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Abstract. The Cohen–Macaulay type of idealizations of maximal
Cohen–Macaulay modules over Cohen–Macaulay local rings is closely explored.

There are two extremal cases, one of which is related to the theory of Ulrich
modules, and the other one is related to the theory of residually faithful mod-
ules and closed ideals, developed by Brennan and Vasconcelos.

1. Introduction.

The purpose of this paper is to explore the behavior of the Cohen–Macaulay type

of idealizations of maximal Cohen–Macaulay modules over Cohen–Macaulay local rings,

mainly in connection with their residual faithfulness.

Let R be a commutative ring and M an R-module. We set A = R⊕M as an additive

group and define the multiplication in A by

(a, x)·(b, y) = (ab, ay + bx)

for (a, x), (b, y) ∈ A. Then, A forms a commutative ring, which we denote by A = R⋉M

and call the idealization of M over R (or, the trivial extension of R by M). Notice

that R ⋉M is a Noetherian ring if and only if so is the ring R and the R-module M is

finitely generated. If R is a local ring with maximal ideal m, then so is the idealization

A = R⋉M , and the maximal ideal n of A is given by n = m×M .

The notion of the idealization was introduced in the book [22] of Nagata, and we

now have diverse applications in several directions (see, e.g., [1], [10], [15]). Let (R,m)

be a Cohen–Macaulay local ring of dimension d. We set

r(R) = ℓR

(
ExtdR(R/m, R)

)
and call it the Cohen–Macaulay type of R (here ℓR(∗) denotes the length). Then, as

is well-known, R is a Gorenstein ring if and only if r(R) = 1, so that the invariant
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r(R) measures how different the ring R is from being a Gorenstein ring. In the current

paper, we are interested in the Cohen–Macaulay type r(R⋉M) of R⋉M , for a maximal

Cohen–Macaulay (MCM for short) R-module M , that is a finitely generated R-module

M with depthR M = dimR. In the researches of this direction, one of the most striking

results is, of course, the characterization of canonical modules obtained by Reiten [23].

She showed that R⋉M is a Gorenstein ring if and only if R is a Cohen–Macaulay local

ring and M is the canonical module of R, assuming (R,m) is a Noetherian local ring and

M is a non-zero finitely generated R-module. Motivated by this result, our study aims

at explicit formulas of the Cohen–Macaulay type r(R ⋉ M) of idealizations for diverse

MCM R-modules M .

Let us state some of our main results, explaining how this paper is organized.

Throughout, let (R,m) be a Cohen–Macaulay local ring, and M an MCM R-module.

Then, we have in general

rR(M) ≤ r(R⋉M) ≤ r(R) + rR(M)

(here rR(M) = ℓR(Ext
d
R(R/m,M)) denotes the Cohen–Macaulay type of M), which we

shall confirm in Section 2 (Theorem 2.2). As is shown in Example 2.3 and Proposition 2.4,

the difference r(R⋉M)−rR(M) can be arbitrary among the interval [0, r(R)]. We explore

two extremal cases; one is the case of r(R⋉M) = rR(M), and the other one is the case

of r(R⋉M) = r(R) + rR(M).

The former case is exactly the case where M is a residually faithful R-module and

closely related to the preceding research [3]. To explain the relationship more precisely,

for R-modules M and N , let

t = tMN : HomR(M,N)⊗R M → N

denote the R-linear map defined by t(f ⊗x) = f(x) for all f ∈ HomR(M,N) and x ∈ M .

With this notation, we have the following, which we will prove in Section 3. Here, µR(∗)
denotes the number of elements in a minimal system of generators.

Theorem 1.1. Let M be an MCM R-module and suppose that R possesses the

canonical module KR. Then

r(R⋉M) = rR(M) + µR

(
Coker tMKR

)
.

As a consequence, we get the following, where the equivalence between Conditions (2)

and (3) is due to [3, Proposition 5.2]. Remember that an MCM R-module M is said to

be residually faithful, if M/qM is a faithful R/q-module for some (eventually, for every)

parameter ideal q of R (cf. [3, Definition 5.1]).

Corollary 1.2 (cf. [3, Proposition 5.2]). Let M be an MCM R-module and sup-

pose that R possesses the canonical module KR. Then the following conditions are equiv-

alent.

(1) r(R⋉M) = rR(M).

(2) The homomorphism tMKR
: HomR(M,KR)⊗R M → KR is surjective.
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(3) M is a residually faithful R-module.

In Section 3, we will also show the following, where ΩCM(R) denotes the class of

the (not necessarily minimal) first syzygy modules of MCM R-modules.

Theorem 1.3. Let M ∈ ΩCM(R). Then

r(R⋉M) =

{
rR(M) if R is a direct summand of M,

r(R) + rR(M) otherwise.

In Section 4, we are concentrated in the latter case where r(R⋉M) = r(R)+rR(M),

which is closely related to the theory of Ulrich modules ([2], [11], [12], [16]). In fact,

the equality r(R⋉M) = r(R) + rR(M) is equivalent to saying that (q :R m)M = qM for

some (and hence every) parameter ideal q of R, so that all the Ulrich modules and all the

syzygy modules Ωi
R(R/m) (i ≥ d) satisfy the above equality r(R ⋉M) = r(R) + rR(M)

(Theorems 4.1, 4.3), provided R is not a regular local ring (here Ωi
R(R/m) is considered

in a minimal free resolution of R/m).

In Section 5, we give the bound of sup r(R ⋉ M), where M runs through certain

MCM R-modules. In particular, when d = 1, we get the following (Corollary 5.2).

Theorem 1.4. Suppose that (R,m) is a Cohen–Macaulay local ring of dimension

one and multiplicity e. Let F be the set of m-primary ideals of R. Then

sup
I∈F

r(R⋉ I) =

{
1 if R is a DVR,

r(R) + e otherwise.

In Section 6, we focus our attention on the case where dimR = 1. The main objec-

tives are the trace ideals and closed ideals. The notion of closed ideals was introduced

by [3], where one finds a beautiful theory of closed ideals. As for the theory of trace

ideals, we refer to [8], [20] for the recent progress. In Section 6, we compute the Cohen–

Macaulay type r(R ⋉ I) for fractional trace or closed ideals I over a one-dimensional

Cohen–Macaulay local ring R, in terms of the numbers of generators of I together with

the Cohen–Macaulay type rR(I) of I as an R-module.

In what follows, unless otherwise specified, (R,m) denotes a Cohen–Macaulay local

ring with d = dimR ≥ 0. When R possesses the canonical module KR, for each R-module

M we denote HomR(M,KR) by M∨. Let Q(R) be the total ring of fractions of R. For

R-submodules X and Y of Q(R), let

X : Y = {a ∈ Q(R) | aY ⊆ X}.

If we consider ideals I, J of R, we set I :R J = {a ∈ R | aJ ⊆ I}; hence

I :R J = (I : J) ∩R.

