Abstract
Klartag recently gave a beautiful alternative proof of the isoperimetric inequalities of Lévy–Gromov, Bakry–Ledoux, Bayle and Milman on weighted Riemannian manifolds. Klartag's approach is based on a generalization of the localization method (so-called needle decompositions) in convex geometry, inspired also by optimal transport theory. Cavalletti and Mondino subsequently generalized the localization method, in a different way more directly along optimal transport theory, to essentially non-branching metric measure spaces satisfying the curvature-dimension condition. This class in particular includes reversible (absolutely homogeneous) Finsler manifolds. In this paper, we construct needle decompositions of non-reversible (only positively homogeneous) Finsler manifolds, and show an isoperimetric inequality under bounded reversibility constants. A discussion on the curvature-dimension condition $\mathrm{CD}(K,N)$ for $N=0$ is also included, it would be of independent interest.
Citation
Shin-ichi OHTA. "Needle decompositions and isoperimetric inequalities in Finsler geometry." J. Math. Soc. Japan 70 (2) 651 - 693, April, 2018. https://doi.org/10.2969/jmsj/07027604
Information