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INFINITESIMAL VARIATIONS OF SUBMANIFOLDS
By KENTARO YANO

§0. Introduction.

The purpose of the present paper is to study variations of the metric tensor,
the Christoffel symbols and the second fundamental tensors of submanifolds under
infinitesimal variations of the submanifolds.

The method used here is to displace the deformed quantities back parallelly
from the displaced point to the original point and to compare the parallelly
displaced back quantities and the original quantities, [3], [4].

In §1, we state formulas for submanifolds of a Riemannian manifold needed
for the later discussions including equations of Gauss, Codazzi and Ricci. [1].

In § 2, we consider infinitesimal variations of submanifolds of a Riemannian
manifold. We define parallel variations of submanifolds and study their pro-
perties.

§3 is devoted to the study of variations of the fundamental metric tensor
of the submanifold. We discuss isometric, conformal and volume-preserving
variations.

We study in §4 the variations of the Christoffel symbols and those of linear
connection induced in the normal bundle. When the submanifold is compact or
complete and irreducible, we obtain some global results.

In the last § 5, we study variations of the second fundamental tensors and
prove some global propositions. (For normal variations, see [2]).

§1. Preliminaries.

Let M™ be an m-dimensional Riemannian manifold covered by a system of
coordinate neighborhoods {U; x*} and denote by gy, I, ¥V, K.;* and K;; the
metric tensor, the Christoffel symbols formed with g;;, the operator of covariant
differentiation with respect to I'%, the curvature tensor and the Ricci tensor of
M™ respectively, where and in the sequel the indices 4, 1,7, k, --» run over the
range {1,2, -+, m}.

Let M™ be an n-dimensional Riemannian manifold covered by a system of
coordinate neighborhoods {V; y* and denote by gw, I'%, Ve, Ka® and K., the
corresponding quantities of M" respectively, where and in the sequel the indices
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a,b,c, d, -+ run over the range {1, 2, -+, n}.
We suppose that M™ is isometrically immersed in M™ by the immersion z:
M"—M™ and identify i(M") with M". We represent the immersion by

(1.1 xt=x"(y%)
and put
1.2) By*=0,x", (0,=0/0y") .

Then B," are n linearly independent vectors of M™ tangent to M". Since the
immersion is isometric, we have

(1.3) gcb:Bﬁgﬁ »

where Bji=B,’B,’. We denote by C,” m—n mutually orthogonal unit normals to
M™, where and in the sequel the indices x, y, z run over the range {n-1,n-+2,
.-+, m}. Then the metric tensor of the normal bundle of M™ is given by

(14) gzy:Cchyzgji

and has values g,,=0,, 0,y denoting the Kronecker delta.
It is well known that 1'% and I'% are related by

(1.5) ng:(acBbh+F?iB'gg)Bah;

where B%=B,'g%g;,, g°* being contravariant components of the metric tensor
gy of M™ and the components I’y of the connection induced in the normal
bundle are given by

(16) F&:(avcyh_l_r?chjcyi)th;

where C%,=C,'g¥"g;s, g¥° being contravariant components of the metric tensor
Zyz of the normal bundle.

If we denote by V.B," and V.C,* the van der Waerden-Bortolotti covariant
derivatives of B,"* and C," along the M™ respectively, that is, if we put

%)) V .By*=0.By"+I"Bii—I'%B,"

and

(1.8 V.Cr=0,C+T"4BCt—1"5C",

then we can write equations of Gauss and those of Weingarten in the form
1.9 V .By*=h"C,",

(1.10) V.C/lt=—hB"

respectively, where h.® are the second fundamental tensors of M™ with respect
to the normals C,* and h.%,=her-8°%=hes gy 8%
Equations of Gauss, Codazzi and Ricci are respectively
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(1.11) Kaer®=Kpyi"Bilist+ha®hey™ —he®shay®
(1.12) 0=Kp;i"BECo 0~ ahey™=V chay®)

and

(1.13) Kaoy" =K1 ji"BEC, CTn+(hao® b’y —hee"ha®y)

where Blifit=B.*B.’B,'B%, Bkli=B.*B.’B," and K., is the curvature tensor of
the connection induced in the normal bundle.