For each finitely generated R-module M , let µR(M) (resp. ℓR(M)) denote the number of

elements in a minimal system of generators (resp. the length) of M . For an m-primary

ideal a of R, we denote by
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e0a(M) = lim
n→∞

d!·ℓR(M/anM)

nd

the multiplicity of M with respect to a.

2. The Cohen–Macaulay type of general idealizations.

In this section, we estimate the Cohen–Macaulay type of idealizations for general

maximal Cohen–Macaulay modules over Cohen–Macaulay local rings. We begin with

the following observation, which is the starting point of this research.

Proposition 2.1. Let (R,m) be a (not necessarily Noetherian) local ring and let

M be an R-module. We set A = R⋉M and denote by n = m×M the maximal ideal of

A. Then

(0) :A n = ([(0) :R m] ∩AnnRM)× [(0) :M m] .

Therefore, when R is an Artinian local ring, (0) :A n = (0) × [(0) :M m] if and only if

AnnRM = (0).

Proof. Let (a, x) ∈ A. Then (a, x)·(b, y) = 0 for all (b, y) ∈ n = m × M if and

only if ab = 0, ay = 0, and bx = 0 for all b ∈ m, y ∈ M . Hence, the first equality follows.

Suppose that R is an Artinian local ring. Then, since I = AnnRM is an ideal of R,

I ̸= (0) if and only if [(0) :R m] ∩ I ̸= (0), whence the second assertion follows. □

We now assume, throughout this section, that (R,m) is a Cohen–Macaulay local

ring with d = dimR ≥ 0. We say that a finitely generated R-module M is a maximal

Cohen–Macaulay (MCM for short) R-module, if depthR M = d.

Theorem 2.2. Let M be an MCM R-module and A = R⋉M . Then

rR(M) ≤ r(A) ≤ r(R) + rR(M).

Let q be a parameter ideal of R and set R = R/q, M = M/qM . We then have the

following.

(1) r(A) = rR(M) if and only if M is a faithful R-module.

(2) r(A) = r(R) + rR(M) if and only if (q :R m)M = qM .

Proof. We set A = A/qA. Therefore, A = R⋉M . Since A is a Cohen–Macaulay

local ring and qA is a parameter ideal of A, we have r(A) = r(A), and by Proposition 2.1

it follows that

r(A) = ℓA((0) :A n) = ℓA
(
([(0) :R m] ∩AnnRM)× [(0) :M m]

)
= ℓR([(0) :R m] ∩AnnRM) + ℓR ((0) :M m)

= ℓR([(0) :R m] ∩AnnRM) + rR(M)

≤ ℓR((0) :R m) + rR(M)
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= r(R) + rR(M).

Hence, rR(M) ≤ r(A) ≤ r(R) + rR(M), so that by Proposition 2.1, r(A) = rR(M) if and

only if M is a faithful R-module. We have r(A) = r(R)+rR(M) if and only if (0) :R m ⊆
AnnRM , and the latter condition is equivalent to saying that q :R m ⊆ qM :R M , that

is (q :R m)M = qM . □

The following shows the difference r(A) − rR(M) in Theorem 2.2 can be arbitrary

among the interval [0, r(R)]. Notice that r(R⋉R) = r(R).

Example 2.3. Let ℓ ≥ 2 be an integer and S = k[[X1, X2, . . . , Xℓ]] the formal

power series ring over a field k. Let a = I2(M) denote the ideal of S generated by the

maximal minors of the matrix M =
(

X1 X2 ··· Xℓ−1 Xℓ

X2 X3 ··· Xℓ Xq
1

)
with q ≥ 2. We set R = S/a.

Then R is a Cohen–Macaulay local ring of dimension one. For each integer 2 ≤ p ≤ ℓ,

we consider the ideal Ip = (x1) + (xp, xp+1, . . . , xℓ) of R, where xi denotes the image of

Xi in R. Then r(R⋉ Ip) = (ℓ− p+ 1) + rR(Ip), and

rR(Ip) =

{
ℓ if p = 2,

ℓ− 1 if p ≥ 3

for each 2 ≤ p ≤ ℓ.

Proof. Let m denote the maximal ideal of R. We set I = Ip and x = x1. It is

direct to check that I2 = xI, where we use the fact that q ≥ 2. In particular, m2 = xm.

We consider the exact sequence

(E) 0 → R/I
ι→ I/xI → I/(x) → 0,

where ι(1) = x mod xI, and get AnnRI/xI = I, since I2 = xI. Therefore,

AnnR/(x)I/xI = I/(x). Because I/(x) ⊆ m/(x) = (0) :R/(x) m, we get

ℓR([(0) :R/(x) m] ∩AnnR/(x)I/xI) = ℓR(I/(x)) = ℓ− p+ 1,

whence

r(R⋉ I) = (ℓ− p+ 1) + rR(I)

by Theorem 2.2. Because (x2, x3, . . . , xp−1)·(xp, xp+1, . . . , xℓ) ⊆ xI, the above sequence

(E) remains exact on the socles, so that

rR(I) = r(R/I) + rR(I/(x)).

Therefore, rR(I) = ℓ if p = 2, and rR(I) = (p− 2) + (ℓ− p+ 1) = ℓ− 1 if p ≥ 3. □

Assume that R is not a regular local ring and let 0 ≤ n ≤ r(R) be an integer. Then,

we suspect if there exists an MCM R-module M such that r(R ⋉ M) = n + rR(M).

When R is the semigroup ring of a numerical semigroup, we however have an affirmative

answer.
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Proposition 2.4. Let a1, a2, . . . , aℓ be positive integers such that

GCD(a1, a2, . . . , aℓ) = 1. Let H = ⟨a1, a2, . . . , aℓ⟩ be the numerical semigroup

generated by {ai}1≤i≤ℓ. Let k[[t]] denote the formal power series ring over a field k and

consider, inside of k[[t]], the semigroup ring

R = k[[ta1 , ta2 , . . . , taℓ ]]

of H over k. We set e = min{ai | 1 ≤ i ≤ ℓ} and assume that e > 1, that is R is not

a DVR. Let r = r(R). Then, for each integer 0 ≤ n ≤ r, R contains a non-zero ideal I

such that r(R⋉ I) = n+ rR(I).

Proof. Let m be the maximal ideal of R and set B = m : m. Then B = R : m

since R is not a DVR, and

(te) :R m = (te) : m = te(R : m) = teB.

Let PF(H) denote the set of pseudo-Frobenius numbers of H, that is the set of integers

x ∈ Z \ H such that x + a ∈ H for all a ∈ H \ {0} ([24, Chapter 1, Section 4]).

We write PF(H) = {α1 < α2 < · · · < αr}. Hence, B = R +
∑

1≤i≤r Rtαi , so that

(te) :R m = (te) + (tαi+e | 1 ≤ i ≤ r). Let 1 ≤ p ≤ r be an integer and set I =

(te) + (tαj+e | p ≤ j ≤ r) ⊆ (te) :R m. Let α0 = 0. We then have the following.

Claim 1. Let 0 ≤ i ≤ r and p ≤ j ≤ r be integers. Then tαi+etαj+e ∈ teI.

Consequently, I2 = teI.

