Open Access
July, 2004 The initial value problem for the 1-D semilinear Schrödinger equation in Besov spaces
Tosinobu MURAMATU, Shifu TAOKA
J. Math. Soc. Japan 56(3): 853-888 (July, 2004). DOI: 10.2969/jmsj/1191334089

Abstract

We define a class of Besov type spaces which is a generalization of that defined by Kenig-Ponce-Vega ([4], [5]) in their study on KdV equation and nonlinear Schrödinger equation. Using these spaces, we prove the following results: the 1-dimendional semilinear Schrödinger equation with the nonlinear term c 1u 2+ c2 u ¯2 has a unique local-in-time solution for the initial data B2, 1-3/ 4, and that with cuu ¯ has a unique local-in-time solution for the initial data $\in B_{2,1}^{-1/4, \sharp}$. Note that $B_{2,1}^{-1/4, \sharp}(\mathbf{R}) \supset B_{2,1}^{-1/4}(\mathbf{R}) \supset H^5(\mathbf{R})$ for any $s > -1/4$.

Citation

Download Citation

Tosinobu MURAMATU. Shifu TAOKA. "The initial value problem for the 1-D semilinear Schrödinger equation in Besov spaces." J. Math. Soc. Japan 56 (3) 853 - 888, July, 2004. https://doi.org/10.2969/jmsj/1191334089

Information

Published: July, 2004
First available in Project Euclid: 2 October 2007

zbMATH: 1061.35137
MathSciNet: MR2071676
Digital Object Identifier: 10.2969/jmsj/1191334089

Subjects:
Primary: 35G25 , 35Q55 , 46E35

Keywords: Besov type norm , Initial value problem , semilinear Schrödinger equation

Rights: Copyright © 2004 Mathematical Society of Japan

Vol.56 • No. 3 • July, 2004
Back to Top