§2. Infinitesimal variations.

We now consider a variation of M™ in M™ given by
2.0 P=x"+EMye,
where g,;6§6*>0 and ¢ is an infinitesimal. We then have
(22) By'=B,"+(@,E"e ,

where B,*=9,%* are n linearly independent vectors tangent to the deformed

submanifold at the deformed point (x™).
If we displace B," back parallelly from the point (¥*) to (x"), we obtain

Br=B +I(x+E&)& Bye,

that is,

(2.3) By*=B,"+(F ",

neglecting the terms of order higher than one with respect to ¢, where
(24) V &r=0,"+1"}By'&" .

In the sequel we always neglect terms of order higher than one with respect

to the infinitesimal e.
Thus putting

(2.5) 8B,*=B,"—B,",

we have

(2.6) OB =V e .
If we put

2.7 §r=E£°B,"+E&°C.,

we have

(2.8) Vo Eh=(F £ —hy"E%)By"

+(Vbsz+hbaxsa)cxh s
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and consequently, putting

(2.9) &=V 6 —hy",E7,

(2.10) &"=V 167+ hy"6",

we have

(2.11) Vy§"=E,"B,"+&,°C." .
From (2.5), (2.6) and (2.11), we have

(2.12) Bh=(33+£,%)B,"+8,°C." .

When the tangent space at a point (x*) of the submanifold and that at the
corresponding point (¥*) of the deformed submanifold are parallel, we say that
the variation is parallel.

From (2.12), we have

PROPOSITION 2.1. In order for a variwation of a submanifold to be parallel,
1t is necessary and sufficient that

(2.13) &=V &7+ hy"€°=0.

When £%=0, that is, when the variation vector & is tangent to the sub-
manifold we say that the variation is fangential and when &°*=0, that is, when
the variation vector &* is normal to the submanifold we say that the variation
is normal.

From Proposition 2.1, we have

PROPOSITION 2.2. In order for a tangential variation of a submanifold to be
parallel, it is necessary and sufficient that

(2.14) heo"6%=0.

COROLLARY 1. A tangential variation of a totally geodesic submanifold 1s
always parallel.

COROLLARY 2. A tangential variation of a totally umbilical submanifold with
non-vanishing mean curvature is never parallel.

From Proposition 2.1, we also have

PROPOSITION 2.3. [In order for a normal variation of a submanifold to be
parallel, it is necessary and sufficient that

(2.15) V,£2=0,
that is, the variation vector £*C," is parallel wn the normal bundle.

For a parallel normal variation, we have V=0, which shows that V' ,(g,,£°EY)
=0. Thus we have
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COROLLARY 1. A parallel normal variation of a submanifold displaces each
point of the submanifold the same distance.

When the submanifold is a hypersurface a normal variation is given by
Xt=x"+2C", C" being the unique unit normal to the hypersurface and 2 a
positive function and consequently (2.15) reduces to F,;4=0 and we have

PROPOSITION 2.4. In order for a normal variation of a hypersurface to be
parallel, 1t 1s necessary and sufficient that the normal variation displaces each
pownt of the hypersurface the same distance.

§ 3. Variations of the metric tensor.

Now applying the operator ¢ to (1.3) and using (2.6), (2.8) and 0Jg;;=0, we
find

(31) 5gcb:<Vc§b+7b5c_2hcbxéz)5 ’
where &,=g,,6% from which
(32) 05" = —(POEH T o 21,8,

where V°=g®¥l, and h*%,—g®?g%h.,,.

A variation of a submanifold for which dg.,,=0 is said to be isometric and
that for which dg., is proportional (with constant proportional factor) to g, is
said to be conformal (homothetic).

From (3.1), we have

PROPOSITION 3.1. In order for a variation of a submanifold to be isometric,
it is mecessary and sufficient that

(33) Vc§b+VbEc—2/lcbex:0'

PrOPOSITION 3.2. [5] In order for a tangential variation of a submanifold
to be isometric, it is necessary and sufficient that

(3.4) Lgey=V &y +V 15.=0,
L denoting the Lie derwative with respect to &°

PROPOSITION 3.3. In order for a normal wvariation of a submanifold to be
1sometric, it is necessary and-sujfictent that

(35) hcbxfx:O »

that 1is, the submanifold 1s geodesic with respect to the direction of the normal
variation.