Proof. Assume that tαi+etαj+e ̸∈ teI. Then tαi+αj+e ̸∈ I. On the other hand,

since tαitαj ∈ B = m : m, we get αi + αj = αk + h for some 0 ≤ k ≤ r and h ∈ H. If

h > 0, then αi + αj ∈ H, so that tαi+αj+e ∈ I, which is impossible. Therefore, h = 0,

and αk − αj = αi ≥ 0, so that k ≥ j ≥ p. Hence, tαi+αj+e = tαk+e ∈ I. This is a

contradiction. □

We now consider the exact sequence 0 → R/I → I/teI → I/(te) → 0, and get that

AnnR I/teI = I. Hence

AnnR/(te) I/t
eI = I/(te) ⊆ (0) :R/(te) m.

Therefore, r(R ⋉ I) = ℓR(I/(t
e)) + rR(I) = n + rR(I), where n = r − p + 1. For n = 0,

just take I = R. □

Remark 2.5. With the same notation as in the proof of Proposition 2.4, let KR

denote the canonical module of R and consider the ideal I = (te) + (tαj+e | p ≤ j ≤ r).

Then, because I2 = teI and mI = mte, by [10, Proposition 6.1] R ⋉ I∨ is an almost

Gorenstein local ring, where I∨ = HomR(I,KR). Since AnnR I∨/teI∨ = AnnR I/teI, we

get

r(R⋉ I∨) = (r − p+ 1) + rR(I
∨) = (r − p+ 1) + µR(I),

so that r(R⋉ I∨) = 2r − 2p+ 3.



1275(249)

The Cohen–Macaulay type of idealizations 1275

Corollary 2.6. With the same notation as in Proposition 2.4, assume that a1 <

a2 < · · · < aℓ, and that H is minimally generated by ℓ elements with ℓ = a1 ≥ 2, that

is R has maximal embedding dimension ℓ ≥ 2. Let 2 ≤ p ≤ ℓ be an integer and set

Ip = (ta1) + (tap , tap+1 , . . . , taℓ). Then r(R⋉ Ip) = (ℓ− p+ 1) + rR(Ip), and

rR(Ip) =

{
ℓ if p = 2,

ℓ− 1 if p ≥ 3

for each 2 ≤ p ≤ ℓ.

Proof. Let e = a1 and r = r(R). Hence r(R) = e − 1. Let 1 ≤ i, j ≤ ℓ be

integers. Then i = j if ai ≡ aj mod e, because H is minimally generated by {ai}1≤i≤ℓ.

Therefore, PF(H) = {a2 − e < a3 − e < · · · < ae − e}, so that r(R ⋉ Ip) = (e − p +

1) + rR(Ip) by Proposition 2.4. To get rR(Ip), by the proof of Example 2.3 it suffices

to show that m·(tap , tap+1 , . . . , taℓ) ⊆ ta1I, which follows from Claim 1 in the proof of

Proposition 2.4. □

In the following two sections, Sections 3 and 4, we explore the extremal cases where

r(R⋉M) = rR(M) and r(R⋉M) = r(R) + rR(M), respectively.

3. Residually faithful modules and the case where r(R ⋉ M) = rR(M).

Let (R,m) be a Cohen–Macaulay local ring with d = dimR ≥ 0. In this section, we

consider the case of Theorem 2.2 (1), that is r(R⋉M) = rR(M). Let us begin with the

following.

Definition 3.1. Let M be an MCM R-module. We say that M is residually

faithful, if M/qM is a faithful R/q-module for some parameter ideal q of R.

With this definition, Theorem 2.2 (1) assures the following.

Proposition 3.2. Let M be an MCM R-module. Then the following conditions

are equivalent.

(1) r(R⋉M) = rR(M).

(2) M is a residually faithful R-module.

(3) M/qM is a faithful R/q-module for every parameter ideal q of R.

For R-modules M and N , let

t = tMN : HomR(M,N)⊗R M → N

denote the R-linear map defined by t(f ⊗ m) = f(m) for all f ∈ HomR(M,N) and

m ∈ M . With this notation, we have the following.

Theorem 3.3. Let M be an MCM R-module and suppose that R possesses the

canonical module KR. Let C = Coker tMKR
. Then
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r(R⋉M) = rR(M) + µR(C).

Proof. We set K = KR and A = R ⋉M . Let us make the R-module M∨ ×K

into an A-module on which the A-action is defined by

(a,m) ◦ (f, x) = (af, f(m) + ax)

for each (a,m) ∈ A and (f, x) ∈ M∨×K. Then M∨×K ∼= HomR(A,K) as an A-module.

Therefore, KA = M∨ ×K, the canonical module of A ([7, Section 6, Augmented rings]

or [9, Section 2]). Let n = m×M denote the maximal ideal of A and L = Im tMK . Then,

since n(M∨ ×K) = mM∨ × (L+mK), we get

r(A) = µA(KA)

= ℓA([M
∨ ×K]/[mM∨ × (L+mK)])

= ℓR([M
∨ ⊕K]/[mM∨ ⊕ (L+mK)])

= ℓR(M
∨/mM∨) + ℓR(K/(L+mK))

= µR(M
∨) + µR(C)

= rR(M) + µR(C). □

Theorem 3.3 covers [3, Proposition 5.2]. In fact, we have the following, where the

equivalence of Conditions (1) and (3) follows from Proposition 3.2, and the equivalence

of Conditions (1) and (2) follows from Theorem 3.3.

Corollary 3.4 (cf. [3, Proposition 5.2]). Let M be an MCM R-module and sup-

pose that R possesses the canonical module KR. Then the following conditions are equiv-

alent.

(1) r(R⋉M) = rR(M).

(2) The homomorphism tMKR
: HomR(M,KR)⊗R M → KR is surjective.

(3) M is a residually faithful R-module.

We note one example of residually faithful modules M such that M ̸∼= R,KR.

Example 3.5 ([14, Example 7.3]). Let k[[t]] be the formal power series ring over a

field k and consider R = k[[t9, t10, t11, t12, t15]] in k[[t]]. Then KR = R+Rt+Rt3+Rt4 and

µR(KR) = 4. Let I = R+Rt. Then the homomorphism tIKR
: HomR(I,KR)⊗RI → KR is

an isomorphism of R-modules, so that I is a residually faithful R-module, but I ̸∼= R,KR,

since µR(I) = 2.

Here we notice that Corollary 3.4 recovers the theorem of Reiten [23] on Gorenstein

modules. In fact, with the same notation as in Corollary 3.4, suppose that R ⋉ M is

a Gorenstein ring and let q be a parameter ideal of R. Then, since r(R ⋉ M) = 1,

Corollary 3.4 implies that M = M/qM is a faithful module over the Artinian local

ring R = R/q with rR(M) = 1. Therefore, M is the injective envelope ER(R/m) of
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the residue class field R/m of R, so that M ∼= KR is the canonical module (that is a

Gorenstein module of rank one) of R.

Residually faithful modules enjoy good properties. Let us summarize some of them.

Proposition 3.6. Let M be an MCM R-module. Then the following assertions

hold true.

