October, 2021 Finite and symmetric Mordell–Tornheim multiple zeta values
Henrik BACHMANN, Yoshihiro TAKEYAMA, Koji TASAKA
Author Affiliations +
J. Math. Soc. Japan 73(4): 1129-1158 (October, 2021). DOI: 10.2969/jmsj/84348434

Abstract

We introduce finite and symmetric Mordell–Tornheim type of multiple zeta values and give a new approach to the Kaneko–Zagier conjecture stating that the finite and symmetric multiple zeta values satisfy the same relations.

Funding Statement

This work was partially supported by JSPS KAKENHI Grant Numbers 18K13393, 18K03233, 19K14499.

Citation

Download Citation

Henrik BACHMANN. Yoshihiro TAKEYAMA. Koji TASAKA. "Finite and symmetric Mordell–Tornheim multiple zeta values." J. Math. Soc. Japan 73 (4) 1129 - 1158, October, 2021. https://doi.org/10.2969/jmsj/84348434

Information

Received: 27 February 2020; Revised: 16 April 2020; Published: October, 2021
First available in Project Euclid: 26 December 2020

MathSciNet: MR4329024
zbMATH: 1492.11125
Digital Object Identifier: 10.2969/jmsj/84348434

Subjects:
Primary: 11M32
Secondary: 05A30 , 11R18

Keywords: Kaneko–Zagier conjecture (finite multiple zeta values and symmetric multiple zeta values) , Mordell–Tornheim multiple zeta values , Mordell–Tornheim–Witten ($q$-)multiple zeta values

Rights: Copyright ©2021 Mathematical Society of Japan

Vol.73 • No. 4 • October, 2021
Back to Top