COROLLARY 1. A submanifold 1s totally geodesic 1f and only 1f every normal
variation is 1sometric.
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From (3.1), we also have

PROPOSITION 3.4. In order for a variation of a submanifold to be conformal
(homothetic), it is necessary and sufficient that

(36) Vc5b+7b§c_2hcbz€x:22gcb )
A being a certain function (constant).

PROPOSITION 3.5. [5] In order for a tangential variation of a submanifold
to be conformal (homothetic), it 1s necessary and sufficient that

(3-7) —Egcb:Vch+Vb€c:22gcb:
A being a certain function (constant).

PROPOSITION 3.6. [n order for a normal variation of a submanifold to be
conformal (homothetic), it 1s necessary and sufficient that

(3.8) lzcbxgz:/chb »

A being a certain function (constant), that is, the submanifold is umbilical with
respect to the direction of the normal varation.

COROLLARY 1. A submanifold is totally umbilical 1f and only if every normal
variation of the submanifold 1s conformal.

We denote by g the determinant formed with g.,. Then the volume element
dV of M™ is given by

(3.9 dV=+/g dy'Ndy’ N\ - Ndy".
Since we have from (3.1) and (3.2),
Vg =vg (V.£*—h,"E%)e,
we have
(3.10) 0dV=F &%—h,",£%)dV e.
Thus we have

PROPOSITION 3.7. In order for a variation of a submanifold to be volume-
preserving, it 1s necessary and sufficient that

(3.11) V o&%—h,"E7=0.

ProrosITION 3.8. [5] In order for a tangential variation of a submanifold
to be volume-preserving, it is necessary and sufficient that

(3.12) Lg =V £%=0.

PROPOSITION 3.9. In order for a normal variation of a submanifold to be
volume-preserving, it 1s necessary and sufficient that
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(3.13) he®:E7=0

that s, the submanifold is minimal with respect to the direction of the normal
variation.

COROLLARY 1. A submanifold 1s mumal 1f and only 1f every normal varia-
hon of the submanifold 1s volume-preserving.

§4. Variations of Christoffel symbols.

We denote by Cy”Nm—n mutually orthogonal unit normals to the deformed
submanifold and by C,* the vectors obtained from C,* by parallel displacement
of C,” from the point (¥*) to (x*). Then we have

(4.1) Cr=C 4 I"(x+£)EC, e .
We put

(4.2) 8C'=C,r—C,"

and assume that 6C," is of the form

4.3) 0C,"=n,e= (9B "+71,"C,"e .
Then (4.1), (4.2) and (4.3) give

(4.4) Cy'=C,"—I"4ECy e+ (1, Ba"+1,°C: e .

Applying the operator d to B,’C,'g;;=0 and using (2.6), (2.11), (4.3) and
0g;;=0, we find
(Vb5y+hbay€a)+77ybzo ’
where 7y,=17,°ge;, OF

4.5) Ny =—W %y +h%E%) .
Applying the operator J to C,’C,'g;;=0,, and using (4.3) and dg;;=0, we find
(4.6) Nyz+02y=0,

where 7y,=7,'G.z
From (4.2) and (4.3), we have

4.7) Cyr =7y "Ba"+(05+7,%)C. e,

which shows that in order that the normal space of the deformed submanifold
at the point (%" and that of the original submanifold at the point (x*) are
parallel, it is necessary and sufficient that 5,*=0, which proves Proposition 2.1.