(1) Let a ∈ m be a non-zerodivisor of R. Then M is a residually faithful R-module if

and only if so is the R/(a)-module M/aM .

(2) Let (S, n) be a Cohen–Macaulay local ring and let φ : R → S denote a flat local

homomorphism of local rings. Then M is a residually faithful R-module if and only

if so is the S-module S⊗R M . Therefore, M is a residually faithful R-module if and

only if so is the R̂-module M̂ , where ∗̂ denotes the m-adic completion.

(3) Suppose that M is a residually faithful R-module. Then M is a faithful R-module

and Mp is a residually faithful Rp-module for every p ∈ SpecR.

Proof. (1) This directly follows from Proposition 3.2.

(2) We set n = dimS/mS and L = S⊗RM . Firstly, suppose that n = 0. Let q be a

parameter ideal of R and set a = AnnRM/qM . Then aS = AnnS(L/qL). If a = q, then

qS = AnnSL/qL, so that L is a residually faithful S-module, since qS is a parameter

ideal of S. Conversely, suppose that L is a residually faithful S-module. We then have

aS = qS by Proposition 3.2, so that a = q, and M is a residually faithful R-module.

We now assume that n > 0 and that Assertion (2) holds true for n−1. Let g ∈ n and

suppose that g is S/mS-regular. Then g is S-regular and the composite homomorphism

R → S → S/gS

remains flat and local, so that M is a residually faithful R-module if and only if so is the

S/gS-module L/gL. Since dimS/(gS+mS) = n−1, the latter condition is, by Assertion

(1), equivalent to saying that L is a residually faithful S-module.

(3) Let a1, a2, . . . , ad be a system of parameters of R. We then have by Proposi-

tion 3.2

AnnRM ⊆ AnnRM/(an1 , a
n
2 , . . . , a

n
d )M = (an1 , a

n
2 , . . . , a

n
d )

for all n > 0. Therefore, M is a faithful R-module. Let p ∈ SpecR and choose P ∈
MinR̂ R̂/pR̂. Then, p = P ∩R, and we get a flat local homomorphism Rp → R̂P of local

rings such that dim R̂P /pR̂P = 0. Therefore, to see that Mp is a residually faithful Rp-

module, by Assertion (2) it suffices to show that M̂P is a residually faithful R̂P -module.

Consequently, because M̂ is a residually faithful R̂-module by Assertion (2), passing to

the m-adic completion R̂ of R, without loss of generality we may assume that R possesses

the canonical module KR. Then, the current assertion readily follows from Corollary 3.4,

because

KRp
= (KR)p =

(
Im tMKR

)
p
= Im t

Mp

KRp
. □
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By Proposition 3.6, we have the following.

Corollary 3.7. Let M be an MCM R-module. If r(R ⋉ M) = rR(M), then

r(Rp ⋉Mp) = rRp
(Mp) for every p ∈ SpecR.

Corollary 3.8. Let M be an MCM R-module, and suppose that R possesses the

canonical module KR. If M is a residually faithful R-module, then so is M∨.

Proof. We may assume that d > 0 and that our assertion holds true for d − 1.

Let a ∈ m be a non-zerodivisor of R and let ∗ denote the reduction mod (a). We

then have M∨ ∼= HomR(M,KR) = M
∨
, where we identify KR = KR. Because by

Proposition 3.6 (1), M is a residually faithful R-module, by the hypothesis of induction

we have M
∨
= HomR(M,KR) is a residually faithful R-module, whence Proposition 3.6

(1) shows that M∨ is a residually faithful R-module. □

Suppose that R possesses the canonical module KR. Then, certain residually faithful

R-modules M satisfy the condition HomR(M,KR) ⊗R M ∼= KR, as we show in the

following. Recall that a finitely generated R-module C is called semidualizing, if the

natural homomorphism R → HomR(C,C) is an isomorphism and ExtiR(C,C) = (0)

for all i > 0. Hence, the canonical module is semidualizing, and all the semidualizing

R-modules satisfy the hypothesis in Theorem 3.9, because semidualizing modules are

Cohen–Macaulay. The reader may consult [5], [26], [27] for basic results on semidualizing

modules.

Theorem 3.9. Suppose that R possesses the canonical module KR and let M be

an MCM R-module. If R ∼= HomR(M,M) and ExtiR(M,M) = (0) for all 1 ≤ i ≤ d,

then the homomorphism

M∨ ⊗R M
t→ KR

is an isomorphism of R-modules, where t = tMKR
.

Proof. Notice that M is a residually faithful R-module. In fact, the assertion

is clear, if d = 0. Suppose that d > 0 and let f ∈ m be a non-zerodivisor of R.

We set R = R/(f) and denote ∗ = R ⊗R ∗. Then, since f is regular also for M ,

we have ExtiR(M,M) = Exti
R
(M,M) for all i ∈ Z, and it is standard to show that

R ∼= HomR(M,M) and that Exti
R
(M,M) = (0) for all 1 ≤ i ≤ d − 1. Therefore,

by induction on d, we may assume that M is a residually faithful R-module, whence

Proposition 3.6 (1) implies that so is the R-module M .

We now consider the exact sequence

(E) 0 → X → M∨ ⊗R M
t→ KR → 0

of R-modules, where t = tMKR
and X = Ker t. If d = 0, then because

HomR(M
∨ ⊗R M,KR) = HomR(M,M∨∨) = HomR(M,M),
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taking the KR-dual of (E), we get the exact sequence

0 → R → HomR(M,M) → X∨ → 0.

Hence X∨ = (0) because R ∼= HomR(M,M), so that M∨⊗RM
t→ KR is an isomorphism.

Suppose that d > 0 and let f ∈ m be R-regular. We denote ∗ = R/(f)⊗R ∗. Then since

f is KR-regular, from the exact sequence (E) we get

(E) 0 → X → M∨ ⊗R M
t→ KR → 0.

Because KR = KR, M
∨ ⊗R M = M

∨ ⊗R M , and t = t
KR

M
, by induction on d we see

in the above exact sequence (E) that X = (0), whence X = (0) by Nakayama’s lemma.

Therefore, M∨ ⊗R M
t→ KR is an isomorphism. □

Therefore, we have the following, which guarantees that the converse of Theorem 3.9

also holds true, if Rp is a Gorenstein ring for every p ∈ SpecR \ {m}. See [13, Proposi-

tion 2.4] for details.

Corollary 3.10 ([13, Proposition 2.2]). With the same hypothesis of Theorem

3.9, one has r(R) = rR(M)·µR(M). Consequently, the following assertions hold true.

(1) If r(R) is a prime number, then M ∼= R or M ∼= KR.

(2) If R is a Gorenstein ring, then M ∼= R.

Let R be a Cohen–Macaulay local ring of dimension one and assume that R possesses

the canonical module KR. Suppose that R has maximal embedding dimension. Let I be

an ideal of R. We then have by [14, Theorem 3.4] that I ∼= R or I ∼= KR, if I
∨⊗RI ∼= KR.

