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Abstract. For any countable directed graph E we describe the primitive ideal space

of the corresponding generalized Cuntz-Krieger algebra C �ðEÞ.

0. Introduction.

The primary purpose of this article is to give a description of the primitive ideal

space of the C �-algebra C �ðEÞ corresponding to an arbitrary countable directed graph

E. The two main results of the article, Theorem 2.10 (together with Corollary 2.11)

and Theorem 3.4, identify elements of PrimðC �ðEÞÞ and describe the closure operation

in the hull-kernel topology. These theorems build on and generalize a long string of

previous results on the ideal structure of Cuntz-Krieger type algebras, obtained by a

number of researchers over the period of past twenty years. Our present article com-

pletes the program of classification of ideals of the generalized Cuntz-Krieger algebras

corresponding to arbitrary countable directed graphs.

First fundamental results about the ideal structure of Cuntz-Krieger algebras were

obtained by Cuntz, who described all ideals of OA for a finite 0� 1 matrix A satisfying

Condition (II) [3, Theorem 2.5]. Much more recently, an Huef and Raeburn gave a

complete description of all gauge-inaviant ideals [14, Theorem 3.5] and the primitive

ideal space [14, Theorem 4.7] for Cuntz-Krieger algebras OA corresponding to arbi-

trary finite 0� 1 matrices. Soon after the Cuntz-Krieger algebras of countably infinite

directed graphs (the graph algebras) were introduced and analyzed by Kumjian, Pask,

Raeburn and Renault. They described all ideals of C �ðEÞ for a locally finite graph E

satisfying Condition (K) (an analogue of Cuntz’s Condition (II)) [20, Theorem 6.6].

Since then a number of papers considered the problem of classification of ideals of graph

algebras and other generalizations of the classical Cuntz-Krieger algebras. However, to

the best of our knowledge, most of those papers dealt only with ideals invariant under

the gauge action. This in particular applies to graphs satisfying Condition (K), since

for such graphs all closed ideals of C �ðEÞ are gauge-invariant [13, Lemma 2.2]. For

row-finite graphs, Bates, Pask, Raeburn and Szymański gave all gauge-invariant ideals

of C �ðEÞ [2, Theorem 4.1] and described the primitive ideal space if in addition E

satisfies Condition (K) [2, Theorem 6.3]. Working with arbitrary countable graphs,

Bates, Hong, Raeburn and Szymański described all gauge-invariant ideals [1, Theorem

3.6] and identify those of them which are primitive [1, Theorem 4.7]. (A brief overview

of the results of [1] was reported by Hong in [10].) About the same time, Drinen and
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Tomforde obtained similar results (through di¤erent techniques) for graphs satisfying

Condition (K) [5, Theorem 3.5 and Theorem 4.10].

Besides graph algebras, there are other interesting generalizations of Cuntz-Krieger

algebras. These include Cuntz-Pimsner algebras generated by Hilbert bimodules and

Exel-Laca algebras corresponding to infinite 0� 1 matrices. Many, though not all,

graph algebras can be viewed as either Cuntz-Pimsner algebras or Exel-Laca algebras

(cf. [9], [25]). Partial results about the ideal structure of Cuntz-Pimsner algebras were

obtained by Pinzari [22], Kajiwara, Pinzari and Watatani [15], and Fowler, Muhly and

Raeburn [8]. Exel and Laca described ideals of the Cuntz-Krieger algebras OA cor-

responding to infinite 0� 1 matrices, under an extra hypothesis on the matrix A anal-

ogous to Condition (K) [6, Theorem 15.1].

Obviously, there are many benefits from such a comprehensive description of the

ideal structure of a large class of algebras, as presented in [1] and the present article.

For example, Szymański’s proof of a very general criterion of injectivity of homo-

morphisms of graph algebras [27, Theorem 1.2] is based on the analysis of ideals, and

so are some arguments from the recent work of Hong and Szymański on non-simple

purely infinite graph algebras [13]. In fact, we think that graph algebras might play a

prominent role in the study and classification of this interesting class of C
�-algebras,

whose investigations have been recently initiated by Kirchberg and Rørdam [18], [19].

Also, graph algebras appearing in the context of some compact quantum manifolds [11],

[12] are not simple, and it is important to know their ideal structure. Furthermore, it

does not seem unlikely, that our methods, techniques and results on the ideal structure

of graph algebras may help in understanding of other classes of C
�-algebras, Cuntz-

Pimsner algebras for example. Indeed, techniques quite similar to those developed for

the study of graph algebras have recently been used by Katsura in his analysis of the

crossed products of Cuntz algebras by quasi-free actions of locally compact abelian

groups [16], [17]. And certainly, good understanding of the ideal structure of gener-

alized Cuntz-Krieger algebras is a necessary first step towards their classification.

Of course, as a by-product of our analysis of the ideal structure of graph algebras

we obtain their simplicity criteria. The problem of simplicity of generalized Cuntz-

Krieger algebras was discussed by a number of authors. Partial answers to this ques-

tion for graph algebras were given by Bates, Pask, Raeburn and Szymański in [2,

Proposition 5.1], and by Fowler, Laca and Raeburn in [7, Theorem 3]. An if and only

if criterion was proved by Szymański in [26, Theorem 12], and another one somewhat

later but independently by Paterson in [21, Theorem 4]. A partial result about sim-

plicity of OA for an infinite 0� 1 matrix A was given by Exel and Laca in [6, Theorem

14.1], and if and only if criterion was supplied by Szymański in [26, Theorem 8].

Building on this latter result, Tomforde proved an analogous criterion for the C
�-

algebras corresponding to ultragraphs [28] (a class of C
�-algebras which contains both

graph algebras C
�ðEÞ and Exel-Laca algebras OA). Related results about simplicity of

Cuntz-Pimsner algebras were obtained by Schweizer in [23] and [24].

The present article is organized as follows. In §1, we review basic facts about

graph algebras we need. The main reference to this section is [1]. We rely heavily on

the results of that paper. In particular, we use the description of quotients of C �ðEÞ by

gauge-invariant ideals [1, Proposition 3.4], the description of the intersection of a family

J. H. Hong and W. Szymański46



of gauge-invariant ideals [1, Proposition 3.9 and Corollary 3.10], the concepts of max-

imal tails and breaking vertices [1, §4], the description of all gauge-invariant ideals of

C �ðEÞ [1, Theorem 3.6], and the classification of gauge-invariant primitive ideals of

C �ðEÞ [1, Theorem 4.7]. In §2, we describe all primitive ideals of C �ðEÞ which are not

invariant under the gauge action (cf. Theorem 2.10). Inside PrimðC �ðEÞÞ they form

circles which are in one-to-one correspondence with maximal tails containing a loop

without exits (cf. Lemma 2.1). The general plan of our argument is similar to that of

[14] and is based on sandwiching a non gauge-invariant primitive ideal between two

gauge-invariant ideals (cf. Lemmas 2.6 and 2.8). However, the case of arbitrary infinite

graphs is technically much more complicated than that of finite graphs. The main

result of §2 is Corollary 2.11, which gives a description of all primitive ideals of C �ðEÞ

for an arbitrary countable graph E. In §3, we describe the closure operation in the hull-

kernel topology of PrimðC �ðEÞÞ (cf. Theorem 3.4). Since our result covers all possible

countable directed graphs, this description is necessarily somewhat involved. It greatly

simplifies in the case of row-finite graphs (cf. Corollary 3.5). In §4, we illustrate the

main results with a few examples.
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1. Preliminaries on graph algebras.

We recall the definition of the C �-algebra corresponding to a directed graph [7].

Let E ¼ ðE0;E1; r; sÞ be a directed graph with countably many vertices E0 and edges

E1, and range and source functions r; s : E1 ! E0, respectively. C �ðEÞ is defined as

the universal C �-algebra generated by families of projections fpv : v A E0g and partial

isometries fse : e A E1g, subject to the following relations.

(GA1) pvpw ¼ 0 for v;w A E0, v0w.