We denote by B=, n covectors of the Ndeformed submanifold correspondi_ng to
B¢, of the original submanifold and by B¢ the covectors obtained from B% by
parallel displacement of B% from the point (¥*) to (x®. Then we have
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(4.8) B =B, —I"(x+Ee)& B¢ .
We put
4.9) 0B%=B%—B%,.
Then applying the operator ¢ to
By'B*=0¢, C,;B%=0
and using (2.6) and (4.3), we find

(4.10) 0B% =~V 16" —hy"26*) B e+ “€ ot 1y :E")C7e
From (4.8), (4.9) and (4.10), we have
(4.11) B%=B%+[I"&' B4~V & —hy%.E%)B",
+ %6 4 h,E0)C" Je

We denote by C*, m—n covectors of the deNformed submanifold correspon-
ding to C7, of the original submanifold and by C?, the covectors obtained from
C?, by parallel displacement of C*, from the point (£*) to (x*). Then we have

(4.12) Co,=C,—I"(x+E6)ECe .
We put
(4.13) 6c*=C=—C*,.

Then applying the operator 0 to
B C*,=0, Cy,C% =03
and using (2.6) and (4.3), we find

(4.14) 0C% =~V &"+hya"€") B’ +7,°C¥. Je .
From (4.12), (4.13) and (4.14), we have

(4.15) C2=Co+ T CTe— L 16"+ hyo®6%) BY+1,°C Je
We now put

(4.16) I'%=(0,B,"+I""(%)B,’B,")B%,

and

(4.17) olG=r4—1I"%.

I’ are Christoffel symbols of the deformed submanifold.

Substituting (2.2) and (4.11) into (4.16), we obtain by a straightforward com-
putation,

4.18) Ol G=LW V o+ Ky, "E*BE) B+ hey V *€ s+ hy®:E e,
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from which, using equations (1.11) of Gauss and those (1.12) of Codazzi,
(4.19) 0=V V& + Kuer®6)e

—[Vc(hbe.t'sx)+Vb(hcezfz)—Ve<hcbzéx)]geae .
We now put

(4.20) Ir'z,=6.C,»+ "B C,HC*,
and
(4.21) ory=r:,—rs,.

F{'y are components of the connection induced on the normal bundle of the de-
formed submanifold.

Substituting (2.2), (4.4) and (4.15) into (4.20), we obtain by a straightforward
computation
(4.22) OIs,=LW o0+ K, "6 B C ) Cohthe"y(V o6+ haa™6) e,
from which, using equations (1.15) of Ricci,
(4.23) Oz =V ., "+ Kgey "%+ K1;"C,* B Cy CohE -+ ho®V o675 — NV 6y le .

A variation of a submanifold for which 6/°%=0 is said to be affine. From
(4.19) we have

PROPOSITION 4.1. In order for a variation of a submanifold to be affine, it
15 necessary and sufficient that

(424) Vchsa_l_chbaEd—[Vt,‘(hbezéz)+Vb(hcex§x)—Ve(hcb:z:gI)]gea:O-'

COROLLARY 1. [5] In order for a tangential variation of a submanifold to
be affine, 1t 1s necessary and sufficient that

(4.25) Irgb:Vch‘fa'l”chbasd:O .

For a normal variation of a submanifold we have from (4.19)
(426) Brgb:—'[Vc(hbezgx)+Vb(hcex$z)_Ve(hcb:c{:z)]gwe:
from which

1
(427) Vc(hbazsxk:—_Z_E(Jng)gea“l'(aF(ea)geb] .

From (4.26) and (4.27), we have

COROLLARY 2. In order for a normal variation of a submanifold to be affine,
1t 15 necessary and sufficient that

(428) Vc<hbargr):0 ’

that 1s, the second fundamental form with respect to the variation vector 1s parallel.
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CORCLLARY 3. If a submanifold with parallel second fundamental tensors
admits a parallel normal variation, then it 1s affine.

For a compact orientable submanifold M", we have the following integral
formula :

1
@29) ([0 7ot Kareut 5 &4 IF 4728~ ) |av =0,
which is valid for any vector field £€* in M™ [6]. From (4.29), we find

(430) IR R A AU S RN N

7 Bt T e 2o T TP 20,67

—(Vcéc—"hcc.z&z)(ybéb)
+ csb+Vbsc—2hmsy>hczsx]dV:o .