This assertion holds true for arbitrary dimension, and one gets the following. Since the

proof given in [14] still works in arbitrary dimension, here we omit the detailed proof.

Theorem 3.11. Let R be a Cohen–Macaulay local ring and assume that R pos-

sesses the canonical module KR. Suppose that R has maximal embedding dimension. Let

M be an MCM R-module with rank. If M∨ ⊗R M ∼= KR, then M ∼= R or M ∼= KR.

Because semidualizing modules over a Cohen–Macaulay local ring R possessing the

canonical module KR satisfy the assumption stated in Theorem 3.9, from Theorem 3.11

we readily get the following. Notice that the semidualizing R-modules have rank one,

once the total ring Q(R) of fractions of R is a Gorenstein ring ([13, Corollary 4.5 (1)]).

Corollary 3.12. Let R be a Cohen–Macaulay local ring and assume that R pos-

sesses the canonical module KR. Suppose that R has maximal embedding dimension. Let

C be a semidualizing R-module. Then, C ∼= R or C ∼= KR, if Q(R) is a Gorenstein ring.

Let us note the following.

Proposition 3.13. Suppose that R is an integral domain, possessing the canon-

ical module KR. Let M be an MCM R-module and assume that r(R ⋉ M) = 2. If
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ExtiR(M,M) = (0) for all 1 ≤ i ≤ d, then

M ∼= K⊕2
R or M∨ ⊗R M ∼= KR.

Therefore, if r(R) is a prime number and M is indecomposable, then r(R) = 2 and

M ∼= R.

Proof. Let C = Coker tMKR
. Then, rR(M) = µR(C) = 1, or rR(M) = 2 and

C = (0), since r(R⋉M) = rR(M)+µR(C) by Theorem 3.3. If rR(M) = 1, then M∨ ∼= R,

since the cyclic module M∨ is of dimension d and R is an integral domain. Therefore,

M ∼= KR, so that r(R⋉M) = 1, which violates the assumption that r(R⋉M) = 2. Hence,

rR(M) = 2, and M is, by Proposition 3.2, a residually faithful R-module. Therefore,

M∨ is minimally generated by two elements. We take a presentation

0 → X → R⊕2 → M∨ → 0

of M∨, where X denotes the kernel of the epimorphism R⊕2 → M∨. If X = (0), then

M ∼= K⊕2
R . Suppose that X ̸= (0). Then, X is an MCM R-module, and taking the

KR-dual of the presentation, we get the exact sequence

0 → M → K⊕2
R → X∨ → 0.

Let F = Q(R). Then F ⊗R X∨ ̸= (0), since X∨ is an MCM R-module. Consequently,

F ⊗R M ∼= F , that is rankRM = 1, because F ⊗R KR
∼= F . Hence, in the canonical

exact sequence

(E) 0 → L → M∨ ⊗R M
t→ KR → 0,

F ⊗R L = (0), because rankRM = 1. Consequently, because the R-module L is torsion,

taking the KR-dual of the sequence (E) we get the isomorphism

R = K∨
R → [M∨ ⊗M ]∨ = HomR(M,M).

Thus, M∨ ⊗R M ∼= KR by Theorem 3.9.

If M is indecomposable and r(R) is a prime number, we then have M ∼= R or

M ∼= KR by Corollary 3.10, while r(R ⋉ M) = rR(M) = 2, so that M ∼= R and

r(R) = 2. □

The following result is essentially due to [28, Lemma 3.1] (see also [18, Proof of

Lemma 2.2]). We include a brief proof for the sake of completeness.

Lemma 3.14. Let M be an MCM R-module and assume that there is an embedding

(E) 0 → M → F → N → 0

of M into a finitely generated free R-module F such that N is an MCM R-module. Then

the following conditions are equivalent.

(1) M is a residually faithful R-module.
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(2) M ̸⊆ mF .

(3) R is a direct summand of M .

Proof. (3) ⇒ (1) and (2) ⇒ (3) These are clear.

(1) ⇒ (2) Let q be a parameter ideal of R. Then, since N is an MCM R-module,

the embedding (E) gives rise to the exact sequence

0 → M/qM → F/qF → N/qN → 0.

Notice that AnnR/qm·(F/qF ) ̸= (0) because dimR/q = 0, and we have M/qM ̸⊆
m·(F/qF ). Thus M ̸⊆ mF . □

Let ΩCM(R) denote the class of MCM R-modulesM such that there is an embedding

0 → M → F → N → 0 of M into a finitely generated free R-module with N an MCM

R-module. With this notation, we have the following.

Theorem 3.15. Let M ∈ ΩCM(R). Then

r(R⋉M) =

{
rR(M) if R is a direct summand of M,

r(R) + rR(M) otherwise.

Proof. We may assume that R is not a direct summand of M . Let us choose an

embedding

0 → M → F → N → 0

of M into a finitely generated free R-module F such that N is an MCM R-module. Let

q be a parameter ideal of R and set I = q :R m. Then, since M ⊆ mF by Lemma 3.14,

we have from the exact sequence

0 → M/qM → F/qF → N/qN → 0

that I·(M/qM) ⊆ (Im)·(F/qF ) = (0). Therefore, IM ⊆ qM , so that r(R ⋉ M) =

r(R) + rR(M) by Theorem 2.2 (2). □

If R is a Gorenstein ring, every MCM R-module M belongs to ΩCM(R), so that

Theorem 3.15 yields the following.

Corollary 3.16. Let R be a Gorenstein ring and M an MCM R-module. Then

the following conditions are equivalent.

(1) r(R⋉M) = rR(M).

(2) R is a direct summand of M .

Let us note two more consequences. The following results are obtained by [4, Sec-

tion 4] under the assumption that R has maximal embedding dimension.
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Corollary 3.17. Let R be a Cohen–Macaulay local ring and assume that R pos-

sesses the canonical module KR. Let M ∈ ΩCM(R). If the homomorphism

tMKR
: M∨ ⊗R M → KR

is an isomorphism, then M ∼= R.

Proof. By Corollary 3.4 we get r(R ⋉ M) = rR(M). Therefore, since M ∈
ΩCM(R), by Theorem 3.15 R is a direct summand of M . Hence, M ∼= R, because

M∨ ⊗R M ∼= KR. □

Since reflexive modules are the second syzygy modules, from Corollary 3.17 we

readily get the following.

Corollary 3.18. Let R be a Cohen–Macaulay local ring of dimension one and

assume that R possesses the canonical module KR. Let I be a reflexive ideal of R. If the

homomorphism

tIKR
: I∨ ⊗R I → KR

is an isomorphism, then I is a principal ideal of R.

4. Ulrich modules and the case where r(R ⋉ M) = r(R) + rR(M).

Let (R,m) be a Cohen–Macaulay local ring of dimension d ≥ 0. In this section, we

study the other extremal case of Theorem 2.2 (2), that is r(R⋉M) = r(R)+rR(M). We

already have a partial answer by Theorem 3.15, and the following also shows that over

a non-regular Cohen–Macaulay local ring (R,m, k), there are plenty of MCM R-modules

M such that r(R⋉M) = r(R) + rR(M).