(GA2) s�e sf ¼ 0 for e; f A E 1, e0 f .

(GA3) s�e se ¼ prðeÞ for e A E1.

(GA4) ses
�
e a psðeÞ for e A E1.

(GA5) pv ¼
P

e AE 1
:sðeÞ¼v ses

�
e for v A E0 such that 0 < js�1ðvÞj < y.

Universality in this definition means that if fQv : v A E 0g and fTe : e A E1g are families

of projections and partial isometries, respectively, satisfying conditions (GA1)–(GA5),

then there exists a C �-algebra homomorphism from C �ðEÞ to the C �-algebra generated

by fQv : v A E0g and fTe : e A E1g such that pv 7! Qv and se 7! Te for v A E 0, e A E1.

It follows from the universal property that there exists a gauge action g : T !

AutðC �ðEÞÞ such that gzðpvÞ ¼ pv and gzðseÞ ¼ zse for all v A E0, e A E1, z A T. We
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denote by G the corresponding conditional expectation of C �ðEÞ onto the fixed-point

algebra C �ðEÞg, such that GðxÞ ¼
Ð
z AT

gzðxÞ dz for x A C �ðEÞ. The integral is with

respect to the normalized Haar measure on T. Note that GðpvÞ ¼ pv and GðseÞ ¼ 0

for all v A E 0, e A E1.

If a1; . . . ; an are (not necessarily distinct) edges such that rðaiÞ ¼ sðaiþ1Þ for i ¼

1; . . . ; n� 1, then a ¼ ða1; . . . ; anÞ is a path of length jaj ¼ n, with source sðaÞ ¼ sða1Þ

and range rðaÞ ¼ rðanÞ. We also allow paths of length zero, identified with vertices.

The set of all paths of length n is denoted by E n, while the collection of all finite

paths in E is denoted by E �. Given a path a ¼ ða1; . . . ; anÞ we denote sa ¼ sa1 � � � san , a

partial isometry in C �ðEÞ. A loop is a path of positive length whose source and range

coincide. A loop a has an exit if there exists an edge e A E1 and index i such that

sðeÞ ¼ sðaiÞ but e0 ai. If a is a loop all of whose vertices belong to a subset MJE0

then we say that a has an exit in M if an edge e exists as above with rðeÞ A M.

By an ideal in a C �-algebra we always mean a closed two-sided ideal. In order to

understand the ideal structure of a graph algebra it is convenient to look at saturated

hereditary subsets of the vertex set. As usual, if v;w A E0 then we write vbw when

there is a path from v to w, and say that a subset K of E0 is hereditary if v A K and

vbw imply w A K . A subset K of E0 is saturated if every vertex v which satisfies

0 < js�1ðvÞj < y and sðeÞ ¼ v ) rðeÞ A K itself belongs to K . If XJE 0 then SðXÞ is

the smallest saturated subset of E0 containing X , and SHðXÞ is the smallest saturated

hereditary subset of E0 containing X . If K is hereditary and saturated then IK denotes

the ideal of C �ðEÞ generated by fpv : v A Kg. We have

IK ¼ spanfsa pvs
�
b : a; b A E �; v A K ; rðaÞ ¼ rðbÞ ¼ vg:

As shown in [1, Proposition 3.4], the quotient C �ðEÞ=IK is naturally isomorphic to

C �ðE=KÞ. The quotient graph E=K was defined in [1, Section 3]. The vertices of E=K

are

ðE=KÞ0 ¼ ðE0nKÞU fbðvÞ : v A K fin
y g;

where

K fin
y ¼ fv A E0nK : js�1ðvÞj ¼ y and 0 < js�1ðvÞV r�1ðE0nKÞj < yg:

The edges of E=K are

ðE=KÞ1 ¼ r�1ðE0nKÞU fbðeÞ : e A E1; rðeÞ A K fin
y g;

with r; s extended by rðbðeÞÞ ¼ bðrðeÞÞ and sðbðeÞÞ ¼ sðeÞ. Note that all extra vertices

bðK fin
y Þ are sinks in E=K . If K fin

y ¼ q then E=K is simply a subgraph of E, denoted

EnK . If v A K fin
y then we write

pv;K ¼
X

sðeÞ¼v; rðeÞ BK

ses
�
e :

For BJK fin
y the ideal of C �ðEÞ generated by IK and fpv � pv;K : v A Bg is denoted by

JK ;B. We have
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JK ;B ¼ spanfsa pvs
�
b ; smðpw � pw;KÞs

�
n : a; b; m; n A E �;

v A K ;w A B; rðaÞ ¼ rðbÞ ¼ v; rðmÞ ¼ rðnÞ ¼ wg:

By [1, Corollary 3.5], the quotient C �ðEÞ=JK ;B is naturally isomorphic to

C �ððE=KÞnbðBÞÞ. As shown in [1, Theorem 3.6], all gauge-invariant ideals of C �ðEÞ

are of the form JK;B.

A non-empty subset MJE0 is a maximal tail if it satisfies the following three

conditions (cf. [1, Lemma 4.1]):

(MT1) If v A E0, w A M, and vbw, then v A M.

(MT2) If v A M and 0 < js�1ðvÞj < y, then there exists e A E1 with sðeÞ ¼ v and

rðeÞ A M.

(MT3) For every v;w A M there exists y A M such that vb y and wb y.

We denote by MðEÞ the collection of all maximal tails in E and by MgðEÞ the collection

of all maximal tails M in E such that each loop in M has an exit in M. We set

MtðEÞ ¼ MðEÞnMgðEÞ.

If XJE0 then, as in [1], we denote

WðXÞ ¼ fw A E0nX : wF v for all v A Xg:

If X consists of a single vertex fvg then we write WðvÞ instead of WðfvgÞ. Note

that WðMÞ ¼ E0nM for every maximal tail M. Moreover, for such an M, WðMÞ is

hereditary by (MT1) and saturated by (MT2).

Along with maximal tails, the set

BVðEÞ ¼ fv A E0
: js�1ðvÞj ¼ y and 0 < js�1ðvÞnr�1ðWðvÞÞj < yg

plays an important role in the classification of primitive gauge-invariant ideals [1]. Its

elements are called breaking vertices. Note that if KJE0 is hereditary and saturated,

then v A K fin
y

implies v A BVðEÞ. If v A BVðEÞ then WðvÞ is hereditary and saturated.

We denote by PrimðC �ðEÞÞ the set of all primitive ideals of C �ðEÞ and by

PrimgðC
�ðEÞÞ the set of all primitive gauge-invariant ideals of C �ðEÞ.

As shown in [1, Theorem 4.7], there is a one-to-one correspondence

MgðEÞUBVðEÞ ! PrimgðC
�ðEÞÞ

given by

MgðEÞ C M 7! J
WðMÞ;WðMÞfin

y

;

BVðEÞ C v 7! J
WðvÞ;WðvÞfin

y
nfvg:

2. The primitive ideals.

Our goal in this section is to show that any maximal tail in MtðEÞ gives rise to a

circle of primitive ideals, none of which is gauge-invariant, and that all non gauge-

invariant primitive ideals arise in this way. To this end we explicitly construct the

corresponding irreducible representations of C �ðEÞ. At first we observe that any max-

imal tail M A MtðEÞ contains an essentially unique vertex simple loop without exits in
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M. A loop L ¼ ðe1; . . . ; enÞ is vertex simple if and only if rðeiÞ0 rðejÞ for i0 j. We

denote by L0 the set frðeiÞ : i ¼ 1; . . . ; ng of the vertices through which L passes, and by

L1 the set fei : i ¼ 1; . . . ; ng of its edges.

Lemma 2.1. If M is a maximal tail in E then M A MtðEÞ if and only if there exists

a vertex simple loop L with L0 JM and such that if e A E1nL1 and sðeÞ A L0 then

rðeÞ B M. Furthermore, such a loop is unique up to a cyclic permutation of the edges

comprising it, and WðMÞ ¼ WðL0Þ.