Now if a variation of the submanifold is isometric, we have (3.3) and con-
sequently

(4.31) V oV o€ c—2h 0y V)R, E°=0 and F E&°—h,E%=0.
Since an isometric variation is affine, we also have (4.24), from which
(4.32) g Vo4 K 288 —27 (h 2 E%)+V %(hy? ,£%)=0.
Conversely if (4.31) and (4.32) are satisfied, we have from (4.30),
V&tV o&.—2h,65=0
and consequently the variation is isometric. Thus we have

PROPOSITION 4.2. [n order for a variation of a compact submanifold to be
isometric, it is necessary and sufficient that we have (4.31) and (4.32).

Now, from (4.24), we have
(433) Vch'{:a+chbaéd_Vc(hbaxst)+Vb<hcaxéx)'—7a(hcbxfz):0

Kgycpe being covariant components of the curvature tensor of M?", from which
using the identity Kycpa+ Kicas=D0,

Vc(VbEa+VaEb—2hbaxEI):O .
Thus if the submanifold is complete and irreducible, we have

(4.34) VootV o§o—2h0a:6"=22g0a ,



40 KENTARO YANO

A being a constant.
Conversely from (4.34) we can deduce (4.33) which is equivalent to (4.24).
Thus we have

PROPOSITION 4.3. A variation of a conplete and wreducible submanifold is
affine 1f and only 1f 1t 1s homothetic.

From (4.34), we have

COROLLARY 1. If a complete and iwrreducible submanifold admits an affine
normal variation, then the submanifold 1s umbilical with respect to the variation
vector.

§5. Variations of the second fundamental tensors.

Suppose that v" is a vector field of M™ defined intrinsically along the sub-
manifold M®. When we displace the submanifold M* by x*=x"+&"y)e in the
direction &, we obtain a vector field #* which is defined also intrinsically along
the deformed submanifold. If we displace #* back parallelly from the point
(") to (x"), we obtain

o= [l(x-+Ee)E e
and hence forming

(5.1) ovt=op"—pt,
we find
(5.2) ovt=o"—vr4-I"%Ev .

Similarly we have
ov "=V 9"V "+ T%EW e,
that is,
(5.3) oV "=V 9"V "0, s+ 1T 5)E B, ve
+IH(0.67)v* +67(.v") e
On the other hand, from (5.2) we have
(5.4) V 0vr=F 0"V "+ (0, t+ 1" Ii)E* B v'e
+I3(0:£7)v +€7(0:v ) Je -
Thus forming (5.3)—(5.4), we find
(5.5) oF "V ov=K,;;"6*B ve .

Similarly, for a covector w,, we have
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(5.6) oV w,—V 0w,=—K,;;"E* B wye .
For a tensor field carrying three kinds of indices, say, T,,", we have
(5.7) o Ty —V 0Ty"
=K, "6 B Toy'e—(01'4)T oy — (015 To," .
Applying the formula (5.7) to B,", we find
oV .By"—V :0By"=K,,"6*B.’ Byle—(01"%)B," ,
or using (1.9) and (2.6)
0(hep"C) =W oV 06"+ K .6 Be? Bo')e—(01'%) B ,
from which, using (4.3),
(0hes™)Co" 4 heo™ (15" Ba"+12Cy")e
=WV o&"+K;:;,"6*B.’ By )e—(01'%) B, .

Thus
5hcbI:—hcbyﬂyze‘|‘(‘7chsh‘f‘Kkjihkac]Bbi)cth »

from which
(5.8) 0hey*=[EW shey®+hey™ W E) 4 hee™V 06€)—heo? 1" Je
+[Vchsz_l'Kkjihcka«{gcrhgy‘—hcexhbeyéyjs .
Thus we have

PROPOSITION 5.1. A wariation of a submanifold gives the variation (5.8) to
the second fundamental forms and consequently 1t preserves the second funda-
mental forms if and only 1f

(5.9) LEW shev™ +hes™ W )+ hee™ (V49 —he? 74" ]
ALV Fof7+ Kji"Cy* BECE1EY — hee™ 1y §¥]1=0.
PROPOSITION 5.2. For a tangential variation of a submanifold, we have
(5.10) Oheo®=LEW ahes™ +hes™ (W £)+hee™(V &) —heo? 1y " e

and consequently a tangential variation of a submanifold preserves the second
fundamental forms if and only if

