Open Access
October, 2007 Équations cohomologiques de flots riemanniens et de difféomorphismes d’Anosov
Akbar DEHGHAN-NEZHAD, Aziz EL KACIMI ALAOUI
J. Math. Soc. Japan 59(4): 1105-1134 (October, 2007). DOI: 10.2969/jmsj/05941105

Abstract

In this paper: i) We compute the leafwise cohomology of a complete Riemannian Diophantine flow. ii) We solve explicitly the discrete cohomological equation for the Anosov diffeomorphism on the torus T n defined by a hyperbolic and diagonalizable matrix A SL ( n , Z ) whose eigenvalues are all real positive numbers. We use this to solve the continuous cohomological equation of the Anosov flow F on the hyperbolic torus T A n + 1 obtained from A by suspension. This enables us to compute some other geometrical objects associated to the diffeomorphism A and the foliation F like the invariant distributions and the leafwise cohomology.

Citation

Download Citation

Akbar DEHGHAN-NEZHAD. Aziz EL KACIMI ALAOUI. "Équations cohomologiques de flots riemanniens et de difféomorphismes d’Anosov." J. Math. Soc. Japan 59 (4) 1105 - 1134, October, 2007. https://doi.org/10.2969/jmsj/05941105

Information

Published: October, 2007
First available in Project Euclid: 10 December 2007

zbMATH: 1134.37001
MathSciNet: MR2370008
Digital Object Identifier: 10.2969/jmsj/05941105

Subjects:
Primary: 53C12
Secondary: 37A05 , 37C10 , 58A30

Keywords: distribution invariante , équation cohomologique , flot d’Anosov

Rights: Copyright © 2007 Mathematical Society of Japan

Vol.59 • No. 4 • October, 2007
Back to Top