Proof. The first assertion follows immediately from the definition of MtðEÞ as the

complement of MgðEÞ in MðEÞ.

For the uniqueness suppose that there are two loops L1 ¼ ðe1; . . . ; enÞ and L2 ¼

ð f1; . . . ; fmÞ with the above properties. By condition (MT3) there is a vertex v A M and

paths a; b such that sðaÞ ¼ sðe1Þ, sðbÞ ¼ sð f1Þ, and rðaÞ ¼ rðbÞ ¼ v. Since L1;L2 have

no exits in M we must have v ¼ sðekÞ ¼ sð frÞ for some k; r. The absence of exits then

implies that ek ¼ fr, ekþ1 ¼ frþ1, and so on, which proves the claim.

Obviously WðMÞJWðL0Þ. For the reverse inclusion let L ¼ ðe1; . . . ; enÞ and

v A WðL0Þ. Suppose for a moment that v A M. By (MT3), there exists a vertex w A M

such that vaw and sðe1Þaw. Since L has no exits in M;w must be in L0. Thus

v B WðL0Þ, contrary to the assumption. Hence v B M. Since M is a maximal tail we

have E0nM ¼ WðMÞ and hence v A WðMÞ, as required. r

From now on, for each maximal tail M A MtðEÞ we choose one vertex simple loop

without exits in M as in Lemma 2.1 and call it LM . For v A E0nL0
M we denote

AMðvÞ ¼ fða1; . . . ; amÞ A E �
: sða1Þ ¼ v; rðamÞ A L0

M ; rðaiÞ B L0
M if i0mg

and set

AM ¼ 6
v AE 0nL0

M

AMðvÞ:

Definition 2.2. Let E be a directed graph. Given M A MtðEÞ let LM ¼

ðe1; . . . ; enÞ. We denote by HM the Hilbert space with an orthonormal basis

fxa : a A AM UL0
Mg. For t A THC we define a representation

rM; t : C
�ðEÞ ! BðHMÞ

so that

rM; tðpvÞxa ¼
xa if sðaÞ ¼ v

0 otherwise;

�

rM; tðseÞxa ¼

txsðeÞ if e ¼ e1 and a ¼ rðe1Þ

xsðeÞ if rðeÞ ¼ a A L0
M and e1 0 e A L1

M

xe if rðeÞ ¼ a A L0
M and e B L1

M

xðe;a1;...;amÞ if a; ðe; a1; . . . ; amÞ A AM

0 otherwise;

8

>

>

>

>

>

<

>

>

>

>

>

:

for v A E0, e A E1, and a ¼ ða1; . . . ; amÞ A AM UL0
M .
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Remark 2.3. That rM; t indeed gives rise to a representation of C �ðEÞ will be

shown in Lemma 2.5. Strictly speaking, this representation depends not only on the

maximal tail M but also on the choice of the loop LM . We slightly abuse the notation

by writing rM; t instead of more precise rLM ; t. We will use the latter notation later in

Lemma 2.8 for emphasis, when considering LM and its cyclic permutation L 0
M simulta-

neously.

We will see (cf. Lemma 2.5) that each rM; t is an irreducible representation of C �ðEÞ

and thus ker rM; t is a primitive ideal, which turns out to be not invariant under the

gauge action. It will be useful to sandwich such an ideal between two gauge-invariant

ones (cf. Lemma 2.6), and to this end we need to consider the set

KM :¼ L0
M U fv A E0nL0

M : jAMðvÞj < yg:

It is not di‰cult to see that each KM is hereditary, saturated and that SHðWðMÞU

L0
MÞJKM . If E is row-finite then SHðWðMÞUL0

MÞ ¼ KM but in general KM may be

larger.

Lemma 2.4. Let E be a directed graph, M A MtðEÞ and p : C �ðEÞ ! C �ðEÞ=

J
WðMÞ;WðMÞfiny

be the natural surjection. Then for every vertex v A KMnðWðMÞUL0
MÞ we

have

pðpvÞ ¼
X

a AAM ðvÞ

pðsas
�
a Þ:

Proof. By [1, Corollary 3.5], there exists a natural isomorphism between

C �ðEÞ=J
WðMÞ;WðMÞfiny

and C �ðEnWðMÞÞ. Since EnWðMÞ ¼ ðM; r�1ðMÞ; r; sÞ we may

assume that M ¼ E0 and p ¼ id. Now we proceed by induction with respect to the

maximum length l of elements of AMðvÞ. If l ¼ 1 then the claim follows from

condition (GA5). For the inductive step observe that if v A KMnðWðMÞUL0
MÞ then

the set fe A E1
: sðeÞ ¼ vg is non-empty by Lemma 2.1 and finite by the definition

of KM . Thus pv ¼
P

e AE 1; sðeÞ¼v ses
�
e by (GA5). Applying the inductive hypothesis to

fpw : w ¼ rðeÞ; e A E1; sðeÞ ¼ vg we infer that the desired identity holds. r

If the graph E is row-finite then the smallest gauge-invariant ideal of C �ðEÞ con-

taining ker rM; t is IKM
(cf. Lemma 2.6). However, if E contains vertices with infinite

valencies then such a gauge-invariant ideal must have the form JKM ;BM
for a suitable

BMJ ðKMÞfiny . It turns out that

BM :¼ ðKMÞfiny VWðMÞfiny

does the trick. Note that a vertex v A E0 belongs to BM if and only if among

fe A E1
: sðeÞ ¼ vg there are infinitely many edges e such that rðeÞ A WðMÞ, only finitely

many e with rðeÞ A E0nWðMÞ ¼ M, and at least one e such that rðeÞ B KM .

Lemma 2.5. Let E be a directed graph, M A MtðEÞ and t A T. Then rM; t

of Definition 2.2 gives rise to an irreducible representation of C �ðEÞ such that

rM; tðJKM ;BM
Þ ¼ KðHMÞ.
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Proof. At first we show that frM; tðpvÞ; rM; tðseÞ : v A E0; e A E1g is a Cuntz-

Krieger E-family. Obviously, conditions (GA1)–(GA4) are satisfied. We verify (GA5).

Let v be a vertex such that 0 < js�1ðvÞj < y. If v A L0
M then there is exactly one edge

f with sð f Þ ¼ v and rð f Þ A L0
M . It then follows from the definition of rM; t that both

P
e AE 1; sðeÞ¼v rM; tðseÞrM; tðseÞ

� ¼ rM; tðsf ÞrM; tðsf Þ
� and rM; tðpvÞ are projections onto the

1-dimensional subspace of HM spanned by xv. If v A E0nL0
M then rM; tðpvÞ is a pro-

jection onto the subspace of HM spanned by fxa : a A AMðvÞg. If e A E1, sðeÞ ¼ v,

then rM; tðseÞ
�
xa ¼ 0 for sðaÞ0 v. If sðaÞ ¼ v and a ¼ ð f1; . . . ; fkÞ, fi A E1, then

rM; tðseÞ
�
xa ¼ 0 for e0 f1 and rM; tðseÞrM; tðseÞ

�
xa ¼ xa for e ¼ f1. Thus again

P
e AE 1; sðeÞ¼v rM; tðseÞrM; tðseÞ

� ¼ rM; tðpvÞ. Hence, Definition 2.2 gives rise to a repre-

sentation rM; t : C
�ðEÞ ! BðHMÞ.

It follows from Definition 2.2 that all the projections rM; tðpvÞ, v A KM , and

rM; tðpw � pw;KM
Þ, w A BM , are of finite rank. Thus rM; tðJKM ;BM

ÞJKðHMÞ. On the

other hand, the range rM; tðC
�ðEÞÞ contains KðHMÞ. Indeed, if v A L0

M then frM; tðsmÞ :

m A E �; rðmÞ ¼ vg are rank-1 partial isometries sending xv to all other elements of

the orthonormal basis fxa : a A AM UL0
Mg. Consequently rM; tðJKM ;BM

Þ ¼ KðHMÞ. In

particular, rM; t is irreducible. r

By Lemma 2.5, the representations rM; t give rise to primitive ideals ker rM; t of

C �ðEÞ. In Lemmas 2.6 and 2.8, below, we show the key property of C �ðEÞ that

for each M A MtðEÞ the union of fker rM; t : t A Tg may be sandwiched between two

uniquely determined gauge-invariant ideals whose quotient is Morita equivalent to CðTÞ.