(5.11) Sdthcbx—l_hebx(Vcée)"f_hceI(VbEe)_hcbyvyI:O'
PROPOSITION 5.3. [2] For a normal variation of a submanifold, we have

(5.12) Ohey™=[V 167+ K 3" Cy *BECTAEY —hoe™ oy §Y — heo¥ 1" Je
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and consequently a normal varation of a submanifold preserves the second funda-
mental forms if and only 1f

(5.13) VchEI"f‘Kkjihckang Infy‘hcexhbeyfy—“hcbyﬁyzzo .

COROLLARY 1. [2] A normal variation carries a totally geodesic submanifold
wnto a totally geodesic submanifold 1f and only 1f

(5-14) VchEx—i_Kkjihckachthy:O .

COROLLARY 2. [2] A normal variation carries a totally umbilical submanifold
wito a totally umbilical submanifold 1f and only 1f

(5.15) V&2 + K i Cy *BECT 1V =gopa®,
a® being certain functions.
Since for a normal variation we have from (3.2)
0(g%her®)=(0g")hep® +8°°0(her®)

that is,
0(g hey™)=2h"EVhey* g 0(hes”)

we obtain from (5.12)

(5.16) 0 (%g”’hw’”) = % CgeV oV &+ K" Cy* BIC Y

Fhep"h®y &Y —h, ¥, e,
where B/'=Bijg.
Thus we have

PROPOSITION 5.4. For a normal variation of a submanifold, we have (5.16)
and consequently a normal variation preserves the mean curvature vector if and

only if
(G.17) gV &5+ K ji"Cy* BIEC &Y + hy"he 6V — ho ™" =0

COROLLARY 1. [2] A normal variation carries a mummal submanifold into a
mummal submanifold 1f and only i1f

(5.18) gC”VCVI,S”-E-KkjihC,,kB”CIh{:y—l—hcb’”hwyfz":o .

Suppose that a normal variation carries a minimal submanifold into a minimal
submanifold. Then substituting (5.18) into

M) = T T EEI= (T T £ O BT,

we find
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(5.19) %A(&r@:—chkaﬁcxéysf

—“(hcbygy)(hvaéx)+(Vcéx)(’7¢51) .

Now suppose that a parallel normal variation carries a minimal submanifold
into a minimal submanifold. Then we obtain from (5.19)

(520) Klzjihcy kBt Czh5y§x+ (hcbyfy)(hwxfx) =0.

Thus if the sectional curvature of M™ with respect to the section spanned by
the variation vector and a tangent to the submanifold is non-positive, we have

—KjinCy*B7*C Y67 <0,

and consequently from (5.20)
hcbxgx:O .
Thus we have

PROPOSITION 5.5. If a parallel normal variation corries a munimal submani-
fold wmto a mumimal submanifold and the sectional curvature of the ambiant mani-
fold with rvespect to a section spanned by the variation vector and a tangent to
the submanifold 1s non-positwe, then the submanifold is geodesic with respect to the
varation vector.

We now consider a normal variation X*=x"4+1C" of a compact hypersurface,
where A is a positive function and C”* the unit normal to the hypersurface.
In this case (3.2) reduces to

(5.21) 0g=2h%

and (5.12) to

(5.22) Ohey=[V V yA4 2K ;i C*BEC"— Aheohy® e,

7" being identically zero. Thus from (5.21) and (5.22) we have

(5.23) 0(gPhep)=[ A2+ 2K} jinC*BI*C - Aheyh Ie .
Thus if the normal variation preserves g®h,, we have

(5.24) A2+ 2K ;i C* B C -y h®1=0.

Consequently if moreover
K;;C*BI*"C*=0,
we have
A=constant, K3 juC*B7'C*=0 and h,=0.

Thus we have
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PROPOSITION 5.6. [If a normal variation x*=x"+AC"%, 2>0, of a compact
hypersurface preserves g«hyy and Ki;;C*B*C*=0, then we have

A=constant, K, C*B/*C*=0

and the hypersurface 1s totally geodesic.
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