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Abstract

Let B, be a unit open ball in a k-dimensional complex Hilbert space. If T, is a
commuting family of continuous functions mapping Bj into itself and holomorphic in
B}, then there exists a common fixed point for all functions of this family.

Introduction. Let us consider a family A of mappings of some set into
itself. If Tx=x for all T in A and some x we say that x is a common fixed
point for A (or for the mapping T in ). In this paper we are concerned
with the existence of common fixed points for families of mappings.

For many years it was unknown whether two commuting continuous map-
pings of a compact convex set into itself necessarily have a common fixed
point. In 1969 Boyce ([2]) and Huneke ([13]) independently gave counterexam-
ples: there exist two commuting continuous mappings of [0, 1] into itself
without a common fixed point. In view of this it is not surprising that the
positive results must involve some additional restrictions on the family .
Throughout this paper A denotes a subfamily of a family of all mappings from
B* into B® (B" is a cartesian product of n open unit balls B of a Hilbert space
H). The mappings in A are holomorphic on B" and continuous on B".

In [21] (see also [3] and [4]) Shields proved that if A4 is a family of com-
muting functions which are continuous on the closed disc A of the complex
plane and are holomorphic on the open disc A and map the closed disc into
itself, then there exists a common fixed point for all the functions of the family
A. This result was extended to polydiscs in C? by Eustice ([6]) (see also [24])
and to the unit ball of a finite dimensional inner product space by Suffridge
([23]). In [11] Heath and Suffridge gave the following theorem. If T, and T,
are continuous mappings of a polydisc A™ into itself that are holomorphic on
A" and T,°T,=T,-T,, then they have a common fixed point in A*. However
we think that the proof in [11] is not complete.

In each mentioned above paper the proof is based on the fact that if a
closure of the iterates of T (denoted by I(T)) is a compact topological semi-
group then it contains a unique idempotent. Because of this our problem reduces
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to a study of idempotents in A. The absolutely different methods allow us to
prove the following two facts. If B is an open unit ball of a Hilbert space
and A is a commuting family of continuous functions mapping B into itself and
holomorphic in B, then there exists a common fixed point for A ([14], [17])
and if Ty, -+, T : B*—B™ are commuting and holomorphic and every mapping
has a fixed point, then they have a common fixed point ([16], [17]).

Basic notations and facts. We shall use the following notations:

(i) H (H:) is a complex Hilbert space (a complex Hilbert space with dim H,
=£k) with an inner product (-, -) and a norm | -|.

(i) B (Bg) is a unit open ball in H (in H,) and B (B,) is a closure of B
(Be) in H (Hp).

(ili) In B™ we introduce the following CRF metric p, ([7], [8], [9], [10],

[261):

el A=l A=)\
p:(x, y)=tanh (1 T—(x, y)|? )

for x, yeB'=B and
pn((xly Tty xn)» (ylr Tty yu)): 11’2?27(’1 pl(xly yl)

for (xl; ey Xa) (yl) ) yn)EB"-

(iv) & (B™) (4(Bp)) is the set of holomorphic mappings of B™ into B" (of
BpP into BP). 4(BZ, H}) is the set of holomorphic mappings of B} into HZ.

(v) For Te4(B}) I'(T) denotes the closure in 4 (B}, HP) of the iterates
of T in the topology of the uniform convergence on compact subsets of BZ.
I'(T) is a compact set in this topology.

(vi) For Te4(Bp) I''(T) denotes the set (C 4 (BE, HP)) of all subsequential
limits of {7T?} in the topology of the uniform convergence on compact subsets
of BZ.

If I(T)c4(Bp), then it forms a compact topological semigroup. Let us
notice that this topological semigroup I(T) contains exactly one idempotent Ry
([12], [28]). This holomorphic idempotent in I(T) is a holomorphic retraction
of B2. In [1], [6], [11], [16], [23] and [27] it is shown what such a retrac-
tion looks like.

Every holomorphic mapping T« #(B") is nonexpansive in (B, p,) and has
a fixed point if and only if there exists x& B” such that a sequence of its
iterates {T?x} is bounded in (B", p,) ([8], [26]).

Common fixed points. First we require the following results concerning
I'(T) and I'"(T).