This result was originally proved by an Huef and Raeburn in [14, Lemma 4.5] for

the Cuntz-Krieger algebras corresponding to finite matrices. The argument there took

advantage of the existence of only finitely many gauge-invariant ideals. In the present

article we need a di¤erent argument, as algebras corresponding to infinite graphs may

have infinitely many gauge-invariant ideals.

Lemma 2.6. Let E be a directed graph, M A MtðEÞ and t A T. Then the following

hold.

1. The ideal J
WðMÞ;WðMÞfiny

is the largest among gauge-invariant ideals of C �ðEÞ

contained in ker rM; t.

2. The ideal JKM ;BM
is the smallest among gauge-invariant ideals of C �ðEÞ con-

taining ker rM; t.

Proof. Ad 1. Since WðMÞ ¼ WðL0
MÞ by Lemma 2.1, it is immediate from

Definition 2.2 that rM; tðpvÞ ¼ 0 if v A WðMÞ, and rM; tðpv � pv;WðMÞÞ ¼ 0 if v A WðMÞfiny .

Hence J
WðMÞ;WðMÞfiny

J ker rM; t.

Let J1 be a gauge-invariant ideal of C �ðEÞ contained in ker rM; t. By [1, Theorem

3.6] there is a saturated hereditary KJE0 and a BJK fin
y such that J1 ¼ JK;B. By

[1, Corollary 3.10], in order that JK ;BJ J
WðMÞ;WðMÞfiny

we must have KJWðMÞ and

BJWðMÞUWðMÞfiny . Let v A E0nWðMÞ. Since WðMÞ ¼ WðL0
MÞ there is a path from

v to L0
M . If a is such a path with the shortest possible length then a A AM UL0

M

and rM; tðpvÞxa 0 0. Thus rM; tðpvÞ0 0 and consequently v B K . This shows that

KJWðMÞ. Now let v A BnWðMÞ. Then v emits at least one edge into M, since there

is a path from v to L0
M . Furthermore, v emits infinitely many edges into KJWðMÞ,
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and only finitely many edges into E0nK and hence into E0nWðMÞ. Consequently

v A WðMÞfiny . Thus BJWðMÞUWðMÞfiny .

Ad 2. Let J ¼ JKM ;BM
. We denote by p : BðHMÞ ! BðHMÞ=KðHMÞ the quo-

tient map of BðHMÞ onto its Calkin algebra. By Lemma 2.5 we have rM; tðJÞ ¼

KðHMÞ.

At first we show that ker rM; t J J. To this end it su‰ces to prove injectivity of the

homomorphism

f : C �ðEÞ=J ! rM; tðC
�ðEÞÞ=rM; tðJÞ ¼ rM; tðC

�ðEÞÞ=KðHMÞ

given by fðxþ JÞ ¼ pðrM; tðxÞÞ. This follows from the gauge-invariant uniqueness

theorem [1, Theorem 2.1]. Indeed, by [1, Corollary 3.5] C �ðEÞ=J is naturally iso-

morphic to C �ððE=KMÞnbðBMÞÞ, and the gauge action on C �ðEÞ=J is inherited from

the gauge action g on C �ðEÞ, since J is gauge-invariant. We also need a matching

action on pðrM; tðC
�ðEÞÞÞ. For z A T let Uz be a unitary operator on HM such that

UzðxaÞ ¼ zjajxa for a A AM UL0
M . Since UzðrM; tðpvÞÞU

�
z ¼ rM; tðpvÞ for v A E0 and

UzðrM; tðseÞÞU
�
z ¼

rM; tðseÞ if e A L1
M

zrM; tðseÞ otherwise

(

for e A E1, AdUz is an automorphism of rM; tðC
�ðEÞÞ. It induces an automorphism

of pðrM; tðC
�ðEÞÞÞ. Therefore we may define an action y of T on pðrM; tðC

�ðEÞÞÞ by

yzðpðrM; tðxÞÞÞ ¼ pðUzrM; tðxÞU
�
z Þ:

For all x A C �ðEÞ and z A T we have yzðfðxþ JÞÞ ¼ fðgzðxÞ þ JÞ, since this identity

holds on the generators fpv; seg of C �ðEÞ. We must still show that f does not kill

any of the generating projections of C �ðEÞ=JGC �ððE=KMÞnbðBMÞÞ. We set K 0 ¼

E0nKM ¼ MnKM , B 0 ¼ ðKMÞfiny nBM . Since ððE=KMÞnbðBMÞÞ0 ¼ K 0 U fbðwÞ : w A B 0g

it su‰ces to show that rM; tðpvÞ B KðHMÞ for v A K 0 and rM; tðpw � pw;KM
Þ B KðHMÞ

for w A B 0. That is, we must prove that rM; tðpvÞ and rM; tðpw � pw;KM
Þ are infinite

dimensional for v A K 0 and w A B 0. For v A K 0 this fact is simply contained in the

definition of KM . Since w A B 0 there are infinitely many edges e A E1 such that sðeÞ ¼ w

and rðeÞ A KMnWðMÞ, and consequently rM; tðpw � pw;KM
Þ is infinite dimensional. Thus

the hypothesis of the gauge-invariant uniqueness theorem is satisfied, and we may

conclude that ker rM; t J J.

Now let J2 be a gauge-invariant ideal of C �ðEÞ containing ker rM; t. We must

show that JJ J2. It follows from part 1 that J
WðMÞ;WðMÞfiny

J J2. Since prðLM Þ �

ð1=tÞsLM
A ker rM; t J J2 and J2 is gauge-invariant, also prðLM Þ ¼ GðprðLM Þ � ð1=tÞsLM

Þ A

J2 and hence fpv : v A L0
MgJ J2. Now if v A KMnðWðMÞUL0

MÞ then pv A J2 by Lemma

2.4. Consequently IKM
J J2. If v A BM then the finite sum

P

sðeÞ¼v; rðeÞ AKMnWðMÞ ses
�
e

belongs to IKM
, and pv � pv;WðMÞ belongs to J

WðMÞ;WðMÞfiny
. Thus

pv � pv;KM
¼ ðpv � pv;WðMÞÞ þ

X

sðeÞ¼v; rðeÞ AKMnWðMÞ

ses
�
e

belongs to J
WðMÞ;WðMÞfiny

þ IKM
J J2, and consequently J ¼ JKM ;BM

J J2, as required.

r
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In particular, for each M A MtðEÞ and t A T we have

J
WðMÞ;WðMÞfiny

H ker rM; t H JKM ;BM
:

From Lemmas 2.5 and 2.6 we deduce the following.

Corollary 2.7. Let E be a directed graph, M A MtðEÞ and t A T. Then

JKM ;BM
¼ ðrM; tÞ

�1ðKðHMÞÞ:

In the following Lemma 2.8 we find explicit generators for the ideals ker rM; t. The

lemma also implies that for each M A MtðEÞ the family fker rM; t : t A Tg imbeds topo-

logically as a circle into the primitive ideal space of C �ðEÞ.

Lemma 2.8. Let E be a directed graph, M A MtðEÞ, v ¼ rðLMÞ, and p : JKM ;BM
!

JKM ;BM
=J

WðMÞ;WðMÞfiny
be the canonical surjection. Then the following hold.

1. The hereditary C �-subalgebra pðpvÞðJKM ;BM
=J

WðMÞ;WðMÞfiny
ÞpðpvÞ is a full corner in

JKM ;BM
=J

WðMÞ;WðMÞfiny
, generated by pðsLM

Þ, and isomorphic to CðTÞ. Hence the

quotient JKM ;BM
=J

WðMÞ;WðMÞfiny
is Morita equivalent to CðTÞ.