Let Ωi
R(k) denote, for each i ≥ 0, the i-th syzygy module of the simple R-module

k = R/m in its minimal free resolution. Notice that, thanks to Theorem 3.15, the crucial

case in Theorem 4.1 is actually the case where i = d.

Theorem 4.1. Suppose that R is not a regular local ring. Then (q :R m)·Ωi
R(k) =

q·Ωi
R(k) for every i ≥ d and for every parameter ideal q of R. Therefore

r(R⋉ Ωi
R(k)) = r(R) + rR(Ω

i
R(k))

for all i ≥ d.

Proof. We may assume that d > 0 and that the assertion holds true for d − 1.

Choose a ∈ m\m2 so that a is a non-zerodivisor of R. We set R = R/(a) and m = m/(a).

We then have, for each i > 0, the isomorphism

Ωi
R(k)/a·Ωi

R(k)
∼= Ωi−1

R
(k)⊕ Ωi

R
(k)

(see, e.g., [11, Lemma 2.1]). We now choose elements a2, a3, . . . , ad of m so that q0 =

(a, a2, a3, . . . , ad) is a parameter ideal of R and set q0 = q0/(a). Then, by the hypothesis
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of induction, we have

(q0 :R m)·Ωi
R
(k) = q0·Ωi

R
(k)

for all i ≥ d− 1, so that

(q0 :R m)·
[
Ωi

R(k)/a·Ωi
R(k)

]
= q0·

[
Ωi

R(k)/a·Ωi
R(k)

]
for all i ≥ d. Hence, because q0 :R m = (q0 :R m)/(a),

(q0 :R m)·Ωi
R(k) = q0·Ωi

R(k)

for all i ≥ d. Therefore, by Theorem 2.2 (2), (q :R m)·Ωi
R(k) = q·Ωi

R(k) for every

parameter ideal q of R, because Ωi
R(k) is an MCM R-module. □

Let us pose one question.

Question 4.2. Suppose that R is not a regular local ring. Does the equality

(q :R m)·Ωi
R(k) = q·Ωi

R(k)

hold true for every i ≥ 0 and for every parameter ideal q of R? As is shown in Theo-

rem 4.1, this is the case, if i ≥ d = dimR. Hence, the answer is affirmative, if d = 2

([6]).

Let M be an MCM R-module. Then we say that M is an Ulrich R-module with

respect to m, if µR(M) = e0m(M) (see [2], where the different terminology MGMCM

(maximally generated MCM module) is used). Ulrich modules play an important role in

the representation theory of local and graded algebras. See [11], [12] for a generalization

of Ulrich modules, which later we shall be back to. Here, let us note that an MCM

R-module M is an Ulrich R-module with respect to m if and only if mM = qM for some

(hence, every) minimal reduction q of m, provided the residue class field R/m of R is

infinite (see, e.g., [15, Proposition 2.2]). We refer to [19, Theorem A] for the ample

existence of Ulrich modules with respect to m over certain two-dimensional normal local

rings (R,m).

Theorem 4.3. Suppose that R is not a regular local ring and let M be an MCM

R-module. We set A = R ⋉ M . If M is an Ulrich R-module with respect to m, then

rR(M) = µR(M) and r(A) = r(R)+rR(M), so that (q :R m)M = qM for every parameter

ideal q of R. When R has maximal embedding dimension in the sense of [25], the converse

is also true.

Proof. Enlarging the residue class field of R if necessary, we may assume that

R/m is infinite. Let us choose elements f1, f2, . . . , fd of m so that q = (f1, f2, . . . , fd) is a

reduction of m. Then, q is a parameter ideal of R, and mM = qM , since M is an Ulrich

R-module with respect to m ([15, Proposition 2.2]). We then have rR(M) = µR(M), and

q :R m ⊆ m, because R is not a regular local ring. Hence, (q :R m)M = qM , because
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qM ⊆ (q :R m)M ⊆ mM = qM.

Thus, r(A) = r(R) + rR(M) by Theorem 2.2.

Assume that R has maximal embedding dimension and we will show that the con-

verse also holds true. We have m2 = qm for some parameter ideal q of R, so that

m = q :R m, because R is not a regular local ring. If r(A) = r(R) + rR(M), we then have

mM = (q :R m)M = qM

by Theorem 2.2 (2), whence M is an Ulrich R-module with respect to m. □

Remark 4.4. Unless R has maximal embedding dimension, the second assertion

in Theorem 4.3 is not necessarily true. For example, let (R,m) be a one-dimensional

Gorenstein local ring. Assume that R is not a DVR. Then r(R⋉m) = 3 = r(R) + rR(m)

(see Proposition 6.7 and Corollary 6.8 below), while m is an Ulrich R-module with respect

to m itself if and only if m2 = am for some a ∈ m. The last condition is equivalent to

saying that e(R) = 2.

We note one more example, for which the both cases r(R⋉M) = r(R)+ rR(M) and

r(R⋉M) = rR(M) are possible, choosing different MCM modules M .

Example 4.5. Let R = k[[X,Y, Z]]/(Z2 − XY ), where k[[X,Y, Z]] denotes the

formal power series ring over a field k. Then, the indecomposable MCM R-modules are

p = (x, z) and R, up-to isomorphisms (here, by x, y, z we denote the images of X,Y, Z

in R, respectively). Since p is an Ulrich R-module with respect to m, by Theorem 4.3

we have r(R ⋉ p) = 1 + rR(p) = 3. Let M be an arbitrary MCM R-module. Then,

M ∼= p⊕ℓ ⊕R⊕n for some integers ℓ, n ≥ 0, and M/qM is a faithful R/q-module for the

parameter ideal q = (x, y) if and only if n > 0. Therefore, r(R ⋉M) = rR(M) = 2ℓ+ n

if n > 0, while r(R⋉M) = 1 + rR(M) = 1 + 2ℓ if n = 0 (see Theorem 2.2).

The generalized notion of Ulrich ideals and modules was introduced by [11]. We

briefly review the definition. Let I be an m-primary ideal of R and M an MCM R-

module. Suppose that I contains a parameter ideal q as a reduction. We say that M

is an Ulrich R-module with respect to I, if e0I(M) = ℓR(M/IM) and M/IM is a free

R/I-module. Notice that the first condition is equivalent to saying that IM = qM and

that the second condition is automatically satisfied, when I = m. We say that I is an

Ulrich ideal of R, if I ⊋ q, I2 = qI, and I/I2 is a free R/I-module. Notice that when

dimR = 1, every Ulrich ideal of R is an Ulrich R-module with respect itself. Ulrich

modules and ideals are closely explored by [8], [11], [12], [16], and it is known that they

enjoy very specific properties. For instance, the syzygy modules Ωi
R(R/I) (i ≥ d) for an

Ulrich ideal I are Ulrich R-modules with respect to I.