THEOREM 1. Let T : B}—B} be a holomorphic mapping. The following
statements are equivalent:
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(i) T has a fixed point,

(ii) I(T)c(Bp),

(iii) I(T) contains a holomorphic retraction Ry H(Bp),
(iv) I''(T) contains F< J((Bp),

(v) there exist x, and {p;} such that sup | TPi(x,)]| < 1.

Proof.

(i)=(i). If T has a fixed point, then for every x< B} the sequence {7?x}
is pn-bounded and it gives I'(T)C 4 (B}).

(i)=(ii). If I(T)CH(Bp) then I'(T) is a compact abelian semigroup and
therefore I(T) contains a holomorphic idempotent which is a holomorphic re-
traction.

(iii)=(iv). Obvious.

(iv)=(v). Obvious.

(v)=(i). If for x,= B} there exists {p;} such that sup 1T x,)| <1 then the

sequence {77%(x,)} is p,-bounded. By the theorem of Calka ([5]) this sub-
sequence {T7%(x,)} of {T?(x,)} guarantees the p,-boundedness of {T?(x,)} and
hence T has a fixed point.

Remark 1. It is worth noticing that if BCH and dim H=+4 the implica-
tion (v)=(i) is not true ([22]).

Directly from the above proof we get

THEOREM 2. Let T: Bf—B} be a holomorphic mapping. T is fixed point
free if and only if for every F&I'(T) the image F(B}) is contained in the
boundary of BE.

Theorem 1 allows us to prove the main theorem about the existence of
common fixed points.

THEOREM 3. Let {T,} be a commuting family of continuous functions map-
ping BP into itself and holomorphic in BP. Then there is a common fixed point
for all functions of the family.

Proof. 1t is sufficient to prove this theorem for a finite family {Ty, -+, Tn}.
Case 1. Every T pp has a fixed point in Bf. Here the existence of a com-

mon fixed points is proved in [14] and [15]. For the reader’s convenience we
give a sketch of the proof of this fact.
Every Fix(Tizp) is a holomorphic retract of Bp ([16], [27]).” Since {T},

-, Tp} is a commuting family of functions we have
Tj(FiX(Ti|B,’}))CF1X(THB;})

for 1<i, j<m.
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Next if R: Bf— AC B} is a holomorphic retraction and 7 : Bf— B is a holo-
morphic mapping with Fix(T)# @ and T(A)CA, then ANFix(T) is a nonempty
holomorphic retract of B}. Indeed T-R has a fixed point (see (v) in Theorem
1) and every such a point lies in A. It is easy to observe that Fix(T-R)=
ANFix(T).

Now it is sufficient to apply a mathematical induction with respect to m to
obtain a common fixed point of {T4, -+, Thn}.

In the next two cases we proceed by induction with respect to n. For n=1
see [14] and [23].

Case 2. T,.B;;EJ[(B,’:) and F(T“Bg)¢ H(B}). Then there exists T I“(T“B;;)
such that (after applying of an appropriate linear mapping L that permutes
coordinates)

T(Bp)C{ei} X -+ X{eg} X Bp~?
(1£g<n)and T, T,, ---, T commute. It is clear that
T({es} X -+ X{eg} X BE9)C{es} X -+ X{eq}XBZ‘q

(1=:<m) and therefore T,, ---, T, have a common fixed point in {e,} X ---
X {e,} X Bp~® by the induction hypothesis.

Case 3. Ti.pp&EH(BE). By the induction hypothesis Ty, -+, Tn have a
common fixed point (see Case 2).

Remark 2. A continuous mapping T : B*— B"™ which satisfies the following
condition
ea(tTx, tTY)< pa(x, ¥)

for all x, yeB™ and every 0<t<1 is called a nonexpansive mapping in B,
Theorem 1 and 2 are still true if we repl_gce the assumption of holomorphy of
mappings in B} by nonexpansiveness in BP.

Open problem. If we have a mapping T : B"—B" which is nonexpansive in
B*, then T has a fixed point ([8], [9], [10], [15], [19], [20]). Is Theorem 2
true if we replace B} by B"? If either n=1 or every T, is a pn-isometry it
is known that the answer is positive ([14], [17], [18]).
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