2. For t A T the ideal ker rM; t of C
�ðEÞ is generated by J

WðMÞ;WðMÞfiny
and sLM

� tpv.

We have ker rM; t ¼ ker rL 0
M
; t for any cyclic permutation L 0

M of LM , and

ker rM; t 0 ker rM; z if t0 z A T.

Proof. Ad 1. Let J ¼ spanfJKM ;BM
pvJKM ;BM

þ J
WðMÞ;WðMÞfiny

g, an ideal of C �ðEÞ

contained in JKM ;BM
. By Lemma 2.4, fpw : w A KMnðWðMÞUL0

MÞgJ J, and clearly

fpw : w A WðMÞUL0
MgJ J. Thus IKM

J J. Also, if w A BM then pw � pw;KM
A IKM

þ

J
WðMÞ;WðMÞfiny

(cf. the argument at the end of the proof of Lemma 2.6), and thus

pw � pw;KM
A J. Consequently JKM ;BM

¼ J and hence pðpvÞðJKM ;BM
=J

WðMÞ;WðMÞfiny
ÞpðpvÞ

is a full corner in JKM ;BM
=J

WðMÞ;WðMÞfiny
.

If m; n A E � then pvsms
�
n pv B J

WðMÞ;WðMÞfiny
if and only if sðmÞ ¼ sðnÞ ¼ v and rðmÞ ¼

rðnÞ A L0
M . Thus pðpvÞðJKM ;BM

=J
WðMÞ;WðMÞfiny

ÞpðpvÞ is generated as a C �-algebra by

pðsLM
Þ. If z A T then J

WðMÞ;WðMÞfiny
J ker rM; z and thus rM; z induces a representation

~rrM; z of JKM ;BM
=J

WðMÞ;WðMÞfiny
. Since ~rrM; zðpðsLM

ÞÞ equals z-multiple of a rank one pro-

jection, the spectrum of the partial unitary pðsLM
Þ contains the entire unit circle. Con-

sequently, the corner pðpvÞðJKM ;BM
=J

WðMÞ;WðMÞfiny
ÞpðpvÞ is isomorphic to CðTÞ.

Ad 2. Fix t A T and let J 0 be the ideal of C �ðEÞ generated by J
WðMÞ;WðMÞfiny

and

sLM
� tpv. Since rM; tðsLM

� tpvÞ ¼ 0, Lemma 2.6 implies that

J
WðMÞ;WðMÞfiny

J J 0
J ker rM; t J JKM ;BM

:

We have shown, above, that pðJKM ;BM
pvJKM ;BM

Þ ¼ pðJKM ;BM
Þ and that pðpvJKM ;BM

pvÞ ¼

C �ðpðsLM
ÞÞGCðTÞ. Hence

pðpvJ
0pvÞ ¼ fgðpðsLM

ÞÞ : g A CðTÞ; gðtÞ ¼ 0g ¼ pðpvðker rM; tÞpvÞ:

Thus
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pðJ 0Þ ¼ pððJKM ;BM
pvJKM ;BM

ÞJ 0ðJKM ;BM
pvJKM ;BM

ÞÞ

¼ pðJKM ;BM
pvðker rM; tÞpvJKM ;BM

Þ

¼ pððJKM ;BM
pvJKM ;BM

Þðker rM; tÞðJKM ;BM
pvJKM ;BM

ÞÞ

¼ pðker rM; tÞ:

It follows that J 0 ¼ ker rM; t and consequently the ideal ker rM; t is generated by

J
WðMÞ;WðMÞfiny

and sLM
� tpv. This immediately implies that ker rM; t ¼ ker rL 0

M
; t for any

cyclic permutation L 0
M of LM . Finally, if t0 z then sLM

� tpv A ker rM; tnker rM; z and

hence ker rM; t 0 ker rM; z. r

For M A MtðEÞ and t A T we denote by RM; t the closed two-sided ideal of C �ðEÞ

generated by J
WðMÞ;WðMÞfiny

and sLM
� tprðLM Þ. By Lemma 2.8

RM; t ¼ ker rM; t:

Since gtðRM;1Þ ¼ RM; t, these ideals are not gauge-invariant. We will show in Theorem

2.10 that each non gauge-invariant primitive ideal of C �ðEÞ is of the form RM; t. To

this end we still need the following simple lemma.

Lemma 2.9. Let E be a directed graph. If J0 0 is a primitive ideal of C �ðEÞ such

that pv B J for all v A E0, then E0 A MtðEÞ and there is a t A T such that J ¼ RE 0
; t.

Proof. Since pv B J for all v A E0, it follows from [1, Lemma 4.1] that E0 is a

maximal tail. If all loops in E had exits then there existed a v A E0 such that pv A J, by

the Cuntz-Krieger uniqueness theorem [7, Theorem 2]. Thus E0 A MtðEÞ. To simplify

the notation, in the remaining part of this proof we write M ¼ E0.

Let r be an irreducible representation of C �ðEÞ with kernel J. Since J does

not contain any projections pv, v A E0, J does not contain the ideal IL0
M
. Thus the

restriction of r to IL0
M

must be irreducible. By Lemma 2.8 there exists a t A T such

that the restrictions of r and rM; t to IL0
M

coincide. Hence r ¼ rM; t and consequently

J ¼ ker r ¼ ker rM; t ¼ RM; t. r

We set PrimtðC
�ðEÞÞ ¼ PrimðC �ðEÞÞnPrimgðC

�ðEÞÞ, the collection of primitive

ideals of C �ðEÞ which are not invariant under the gauge action g.

Theorem 2.10. Let E be a directed graph. The map

MtðEÞ � T ! PrimtðC
�ðEÞÞ

given by

ðM; tÞ 7! RM; t

is a bijection.

Proof. The map is well-defined by Lemmas 2.5 and 2.8.

Firstly, we show that the map is injective. That is, we must show that the ideals

fRM; t : M A MtðEÞ; t A Tg are distinct. Indeed, if RM; t ¼ RN; z then J
WðMÞ;WðMÞfiny

¼
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J
WðNÞ;WðNÞfiny

by Lemma 2.6. Thus WðMÞ ¼ WðNÞ by [1, Lemma 3.7], and consequently

M ¼ E0nWðMÞ ¼ E0nWðNÞ ¼ N. It then follows from Lemma 2.8 that t ¼ z.

Secondly, we show that the map is surjective. Let J A PrimtðC
�ðEÞÞ. We set

K ¼ fv A E0
: pv A Jg and B ¼ fx A K fin

y : px � px;K A Jg. Then JK;B is a proper ideal

of J and hence J=JK ;B is a non-zero primitive ideal of C �ðEÞ=JK;B. By [1, Corollary

3.5] we have C �ðEÞ=JK ;B GC �ðF Þ, with F ¼ ðE=KÞnbðBÞ. We denote the canonical

generating Cuntz-Krieger F -family by fqw; uf g (cf. [1, Proposition 3.4]). By [1, Lemma

3.7] the ideal J=JK ;B does not contain any projections qw, w A F 0. Now applying

Lemma 2.9 to the ideal J=JK ;B of C �ðF Þ we see that F 0 A MtðFÞ and, using also

Lemma 2.8, that there is t A T such that J=JK ;B is generated as an ideal of C �ðF Þ by

uL
F 0

� tqrðL
F 0 Þ.

Let M ¼ E0nK . M is a maximal tail in E by [1, Lemma 4.1]. If LF 0 ¼

ð f1; . . . ; fkÞ then all fi must come from edges in E1. Clearly the loop LF 0 has no exits

in M. Thus M A MtðEÞ and LF 0 is a cyclic permutation of LM by Lemma 2.1. Since

M is a maximal tail in E we have K ¼ E0nM ¼ WðMÞ. We also have B ¼ WðMÞfiny .

