Translator Disclaimer
October, 2011 Tight 9-designs on two concentric spheres
Eiichi BANNAI, Etsuko BANNAI
J. Math. Soc. Japan 63(4): 1359-1376 (October, 2011). DOI: 10.2969/jmsj/06341359

Abstract

The main purpose of this paper is to show the nonexistence of tight Euclidean 9-designs on 2 concentric spheres in Rn if n ≥ 3. This in turn implies the nonexistence of minimum cubature formulas of degree 9 (in the sense of Cools and Schmid) for any spherically symmetric integrals in Rn if n ≥ 3.

Citation

Download Citation

Eiichi BANNAI. Etsuko BANNAI. "Tight 9-designs on two concentric spheres." J. Math. Soc. Japan 63 (4) 1359 - 1376, October, 2011. https://doi.org/10.2969/jmsj/06341359

Information

Published: October, 2011
First available in Project Euclid: 27 October 2011

zbMATH: 1235.05026
MathSciNet: MR2855815
Digital Object Identifier: 10.2969/jmsj/06341359

Subjects:
Primary: 05E99
Secondary: 05E30, 51M04, 65D32

Rights: Copyright © 2011 Mathematical Society of Japan

JOURNAL ARTICLE
18 PAGES


SHARE
Vol.63 • No. 4 • October, 2011
Back to Top