Translator Disclaimer
October, 2019 Generalizations of the Conway–Gordon theorems and intrinsic knotting on complete graphs
Hiroko MORISHITA, Ryo NIKKUNI
J. Math. Soc. Japan 71(4): 1223-1241 (October, 2019). DOI: 10.2969/jmsj/80858085

Abstract

In 1983, Conway and Gordon proved that for every spatial complete graph on six vertices, the sum of the linking numbers over all of the constituent two-component links is odd, and that for every spatial complete graph on seven vertices, the sum of the Arf invariants over all of the Hamiltonian knots is odd. In 2009, the second author gave integral lifts of the Conway–Gordon theorems in terms of the square of the linking number and the second coefficient of the Conway polynomial. In this paper, we generalize the integral Conway–Gordon theorems to complete graphs with arbitrary number of vertices greater than or equal to six. As an application, we show that for every rectilinear spatial complete graph whose number of vertices is greater than or equal to six, the sum of the second coefficients of the Conway polynomials over all of the Hamiltonian knots is determined explicitly in terms of the number of triangle-triangle Hopf links.

Funding Statement

The second author was supported by JSPS KAKENHI Grant Number JP15K04881.

Citation

Download Citation

Hiroko MORISHITA. Ryo NIKKUNI. "Generalizations of the Conway–Gordon theorems and intrinsic knotting on complete graphs." J. Math. Soc. Japan 71 (4) 1223 - 1241, October, 2019. https://doi.org/10.2969/jmsj/80858085

Information

Received: 8 July 2018; Published: October, 2019
First available in Project Euclid: 14 June 2019

zbMATH: 07174404
MathSciNet: MR4023305
Digital Object Identifier: 10.2969/jmsj/80858085

Subjects:
Primary: 57M15
Secondary: 57M25

Keywords: Conway–Gordon theorems , spatial graphs

Rights: Copyright © 2019 Mathematical Society of Japan

JOURNAL ARTICLE
19 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.71 • No. 4 • October, 2019
Back to Top