Indeed, otherwise the graph F would contain a sink bðvÞ, v A WðMÞfiny nB, contradicting

the fact that F 0 belongs to MtðFÞ. Consequently the ideal J contains J
WðMÞ;WðMÞfiny

¼

JK ;B. Since uL
F 0

� tqrðL
F 0 Þ belongs to the quotient J=J

WðMÞ;WðMÞfiny
, it now follows that

sLM
� tprðLM Þ belongs to J. By Lemma 2.8 we have RM; t J J. As both J=J

WðMÞ;WðMÞfiny
and RM; t=JWðMÞ;WðMÞfiny

are generated by uL
F 0

� tqrðL
F 0 Þ, it follows that J ¼ RM; t. r

Combining Theorem 2.10 with [1, Theorem 4.7] we obtain a complete list of

primitive ideals of C �ðEÞ for an arbitrary countable graph E.

Corollary 2.11. For a countable directed graph E the map

MgðEÞUBVðEÞU ðMtðEÞ � TÞ ! PrimðC �ðEÞÞ

given by

MgðEÞ C M 7! J
WðMÞ;WðMÞfiny

BVðEÞ C v 7! J
WðvÞ;WðvÞfiny nfvg

MtðEÞ � T C ðN; tÞ 7! RN; t

is a bijection.

If E is row-finite then BVðEÞ ¼ q and K fin
y ¼ q for every saturated hereditary

K JE0. Consequently, for such graphs we have the following simpler description of

the primitive ideals.

Corollary 2.12. For a countable, row-finite directed graph E the map

MgðEÞU ðMtðEÞ � TÞ ! PrimðC �ðEÞÞ

given by

MgðEÞ C M 7! IWðMÞ

MtðEÞ � T C ðN; tÞ 7! RN; t

is a bijection.
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3. The hull-kernel topology.

PrimðC �ðEÞÞ is a topological space with the hull-kernel topology determined by the

closure operation

Z ¼ fJ A PrimðC �ðEÞÞ : VZJ Jg:

Our goal in this section is to describe this closure operation. Using the bijection of

Corollary 2.11 we transport the hull-kernel topology from PrimðC �ðEÞÞ onto MgðEÞU

BVðEÞU ðMtðEÞ � TÞ. We begin with the following two simple lemmas.

Lemma 3.1. Let E be a directed graph and M0N A MtðEÞ. If there exists a path

from L0
N to L0

M then for all t; z A T we have

RM; t H JKM ;BM
J J

WðNÞ;WðNÞfiny
HRN; z:

Proof. By virtue of Lemma 2.6 it su‰ces to prove that RM; t J J
WðNÞ;WðNÞfiny

. By

Lemma 2.8 this amounts to showing that J
WðMÞ;WðMÞfiny

J J
WðNÞ;WðNÞfiny

and sLM
� tprðLM Þ A

J
WðNÞ;WðNÞfiny

. Indeed, since there is a path from L0
N to L0

M we have WðMÞJWðNÞ and

WðMÞfiny JWðNÞUWðNÞfiny . Thus J
WðMÞ;WðMÞfiny

J J
WðNÞ;WðNÞfiny

by [1, Corollary 3.10].

Furthermore, Lemma 2.1 implies that there is no path from L0
M to L0

N . Hence both

prðLM Þ and sLM
¼ sLM

prðLM Þ are in J
WðNÞ;WðNÞfiny

. r

Lemma 3.2. Let E be a directed graph. If Y JMtðEÞ then we have

7
U AY

J
WðUÞ;WðUÞfiny

¼ JK ;K fin
y

with K ¼ 7
U AY

WðUÞ:

Proof. By [1, Proposition 3.9] we have J ¼ JK ;B with K ¼ 7
U AY

WðUÞ and

B ¼ ð7
U AY

WðUÞUWðUÞfiny ÞVK fin
y . Fix U0 A Y and let w A K fin

y nWðU0Þ. Then w emits

infinitely many edges into K ¼ 7
U AY

WðUÞJWðU0Þ and only finitely many edges

outside K , hence also only finitely many edges outside WðU0Þ. Since there is a path

from w to the loop LU0
, w emits at least one edge into E0nWðU0Þ. Consequently

K fin
y J7

U AY
WðUÞUWðUÞfiny and hence B ¼ K fin

y . r

If K is a hereditary saturated subset of E0 then the set K fin
y of vertices which emit

infinitely many edges into K and finitely many edges into its complement a¤ects the

ideal structure of C �ðEÞ and hence it a¤ects PrimðC �ðEÞÞ. To describe the topology

of PrimðC �ðEÞÞ it is also important to consider the set of those vertices which emit

infinitely many edges into K and none into its complement. We call this set Kq
y .

More formally, we define

Kq
y :¼ fv A E0nK : js�1ðvÞj ¼ y and rðeÞ A K for all e with sðeÞ ¼ vg:

If M is a maximal tail then WðMÞqy is either empty or consists of exactly one element by

(MT3). In the latter case, if WðMÞqy ¼ fwg then M consists of all those vertices u A E0

for which there exists a path from u to w.

Lemma 3.3. Let E be a directed graph. Let M A MgðEÞ, v A BVðEÞ, N A MtðEÞ,

and t A T. If Y JMtðEÞ and K ¼ 7
U AY

WðUÞ then the following hold.
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1. JK;K fin
y
J J

WðMÞ;WðMÞfiny
if and only if MJ6Y and s�1ðWðMÞqyÞV r�1ðKÞ is

finite.

2. JK;K fin
y
J J

WðvÞ;WðvÞfiny nfvg if and only if v A6Y and s�1ðvÞV r�1ðKÞ is finite.

3. JK;K fin
y
JRN; t if and only if NJ6Y .

Proof. Ad 1. By [1, Corollary 3.10], JK ;K fin
y
J J

WðMÞ;WðMÞfiny
if and only if

KJWðMÞ and K fin
y JWðMÞUWðMÞfiny . Clearly, KJWðMÞ if and only if MJ6Y .

Now assuming MJ6Y we automatically have K fin
y nWðMÞqyJWðMÞUWðMÞfiny . On

the other hand, if w A WðMÞqy then w B WðMÞUWðMÞfiny . Thus we must have w B K fin
y

and this can only happen if s�1ðWðMÞqyÞV r�1ðKÞ is finite.

Ad 2. By [1, Corollary 3.10], JK ;K fin
y
J J

WðvÞ;WðvÞfiny nfvg if and only if KJWðvÞ and

K fin
y JWðvÞU ðWðvÞfiny nfvgÞ. KJWðvÞ if and only if v A6Y . Assuming v A6Y we

have ðK fin
y nfvgÞJWðvÞU ðWðvÞfiny nfvgÞ. Since v B WðvÞU ðWðvÞfiny nfvgÞ we must have

v B K fin
y , which can only happen if s�1ðvÞV r�1ðKÞ is finite.

Ad 3. Since JK;K fin
y

is gauge-invariant it follows from Lemma 2.6 that

JK ;K fin
y
JRN; t if and only if JK ;K fin

y
J J

WðNÞ;WðNÞfiny
. For KJWðNÞ we must have

NJ6Y , and under this assumption we automatically have K fin
y JWðNÞUWðNÞfiny ,

since WðNÞqy ¼ q. r

If YJMtðEÞ then it is convenient to consider two special subsets of Y , Ymin and

Yy, defined as follows.

Ymin :¼ fU A Y : for all U 0 A Y ;U 0 0U there is no path from L0
U to L0

U 0g;

Yy :¼ fU A Y : for all V A Ymin there is no path from L0
U to L0

Vg:

We call Ymin the set of minimal elements of Y . We are now ready to describe the

closure operation in PrimðC �ðEÞÞ.

Theorem 3.4. Let E be a countable directed graph. Let XJMgðEÞ, WJBVðEÞ,

YJMtðEÞ, and let DðUÞJT for each U A Y . If M A MgðEÞ, v A BVðEÞ, N A MtðEÞ,

and z A T, then the following hold.