Theorem 4.6. Let I be an Ulrich ideal of R and M an Ulrich R-module with

respect to I. We set ℓ = µR(M) and m = µR(I). Then

r(R⋉M) = r(R) + rR(M) = r(R/I)·(ℓ+m− d).
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Proof. Let q be a parameter ideal of R such that I2 = qI. Then IM = qM

because e0I(M) = ℓR(M/IM), while M/IM ∼= (R/I)⊕ℓ as an R/I-module. Therefore,

since AnnR/qM/qM = I/q and I/q ∼= (R/I)⊕(m−d) as an R/I-module ([11, Lemma 2.3]),

we have by Proposition 2.1

r(R⋉M) = rR(I/q) + ℓ·r(R/I) = r(R/I)·(m− d) + ℓ·r(R/I) = r(R) + rR(M),

where the last equality follows from the fact that r(R) = (m− d)·r(R/I) (see [16, Theo-

rem 2.5]). □

Corollary 4.7. Suppose that d = 1 and let I be an Ulrich ideal of R with m =

µR(I). Then r(R⋉ I) = (2m− 1)·r(R/I).

We note a few examples.

Example 4.8. Let k[[t]] be the formal power series ring over a field k.

(1) Let R = k[[t3, t7]]. Then XR = {(t6 − at7, t10) | 0 ̸= a ∈ k} is exactly the set of

Ulrich ideals of R. For all I ∈ XR, R/I is a Gorenstein ring, so that r(R⋉ I) = 3 by

Proposition 4.7.

(2) Let R = k[[t6, t13, t28]]. Then the following families consist of Ulrich ideals of R ([8,

Example 5.7 (3)]):

(i) {(t6 + at13) + c | a ∈ k},
(ii) {(t12 + at13 + bt19) + c | a, b ∈ k}, and
(iii) {(t18 + at25) + c | a ∈ k},

where c = (t24, t26, t28). We have µR(I) = 3 and R/I is a Gorenstein ring for all

ideals I in these families, whence r(R⋉ I) = 5.

Suppose that dimR = 1. If R possesses maximal embedding dimension v but not a

DVR, then for every Ulrich ideal I of R, R/I is a Gorenstein ring, and I is minimally

generated by v elements ([8, Corollary 3.2]). Therefore, by Corollary 4.7, we get the

following.

Corollary 4.9. Suppose that dimR = 1 and that R is not a DVR. If R has

maximal embedding dimension v, then r(R⋉ I) = 2v − 1 for every Ulrich ideal I of R.

5. Bounding the supremum sup r(R ⋉ M).

Let r > 0 be an integer and set

Fr(R) = {M | M is anR-submodule ofR⊕r and a maximal Cohen–MacaulayR-module}.

We are now interested in the supremum supM∈Fr(R) r(R⋉M) and get the following.

Theorem 5.1. Let (R,m) be a Cohen–Macaulay local ring of multiplicity e and let

M ∈ Fr(R). Then r(R ⋉M) ≤ r(R) + re. When m contains a parameter ideal q of R
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as a reduction and R is not a regular local ring, the equality holds if and only if M is an

Ulrich R-module with respect to m, possessing rank r.

Proof. Enlarging the residue class filed R/m of R if necessary, without loss of

generality we may assume that m contains a parameter ideal q of R as a reduction. We

then have

re ≥ e0q(M) = ℓR(M/qM) ≥ ℓR((0) :M/qM m) = rR(M).

Hence

r(R⋉M) ≤ r(R) + rR(M) ≤ r(R) + re

where the first inequality follows from Theorem 2.2. Consequently, if r(R⋉M) = r(R)+

re, then re = rR(M), that is re = e0q(M) and ℓR(M/qM) = ℓR((0) :M/qM m), which

is equivalent to saying that dimR R⊕r/M < d and mM = qM , that is M has rank r

and an Ulrich R-module with respect to m. Therefore, when R is not a regular local

ring, r(R ⋉ M) = r(R) + re if and only if M is an Ulrich R-module with rank r (see

Theorem 4.3). □

Corollary 5.2. Suppose that (R,m) is a Cohen–Macaulay local ring of dimension

one and multiplicity e. Let F be the set of m-primary ideals of R. Then

sup
I∈F

r(R⋉ I) =

{
1 if R is a DVR,

r(R) + e otherwise.

Proof. We have only to show the existence of an m-primary ideal I such that I is

an Ulrich R-module with respect to m and µR(I) = e. This is known by [2, Lemma (2.1)].

For the sake of completeness, we note a different proof. Let

A =
∪
n>0

(mn : mn)

in Q(R). Then A is a birational finite extension of R (see [21]). Since A ∼= I for some

m-primary ideal I of R, it suffices to show that A is an Ulrich R-module with respect to

m and µR(A) = e. To do this, enlarging the residue class field R/m of R if necessary, we

may assume that m contains an element a such that Q = (a) is a reduction of m. Then

mA = aA because A = R[m/a] ([21]), whence A is an Ulrich R-module with respect to

m. We have

µR(A) = ℓR(A/aA) = e0Q(A) = e0Q(R) = e

as wanted. □

6. The case where d = 1.

In this section, we focus our attention on the one-dimensional case. Let (R,m) be a

Cohen–Macaulay local ring of dimension one, admitting a fractional canonical ideal K.
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Hence, K is an R-submodule of R such that K ∼= KR as an R-module and R ⊆ K ⊆ R,

where R denotes the integral closure of R in the total ring Q(R) of fractions of R. The

hypothesis about the existence of fractional canonical ideals K is equivalent to saying

that R contains an m-primary ideal I such that I ∼= KR as an R-module and such that I

possesses a reduction Q = (a) generated by a single element a of R ([10, Corollary 2.8]).

The latter condition is satisfied, once Q(R̂) is a Gorenstein ring and the field R/m

is infinite. We have rR(M) = µR (HomR(M,K)) for every MCM R-module M ([17,

Satz 6.10]). See [10], [17] for more details.

First of all, let us begin with the following review of a result of Brennan and Vas-

concelos [3]. We include a brief proof.

Proposition 6.1 ([3, Propositions 2.1, 5.2]). Let I be a fractional ideal of R and

set I1 = K : I. Then the following conditions are equivalent.

(1) I : I = R.

(2) I1·I = K.

(3) J ·I = K for some fractional ideal J of R.

(4) I/fI is a faithful R/fR-module for every parameter f of R.

(5) I/fI is a faithful R/fR-module for some parameter f of R.

Proof. (1) ⇔ (2) This follows from the facts that K : I1I = (K : I1) : I = I : I,

and that K : K = R. See [17, Definition 2.4] and [17, Bemerkung 2.5 a)], respectively.

(3) ⇒ (2) Since JI = K, we have J ⊆ I1 = K : I, so that K = JI ⊆ I1I ⊆ K,

whence I1I = K.

(2) ⇒ (3) This is clear.

Since I1 ∼= HomR(I,K), the assertion that I1I = K is equivalent to saying that the

homomorphism tIK : HomR(I,K) ⊗R I → K is surjective. Therefore, the equivalence

between Assertions (2), (4), (5) are special cases of Corollary 3.4 (see [3, Proposition 5.2]

also). □

We say that a fractional ideal I of R is closed, if it satisfies the conditions stated in

Proposition 6.1. Thanks to Proposition 6.1 (3), we readily get the following.

