Open Access
Translator Disclaimer
January, 2016 Musielak–Orlicz Hardy spaces associated to operators satisfying Davies–Gaffney estimates and bounded holomorphic functional calculus
Xuan Thinh DUONG, Tri Dung TRAN
J. Math. Soc. Japan 68(1): 1-30 (January, 2016). DOI: 10.2969/jmsj/06810001

Abstract

Let $X$ be a metric space with doubling measure and $L$ be an operator which satisfies Davies–Gaffney heat kernel estimates and has a bounded $H_\infty$ functional calculus on $L^2(X)$. In this paper, we develop a theory of Musielak–Orlicz Hardy spaces associated to $L$, including a molecular decomposition, square function characterization and duality of Musielak–Orlicz Hardy spaces $H_{L,\omega}(X)$. Finally, we show that $L$ has a bounded holomorphic functional calculus on $H_{L,\omega}(X)$ and the Riesz transform is bounded from $H_{L,\omega}(X)$ to $L^1(\omega)$.

Citation

Download Citation

Xuan Thinh DUONG. Tri Dung TRAN. "Musielak–Orlicz Hardy spaces associated to operators satisfying Davies–Gaffney estimates and bounded holomorphic functional calculus." J. Math. Soc. Japan 68 (1) 1 - 30, January, 2016. https://doi.org/10.2969/jmsj/06810001

Information

Published: January, 2016
First available in Project Euclid: 25 January 2016

zbMATH: 1344.42017
MathSciNet: MR3454550
Digital Object Identifier: 10.2969/jmsj/06810001

Subjects:
Primary: 42B20 , 42B25
Secondary: 46B70 , 47G30

Keywords: Davies–Gaffney estimate , functional calculus , Musielak–Orlicz function , Musielak–Orlicz Hardy space , Riesz transform

Rights: Copyright © 2016 Mathematical Society of Japan

JOURNAL ARTICLE
30 PAGES


SHARE
Vol.68 • No. 1 • January, 2016
Back to Top