1. M A X if and only if either

(i) M A X , or

(ii) MJ6X and s�1ðWðMÞqyÞV r�1ð7
U AX

WðUÞÞ is finite.

2. v A X if and only if v A6X and s�1ðvÞV r�1ð7
U AX

WðUÞÞ is finite.

3. ðN; zÞ A X if and only if NJ6X .

4. M A W if and only if MJE0n7
w AW

WðwÞ and s�1ðWðMÞqyÞV r�1ð7
w AW

WðwÞÞ

is finite.

5. v A W if and only if either

(i) v A W , or

(ii) v A E 0n7
w AW

WðwÞ and s�1ðvÞV r�1ð7
w AW

WðwÞÞ is finite.

6. ðN; zÞ A W if and only if NJE0n7
w AW

WðwÞ.

7. M is in the closure of fðU ; tÞ : U A Y ; t A DðUÞg if and only if either

(i) MJ6Yy and s�1ðWðMÞqyÞV r�1ð7
U AYy

WðUÞÞ is finite or

(ii) MJ6Ymin and s�1ðWðMÞqyÞV r�1ð7
U AYmin

WðUÞÞ is finite.
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8. v is in the closure of fðU ; tÞ : U A Y ; t A DðUÞg if and only if either

(i) v A6Yy and s�1ðvÞV r�1ð7
U AYy

WðUÞÞ is finite, or

(ii) v A6Ymin and s�1ðvÞV r�1ð7
U AYmin

WðUÞÞ is finite.

9. ðN; zÞ is in the closure of fðU ; tÞ : U A Y ; t A DðUÞg if and only if one of the

following three conditions holds.

(i) NJ6Yy.

(ii) N B Ymin and NJ6Ymin.

(iii) N A Ymin and z A DðNÞ.

Proof. Throughout the proof of cases 1–6 we denote

K ¼ 7
U AX

WðUÞ; B ¼ 7
U AX

WðUÞUWðUÞfiny

 !

VK fin
y ;

K 0 ¼ 7
w AW

WðwÞ; B 0 ¼ 7
w AW

WðwÞU ðWðwÞfiny nfwgÞ

 !

V ðK 0Þfiny :

Ad 1. It su‰ces to consider the case M B X . By [1, Proposition 3.9] we have

7
U AX

J
WðUÞ;WðUÞfiny

¼ JK ;B. Thus M A X if and only if JK ;BJ J
WðMÞ;WðMÞfiny

. By [1,

Corollary 3.10] this is equivalent to KJWðMÞ and BJWðMÞUWðMÞfiny . Clearly,

KJWðMÞ if and only if MJ6X . Assuming MJ6X we automatically have

ðBnWðMÞqyÞJWðMÞUWðMÞfiny . On the other hand, if w A WðMÞqy then w B WðMÞU

WðMÞfiny . Thus we must have w B B, which can only happen in one of the fol-

lowing three cases: (i) frðeÞ : e A E1
; sðeÞ ¼ wgJ7

U AX
WðUÞ, (ii) there is a U A X such

that frðeÞ : e A E1
; sðeÞ ¼ wgJWðUÞ, (iii) s�1ðwÞV r�1ð7

U AX
WðUÞÞ is finite. Case (i)

reduces to case (ii) since we assumed that MJ6X . In case (ii) we have w A WðUÞ0y
and hence M ¼ U A X , contrary to the assumption. Therefore only case (iii) remains,

and the claim is proved.

Ad 2. Similarly as in case 1 above, v A X if and only if JK;BJ J
WðvÞ;WðvÞfiny nfvg,

and this is equivalent to KJWðvÞ and BJWðvÞU ðWðvÞfiny nfvgÞ. Clearly, KJWðvÞ
if and only if v A6X . Assuming v A6X we automatically have ðBnfvgÞJWðvÞU
ðWðvÞfiny nfvgÞ. On the other hand, v B WðvÞU ðWðvÞfiny nfvgÞ. Thus we must have v B B,

which can only happen if s�1ðvÞV r�1ð7
U AX

WðUÞÞ is finite.

Ad 3. Since 7
U AX

J
WðUÞ;WðUÞfiny

is gauge-invariant, by Lemma 2.6 this ideal is

contained in RN; z if and only if it is already contained in J
WðNÞ;WðNÞfiny

. Since N B X and

WðNÞqy ¼ q the claim is proved similarly to the first part of case 1 above.

Ad 4. We have 7
w AW

J
WðwÞ;WðwÞfiny nfwg ¼ JK 0

;B 0 . Thus, by [1, Corollary 3.10],

M A W if and only if K 0JWðMÞ and B 0JWðMÞUWðMÞfiny . K 0JWðMÞ is equivalent

to MJE0n7
w AW

WðwÞ. Assuming this, it su‰ces to find a condition for v B B 0

(similarly to the argument from case 1 above). It is easy to see that v B B 0 occurs

precisely when s�1ðWðMÞqyÞV r�1ð7
w AW

WðwÞÞ is finite.

Ad 5. Obviously, if v A W then v A W . Thus we may assume that v B W . Simi-

larly to the above, v A W if and only if K 0JWðvÞ and B 0JWðvÞU ðWðvÞfiny nfvgÞ.

K 0JWðvÞ is equivalent to v A E0n7
w AW

WðwÞ. Since B 0nfvgJWðvÞU ðWðvÞfiny nfvgÞ

and v B WðvÞU ðWðvÞfiny nfvgÞ, it su‰ces to find a condition for v B B 0. But this is

equivalent to s�1ðvÞV r�1ð7
w AW

WðwÞÞ being finite.
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Ad 6. The proof is similar to the case 3 above. Indeed, ðN; zÞ A W if and only if

JK 0;B 0 JRN; z. Since JK 0;B 0 is gauge-invariant this is equivalent to JK 0;B 0 J J
WðNÞ;WðNÞfiny

by Lemma 2.6, and by [1, Corollary 3.10] this happens if and only if K
0 JWðNÞ and

B
0 JWðNÞUWðNÞfiny . The latter is automatically satisfied and the former is equivalent

to NJE
0n7

w AW
WðwÞ.

Ad 7–9. The following observations are used in the proofs of cases 7, 8 and 9.

The closure of fðU ; tÞ : U A Y ; t A DðUÞg coincides with the union of the closure of

fðU ; tÞ : U A Yy; t A DðUÞg and the closure of fðU ; tÞ : U A YnYy; t A DðUÞg. Thus it

su‰ces to find these two closures.

In order to determine the closure of fðU ; tÞ : U A Yy; t A DðUÞg we observe that

7
U AYy

7
t ADðUÞ

RU ; t ¼ 7
U AYy

J
WðUÞ;WðUÞfiny

:ð1Þ

Indeed, if U
0 A Yy then there exists a U A Yy di¤erent from U

0 such that there is a

path from L
0
U 0 to L

0
U
. By Lemma 3.1 we have RU 0; t1 VRU ; t2 ¼ J

WðU 0Þ;WðU 0Þfiny
VRU ; t2 and

hence in the LHS of (1) we may replace each RU ; t by J
WðUÞ;WðUÞfiny

. Therefore, a

primitive ideal belongs to the closure of fðU ; tÞ : U A Yy; t A DðUÞg if and only if the

conditions of Lemma 3.3 are satisfied (with Yy instead of Y ).

Similarly, in order to determine the closure of fðU ; tÞ : U A YnYy; t A DðUÞg we

observe that

7
U AYnYy

7
t ADðUÞ

RU ; t ¼ 7
U AYmin

7
t ADðUÞ

RU ; tð2Þ

by virtue of Lemma 3.1. By Lemmas 3.2 and 2.6 we get

J
K 00; ðK 00Þfiny

¼ 7
U AYmin

J
WðUÞ;WðUÞfiny

J 7
U AYmin

7
t ADðUÞ

RU ; t;

where K
00 ¼ 7

U AYmin
WðUÞ. Then a primitive ideal J belongs to the closure of

fðU ; tÞ : U A YnYy; t A DðUÞg if and only if J contains the RHS of (2), and for this it is

necessary that JK J
K 00; ðK 00Þfiny

. Thus it is useful to look at the quotient C �ðEÞ=J
K 00; ðK 00Þfiny

.

