically zero. Hence the
only solution to the system (2.2) is that £ is a constant and that 7 is a circle.
So the only cylinder which satisfies (*) is a circular cylinder.

Second case: M* is not a cylinder.

(1) Rank of A is 3.

In this case we may suppose that B=0. Indeed, let CER?**' be a solution
of A.C4+B=0. Define new coordinates x’ by x=x'+C. Then equation (*)
becomes

Ax'=Ax".
Suppose now that M? is given locally as the graph of a function f, this is
x=(x1, X, f(x1, X2)) .

From (1.1) we see that Ax=Ax is normal to the surface, so

Ax.(1,0, %):o,

3.1)
0f\_
4x.(0,1, 7H)=0,
since (1, 0, df/dx,) and (0, 1, 3f/0x,) are tangent vectors.
Let

Q11 Q12 Qg3
A=|as a2 au|;
Q3 Q32 QAg3
then system (3.1) becomes

of - QX1+ 01X+ f
0x, Q31X+ g X+ Qaaf’

a_f _ A2 %1+ Qo X2+ Ao f .
0x, Q31X+ AoeXe+assf

Since the function f satisfies
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*f *f

0x.0x, 0x:0x,

the two above equations imply that

(21— 12)(@31 X1+ Qa2 X2+ Ass f)
+(@s2—Aos)X @1 X1+ A X201 S)
(15— a5:0(@a1%1+ Qo2+ a2 f)=0.

We may suppose that x,, x, and f are linearly independent, and so we get

(G21—012)a351 (32— A23)0 11 H(0 13— A31) 2, =0,
(@21 012)32+(Q32— A23) Q12+ (13— A31) A2 =0,
(@21—12) 35+ (32— 23) 013 F+(A 15— A31) 023 =0 .

If we denote the cofactor of the entry a,, in the matrix A by A,,, this system
reduces to

A=A,
A=Ay,
A=A,
i.e. the matrix A<f of cofactors of A is symmetric. Since

1
A—lz el ,Acof s
det A
we find that A™' is symmetric. Hence A is also a symmetric matrix.
After a coordinate transformation we may suppose that A is a diagonal
matrix

A 0 0
A={0 2, 0
0 0 2

with 2;.2:.4;#0.
Suppose now that (x.(u, v), x.(u, v), x3(u, v)) is a parametrization of the

surface. Then, since Ax=(4;x,, d:xs, A3x;) is normal to the surface, we have
that

0,

a 1 a 2 a

0x, 0x, 0xs
(Aix1, Ao%o, 23753)'(%’ ai:;%’ %):0;
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or
d A x2 2 2\
W( XA, x3+2:x5)=0,
d 2 2 2
%‘(lel‘}‘hxz‘l‘laxa):o-

So

3.2) Axi+A x5+ A xi=c,

where ¢ is a constant, and we see that M*® is part of a quadratic surface. For
this quadratic surface one computes the mean curvature

(Ao +20)A2x3+(A1+2:) A5 x5+ (1 + ) A5 xS
22X+ 2ex i+ 2ex D) '

From (*) and (1.1), we have that the absolute value of the mean curvature equals
(1/2)||Ax]l, which implies that

3.3) (ARt + B3+ 25x8)" + (Ao +2)A 0T +(A+20) x5+ (2, +2:)45x8)=0.

IH ==

From (3.2) we have that
x§=—1—(c—21x%—lzx%).
A

If we substitute this in (3.3), we obtain a polynomial in x, and x, which has to
be identically zero, so in particular the coefficients of x% and xj, which are
AX(A,—A,)? respectively A%(4;—4;)* have to be zero. So we find that 2,=2,=41,.
Hence M?* is a sphere. The constant term of the polynomial, which is
cAs(cAy—A;—2A;), also has to be zero. From this we find that ¢=2. So if we

write r for the radius of the sphere we have
2

h=h=k=5.

(2) Rank of A is 2.
By choosing a basis {e;, ¢, ¢;} with e;, e;€Ilm A and e;=(Im A)*, we may

suppose that A and B have the form
), Gy Qs 0
A=|a,, as, ax;| and B=| 0
0 0 0 b,

If B=0, then Ax=—2H belongs to Im A which is a plane through the origin.

This means that the normal on this plane is a constant tangent direction to M?,

but this isn’t possible since M?isn’t a cylinder. So we may suppose that b,#0.
Consider the set
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U={peM®|(es), T ,M*}.

Since
U=lpenr ouls du ?l o
dx,]  0x, ’

vlp vlp

this is an open set, and by the assumption that M?® is not a cylinder, U cannot
be empty. By the inverse function theorem, on U the surface is locally given
as the graph of a function f in the following way

x=(xy, Xa f(x1, X2)).
From (1.1) we see that Ax=Ax-+ B is normal to the surface, so

(Ax+B)-(1, 0, %’il):o,

(4z+B)-(0, 1, f) =0,

or
0
axfl (al1x1+a12x2+al3f)
0
aj; (az1x1+(lzzxz+az3f)-
Since f satisfies
f _ 0°f
0x,0x, 0x.0x,’
we have
(@12— Q21003 4(Q12021— 11023) X1+ (13020~ Q12003) %, =0,
or
Ay Gy
3.4) =0,
Ay Qo3
Q2 Qi3
(3.5) 0,
Az Q23
(3.6) A12=0q2; .

Since A has rank 2, expressions (3.4) and (3.5) imply that

A13=0y3=0.
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(3%}
(12
transformation we may suppose that A has the form

A4 0 0
0 4 0
0 0 0

. . agp) . . .
Equation (3.6) shows that the matrix ( alz) is symmetric. By a coordinate
22

With 21'22;&0.

Suppose now that (x,(u, v), xs(u, v), x5(u, v)) is a parametrization of the
surface. Then, since Ax+B=(4,x,, A:x,, b;) is normal to the surface, we have
that

(A1%1, Asxs, bs)-

0x, 0xs axa)

0x; 0x: 0xg\
(llxly ZZxZ; bﬁ)' %7 %’ a_v>—0;

or

0 A x4, x2+2 _

%( 1X3+ A2 x5+2bsx5)=0,

a 1 x? 2 —

E}‘( X342 x3+2bsx5)=0.
So

Axi+A:x5+2bsxs=c,

where ¢ is a constant, and we see that M? should be part of a quadratic surface.
However, for this quadratic surface one computes the mean curvature

Ao x4 A A5x4 (A1 +22)b3

i XD A

The absolute value of the mean curvature equals (1/2)[|Ax+B| by (1.1). This
implies that the polynomial

(Aix?+A3x5+05) £ (A2 23+ 2,303 +(2, 1 25)b5)

should be identically zero, which contradicts ;-2,%0.

B) Rank of A is 1.

Since Ax=—2H, equation (*) implies that —2H lies on Im A4 B which is a
line. So a vector orthogonal to a plane which contains the line Im A+ B and
the origin, is everywhere tangent to the surface M2 This contradicts our as-
sumption that M? isn’t a cylinder.
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(4) Rank of A is 0.
In this case (*) becomes

Ax=B.

If B=0, then we have by (1.1) that H=0, so the surface is minimal. If B=0,
equation (1.1) implies that B is a constant vector normal to M2 so M?is a

plane.

(1]

(2]
[3l
(4]

(5]
(6]

However for a plane we have that H=0, which contradicts B#0. =
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