Corollary 6.2 ([3, Corollary 3.2]). If R is a Gorenstein ring, then every closed

ideal of R is principal.

Assertion (2) of the following also follows from Corollary 3.16. Let us note a direct

proof.

Theorem 6.3. Suppose that R is a Gorenstein ring and let I be an m-primary

ideal of R. Then the following assertions hold true.

(1) r(R/I) ≤ rR(I) ≤ 1 + r(R/I),

(2) r(R⋉ I) = 1 + rR(I), if µR(I) > 1.
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Proof. Take the R-dual of the canonical exact sequence

0 → I → R → R/I → 0

of R-modules and we get the exact sequence

0 → R → HomR(I,R) → Ext1R(R/I,R) → 0.

Hence, r(R/I) ≤ rR(I) ≤ 1 + r(R/I), because

rR(I) = µR(HomR(I,R)) and r(R/I) = µR

(
Ext1R(R/I,R)

)
([17, Satz 6.10]). To see the second assertion, suppose that µR(I) > 1. Let q = (a) be a

parameter ideal of R and set J = q :R m. Let us write J = (a, b). We then have J = q : m,

and mJ = mq by [6], because R is not a DVR. On the other hand, by Corollary 6.2 we

have R ⊊ I : I, since R is a Gorenstein ring and I is not principal. Consequently

R ⊆ R : m ⊆ I : I,

since ℓR([R : m]/R) = 1 and the Artinian R-module (I : I)/R has non-zero socles.

Therefore, b/a ∈ I : I, because

R : m =
1

a
·[q : m] =

1

a
·(a, b) = R+R

b

a
.

Thus bI ⊆ aI, which shows (q :R m)I = (a, b)I ⊆ qI, so that

r(R⋉ I) = r(R) + rR(I) = 1 + rR(I)

by Theorem 2.2 (2). □

Remark 6.4. In Theorem 6.3 (1), the equality rR(I) = 1 + r(R/I) does not

necessarily hold true. For instance, consider the ideal I = (t8, t9) in the Gorenstein

local ring R = k[[t4, t5, t6]]. Then r(R/I) = 2. Because t−4 ∈ R : I, we have 1 ∈
m·[R : I], which shows, identifying R : I = HomR(I,R) in the proof of Assertion (1) of

Theorem 6.3, that µR(HomR(I,R)) = µR(Ext
1
R(R/I,R)). Hence rR(I) = r(R/I) = 2,

while r(R⋉ I) = 3 by Theorem 6.3 (2).

We however have rR(I) = 1+ r(R/I) for trace ideals I, as we show in the following.

Let I be an ideal of R. Then I is said to be a trace ideal of R, if

I = Im

(
HomR(M,R)⊗R M

tMR−→ R

)
for some R-module M . When I contains a non-zerodivisor of R, I is a trace ideal of R

if and only if R : I = I : I (see [20, Lemma 2.3]). Therefore, m-primary trace ideals are

not principal.

Proposition 6.5. Suppose that R is a Gorenstein ring. Let I be an m-primary
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trace ideal of R. Then rR(I) = 1 + r(R/I) and r(R⋉ I) = 2 + r(R/I).

Proof. We have 1 ̸∈ m·[R : I], since R : I = I : I ⊆ R. Therefore, thanks to the

proof of Assertion (1) in Theorem 6.3, rR(I) = 1+r(R/I), so that r(R⋉ I) = 2+r(R/I)

by Theorem 6.3 (2). □

Example 6.6 ([8, Example 3.12]). Let R = k[[t4, t5, t6]]. Then R is a Gorenstein

ring and

R, (t8, t9, t10, t11), (t6, t8, t9), (t5, t6, t8), (t4, t5, t6),
{
Ia = (t4 − at5, t6)

}
a∈k

are all the non-zero trace ideals of R. We have Ia = Ib, only if a = b.

Proposition 6.7. Suppose that R is a not a DVR. Then m is a trace ideal of R

with rR(m) = r(R) + 1 and r(R⋉m) = 2·r(R) + 1.

Proof. We have m : m = R : m, because R is not a DVR, whence m is a trace

ideal of R. We take the K-dual of the sequence 0 → m → R → R/m → 0 and consider

the resulting exact sequence

0 → K → K : m → Ext1R(R/m,K) → 0.

Then, since Ext1R(R/m,K) ∼= R/m, we get

rR(m) = µR(K : m) ≤ µR(K) + 1 = r(R) + 1.

We actually have the equality in the estimation

µR(K : m) ≤ µR(K) + 1.

To see this, it is enough to show that m(K : m) = mK. We have

K : m(K : m) = [K : (K : m)] : m = m : m

and

K : mK = (K : K) : m = R : m.

Therefore, since m : m = R : m, we getK : m(K : m) = K : mK, so that m(K : m) = mK.

Hence rR(m) = µR(K : m) = µR(K) + 1 = r(R) + 1 as wanted. We have r(R ⋉ m) =

r(R) + rR(m) by Theorem 2.2 (2), because (q :R m)·m = q·m for every parameter ideal q

of R ([6]; see Theorem 4.1 also), whence the second assertion follows. □

Corollary 6.8. Let R be a Gorenstein ring which is not a DVR. Then R⋉m is

an almost Gorenstein ring in the sense of [10], possessing r(R⋉m) = 3.

Proof. See [10, Theorem 6.5] for the assertion that R⋉m is an almost Gorenstein

ring. □
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Let us give one more result on closed ideals.

Proposition 6.9. Let I ⊊ R be a closed ideal of R and set I1 = K : I. Then

r(R/I) = µR(I1) = rR(I).

Proof. We consider the exact sequence 0 → K → I1 → Ext1R(R/I,K) → 0. It

suffices to show K ⊆ mI1. We have K : mI1 = (K : I1) : m, while (K : I1) : m = I : m ⊆
I : I = R = K : K. Hence mI1 ⊇ K and the assertion follows. □

Combining Corollary 3.4, Proposition 6.1, and Proposition 6.9, we have the following,

which is the goal of this paper.

Corollary 6.10. Let I be a fractional ideal of R. Then the following conditions

are equivalent.

(1) r(R⋉ I) = rR(I).

(2) I is a closed ideal of R.

When this is the case, r(R⋉ I) = r(R/I), if I ⊊ R.

We close this paper with the following example.

Example 6.11. Let k be a field. Let R = k[[t3, t4, t5]] and set I = (t3, t4). Then

I ∼= KR, and I is a closed ideal of R with r(R) = 2 and r(R ⋉ I) = rR(I) = 1. We

have r(R ⋉ J) = 1 + rR(J) = 3 for J = (t3, t5). The maximal ideal m of R is an Ulrich

R-module, and r(R ⋉ m) = 2 + rR(m) = 5 by Theorem 4.3, since rR(m) = r(R) + 1 = 3

by Proposition 6.7. See Corollary 2.6 for more details.
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