By [1, Corollary 3.5] we have C
�ðEÞ=J

K 00; ðK 00Þfiny
GC

�ðFÞ, where F ¼ ðE=K 00ÞnbððK 00Þfiny Þ

is the subgraph of E such that F
0 ¼ E

0nK 00 and F
1 ¼ fe A E

1
: rðeÞ B K

00g.

Ad 7. J
WðMÞ;WðMÞfiny

contains J
K 00; ðK 00Þfiny

if and only if MJ6Ymin and s
�1ðWðMÞqyÞ

V r
�1ðK 00Þ is finite, by Lemma 3.3. Assume this holds. Then J

WðMÞ;WðMÞfiny
=J

K 00; ðK 00Þfiny
is

a gauge-invariant primitive ideal of C
�ðFÞ and hence contains all projections corre-

sponding to fv A L
0
U
: U A Yming, since the loops LU , U A Ymin have no exits in F . By

Lemmas 2.4 and 2.6 this implies that RU ; t J JKU ;BU
J J

WðMÞ;WðMÞfiny
for each U A Ymin,

t A DðUÞ, and thus M is in the closure of fðU ; tÞ : U A YnYy; t A DðUÞg. Conse-

quently, M is in the closure of fðU ; tÞ : U A Y ; t A DðUÞg if and only if either (i)

MJ6Yy and s
�1ðWðMÞqyÞV r

�1ð7
U AYy

WðUÞÞ is finite, or (ii) MJ6Ymin and

s
�1ðWðMÞqyÞV r

�1ð7
U AYmin

WðUÞÞ is finite.

Ad 8. This is proved by an argument very similar to case 7 above.

Ad 9. RN; z contains JK 00; ðK 00Þfiny
if and only if NJ6Ymin, by Lemma 3.3. Assume

this holds. If N B Ymin then RN; z contains the RHS of (2) by Lemma 3.1, since there
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exists a path from L0
N to at least one L0

U , U A Ymin. Suppose N A Ymin. If z B DðNÞ

then let g : T ! C be a continuous function such that gj
DðNÞ

¼ 0 and gðzÞ0 0. Then

gðsLN
Þ is in the RHS of (2) but not in RN; z. Thus we must have z A DðNÞ. In this case

it follows from Lemma 2.8 that RN; z contains the RHS of (2). Consequently, ðN; zÞ is

in the closure of fðU ; tÞ : U A Y ; t A DðUÞg if and only if one of the following three

conditions holds; (i) NJ6Yy, (ii) N B Ymin and NJ6Ymin, (iii) N A Ymin and

z A DðNÞ. r

Corollary 3.5. Let E be a row-finite directed graph. Let XJMgðEÞ,

YJMtðEÞ, and let DðUÞJT for each U A Y . If M A MgðEÞ, N A MtðEÞ, and z A T,

then the following hold.

1. M A X if and only if MJ6X .

2. ðN; zÞ A X if and only if NJ6X .

3. M is in the closure of fðU ; tÞ : U A Y ; t A DðUÞg if and only if MJ6Y .

4. ðN; zÞ is in the closure of fðU ; tÞ : U A Y ; t A DðUÞg if and only if one of the

following three conditions holds.

(i) NJ6Yy.

(ii) N B Ymin and NJ6Ymin.

(iii) N A Ymin and z A DðNÞ.

4. Examples.

We illustrate the main results of this paper with the following three examples. The

discussion of gauge-invariant ideals of the algebras corresponding to the last two of

them was carried out in [1, Section 5]. Now we are in a position to give a complete

description of their primitive ideal spaces.

Example 4.1. Let E1 be the following graph, in which the symbol ðyÞ indicates

that there are infinitely many edges from v to w.

e v
ðyÞ

w

There are two maximal tails in E1, namely E0
1 and M ¼ fvg. E0

1 is in MgðE1Þ and M

belongs to MtðE1Þ. There is a unique breaking vertex v in E1. The bijection of

Corollary 2.11 identifies fE0
1 ; vgU ðM � TÞ with PrimðC �ðE1ÞÞ. The topology can be

determined by Theorem 3.4. The closure of fE0
1 g is the entire space PrimðC �ðE1ÞÞ, the

closure of fvg is fvgU ðM � TÞ, and for every DJT the closure of M �D is M �D.

The maximal tail E0
1 corresponds to the primitive ideal f0g. The breaking vertex v

corresponds to the ideal Iw, generated by the projection pw. This ideal is isomorphic

with the compacts and is essential in C �ðE1Þ by [27, Lemma 1.1]. The quotient

C �ðE1Þ=Iw is isomorphic to the Toeplitz algebra T by [1, Proposition 3.4]. Thus, there

is a short exact sequence

0 ! K ! C �ðE1Þ ! T ! 0:
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As shown in Lemma 2.6, each non gauge-invariant primitive ideal RM; t, corresponding

to the maximal tail M and t A T, is sandwiched between two gauge-invariant ideals,

namely

Jfwg;fvg HRM; t HC �ðE1Þ:

The ideal Jfwg;fvg is generated by the projections pw and pv � ses
�
e .

Example 4.2. The following graph E2, considered in [8], is neither row-finite nor

does it satisfy Condition (K).

u v

ðyÞ

w

There are no breaking vertices in E2. There are three maximal tails in E2: M1 ¼ fug,

M2 ¼ fu; vg and M3 ¼ fu; v;wg. M2 A MgðE2Þ, while M1 and M3 belong to MtðE2Þ.

The bijection of Corollary 2.11 identifies fM2gU ðM1�TÞU ðM3�TÞ with PrimðC �ðE2ÞÞ.

The topology is given by Theorem 3.4. The closure of fM2g is fM2gU ðM1 � TÞ. For

any DJT, the closure of M1 �D is M1 �D, and the closure of M3 �D is fM2gU

ðM1 � TÞU ðM3 �DÞ. As in Lemma 2.6, for any t A T we have

Ifv;wg HRM1; t HC �ðE2Þ and f0gHRM3; t H Iw:

Example 4.3. Let E3 be the following graph with E0
3 ¼ fvi; j j 1a i; j < yg and

E1
3 ¼ feigU f fi; jgU fgi; jg, where

sðeiÞ ¼ v1;2i; sð fi; jÞ ¼ vi; j ; sðgi; jÞ ¼ vi; j;

rðeiÞ ¼ v1;2i�1; rð fi; jÞ ¼ vi; jþ1; rðgi; jÞ ¼ viþ1; j:

v1;1

e1
v1;2 v1;3

e2
v1;4

e3

g1;1
f1;1

f1;2
f1;3

f1;4
f1;5

v2;1
f2;1

v2;2

f2;2

v2;3

f2;3

g2;1 g2;2 g2;3

v3;1
f3;1

v3;2

f3;2

This is an infinite row-finite graph which does not satisfy Condition (K). Since E3 is

row-finite there are no breaking vertices. There are four families of maximal tails,

indexed by the integers nb 1:
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Mn ¼ fvi; j : 1a ia n; 1a j < yg;

M 2n�1 ¼ fvi; j : 1a i < y; 1a ja 2n� 1gU fv1;2ng;

M 2n ¼ fvi; j : 1a i < y; 1a ja 2ng;

Tn ¼ fv1; j : 1a ja 2ng:

In addition, E0
3 is a maximal tail too. E0

3 and all Mn and M n belong to MgðE3Þ. On

the other hand, each maximal tail Tn contains a loop without exits and hence

Tn A MtðE3Þ. By Corollary 2.11, there is a bijection between fE0
3 gU fMn : nb 1gU

fM n
: nb 1gU6

nb1ðTn � TÞ and PrimðC �ðE3ÞÞ. The topology of PrimðC �ðE3ÞÞ can

be determined with help of Corollary 3.5.

References
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