April, 2022 Hamiltonian structures of isomonodromic deformations on moduli spaces of parabolic connections
Arata KOMYO
Author Affiliations +
J. Math. Soc. Japan 74(2): 473-519 (April, 2022). DOI: 10.2969/jmsj/83858385

Abstract

In this paper, we treat moduli spaces of parabolic connections. We take an affine open covering of the moduli spaces, and we construct a Hamiltonian structure of an algebraic vector field determined by the isomonodromic deformation for each affine open subset.

Funding Statement

The author is supported by JSPS KAKENHI Grant Numbers 17H06127, 18J00245 and 19K14506.

Citation

Download Citation

Arata KOMYO. "Hamiltonian structures of isomonodromic deformations on moduli spaces of parabolic connections." J. Math. Soc. Japan 74 (2) 473 - 519, April, 2022. https://doi.org/10.2969/jmsj/83858385

Information

Received: 9 December 2019; Revised: 10 November 2020; Published: April, 2022
First available in Project Euclid: 20 October 2021

MathSciNet: MR4410319
zbMATH: 1486.14017
Digital Object Identifier: 10.2969/jmsj/83858385

Subjects:
Primary: 14D20
Secondary: 34M55

Keywords: Hamiltonian system , Isomonodromic deformation , moduli theory , parabolic connection

Rights: Copyright ©2022 Mathematical Society of Japan

Vol.74 • No. 2 • April, 2022
Back to Top