Open Access
October, 2013 Hilbert scheme of some threefold scrolls over the Hirzebruch surface ${\mathbb F}_1$
Gian Mario BESANA, Maria Lucia FANIA, Flaminio FLAMINI
J. Math. Soc. Japan 65(4): 1243-1272 (October, 2013). DOI: 10.2969/jmsj/06541243

Abstract

Hilbert schemes of suitable smooth, projective manifolds of low degree which are 3-fold scrolls over the Hirzebruch surface $\mathbb{F}_1$ are studied. An irreducible component of the Hilbert scheme parametrizing such varieties is shown to be generically smooth of the expected dimension and the general point of such a component is described.

Citation

Download Citation

Gian Mario BESANA. Maria Lucia FANIA. Flaminio FLAMINI. "Hilbert scheme of some threefold scrolls over the Hirzebruch surface ${\mathbb F}_1$." J. Math. Soc. Japan 65 (4) 1243 - 1272, October, 2013. https://doi.org/10.2969/jmsj/06541243

Information

Published: October, 2013
First available in Project Euclid: 24 October 2013

zbMATH: 1284.14050
MathSciNet: MR3127823
Digital Object Identifier: 10.2969/jmsj/06541243

Subjects:
Primary: 14J30 , 14M07 , 14N25
Secondary: 14N30

Keywords: Hilbert scheme , ruled varieties , special threefolds , vector bundles

Rights: Copyright © 2013 Mathematical Society of Japan

Vol.65 • No. 4 • October, 2013
Back to Top