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Abstract. In the local dynamics of Newton’s method of a holomorphic function of
two variables, a multiple root of rank 1 has a Cantor family of holomorphic superstable
manifolds which consists of quadratically convergent initial values.

1. Introduction.

The aim of this paper is to give a geometric description on the local convergence of
Newton’s method toward a multiple root, in the case of a holomorphic mapping of two
variables.

First recall that the local dynamics of Newton’s method is well known in the case
of one variable. If z=1zy€e C is a simple root of the function f(z)=a;(z—z)+

az(z—zo)2 + .-, then zy is a superattracting fixed point of Newton’s method Nf(z)
=z—f(2)/f'(z) =z + aflaz(z - 20)2 +--+. If zyp is a multiple root of f(z)=
a(z—z9)" +---, m>=2, then it is an attracting fixed point of Nf(z)=zy+

((m = 1)/m)(z = 20) + -+

Let F: C?> — C? be a holomorphic map. Newton’s method of F is the mapping
NF(z) = z — (DF)_'F(z) where z = (x, y) € C>. A multiple root of F is a point zy such
that F(z9) = (0,0) and det(DF)_ = 0. It can give rise to an indeterminate point. That
is, the intersection of the closures NF(U\{zy}), where U = C? runs through a neigh-
borhood base of z, is not a single point. So no definition of the image NF(zy) makes
the mapping NF continuous.

Suppose that the origin zp = (0,0) is a multiple root of F. Since F is a mapping
of two variables, rank(DF )., 1s equal to 1 or 0. In this paper we consider the case
rank(DF), =1. As a general property of Newton’s method, it is easy to see that
N(LoF) = NF if L: C* — C? is a linear automorphism, and N(FoA) = A 'oNFo 4
if 4:C? — C? is an affine automorphism. This implies that we can give linear coor-
dinate changes in the domain of definition C? as well as in the range C>. So we may

suppose that
1 0
DF)_ =
( )Z() ( 0 O )

without loss of generality. Denote by F(z) = (x+---, p(x,y) +---) where p(x, y) is a
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homogeneous polynomial of degree >2. In this paper we consider the simplest case of
a multiple root, so suppose that p(x, y) is a quadratic homogeneous polynomial with no
multiple factor, and that p(x, y) is not divisible by x. By linear coordinate changes we
may suppose that p(x,y) = y> — x?, and F is written by

F(2) = (x + ax® + arxy + aoy” + O(||z[°), > — > + O(||z[I)) (1)

as z = (x,y) — (0,0), where ||z|| = max(|x|,|y|) is the box norm. Suppose furthermore
that
a +ao # *a, (2)

which gives a transversality condition that will be used later.
The main result of this paper is the following. There exists a neighborhood U > z
that is divided into three subsets

U\{z0} =AUBUC (3)
where

A is called an attracting set. NF(A) < A. For each z € 4, we have x,/y, — 0
and y,.1/y, — 1/2 as n — oo, where (NF)"(z) = (x,, V).
B is called a bursting set. B =), B, where By = U\NF~'(U), and B, =
UNNF-Y(B,), n>0. Each B, consists of 2" components and the image
NF"*1(B,) is unbounded.
C is called a chaotic set, or a Cantor family of holomorphic superstable
manifolds. There exist constants 0 < ¢| < ¢, such that ¢||z||* < |[NF(z2)|| <
c§||z||2 for each z e C.

By definition, the local stable set W, (z9) of zo is the set of points z € U such that
NF"(zp) stays in U for any n > 0, and NF"(z) — zp as n — co. In our case the local
stable set of the multiple root W} (z) is equal to AU C.

Under an appropriate local coordinate change, we find a blow-up operation that is
defined on a pair of polydiscs and is mapped to an unbounded region transversing the
polydiscs. First in Section 2 we study such a dynamics, which is called a ‘kebab’ (or
‘dango’) operation that was first given in [4]. Later in Section 3 we give the decom-
position (3).

By the C" center manifold theorem (see [3]), we see that there exists a C" invariant
manifold of z, in the subset 4, but its analyticity is not known. In section 4 we
consider this problem in a general situation.

A global approach to Newton’s method of several variables is given by [1], which
also includes many references.

ACKNOWLEDGEMENTS. The author would like to express his gratitude to Toshikazu
Ito, Hiroshi Kokubu, Shigehiro Ushiki, Izumi Takeuchi, and Takeo Ohsawa for their
helpful comments. The comments of the refree helped to refine the paper and to correct
some errors in proofs.

2. Cantor family of superstable manifolds in the kebab operation.

Here we give a model of a local dynamics that gives a Cantor family of holomor-
phic superstable manifolds for a pair of indeterminate points. Let i, j = 1,2 through-
out this section.
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Let 7(u,v) = (u,uv) and sq(u,v) = (u?,v) be mappings of C>. Let ¥ be a neigh-
borhood of the origin in C?, and let V' = z~!(¥;). Consider two points ¢; = (0,;) and
their neighborhoods V;>¢;. Let g;: Vo — V;, with ¢;(0,0) = ¢;, be a biholomorphic
map g;(u,v) = S;(u,v) + --- where Si(u,v) = (au + bv,a; + c;u + d;v) is the linear part.
Suppose that

la; + bjoy| #0, i,j=1,2. (4)
We consider the local dynamics
fnun—v (5)
defined by
fly=sqontog i Vi— V.

It has two indeterminate points ¢;, i = 1,2, since the origin is an indeterminate point of

n~!. Denote by fj=f |;;- The mapping f has two inverse branches

fl=giomosqg!: V=V

which are contracting in the vertical v-direction by the contribution of the blow-down
map 7, and expanding in the horizontal u-direction by sq~!. (In [4], we have studied
the dynamics like 7 'og; ! : V; — V' without sq.)

Let r,rg,p > 0 be small and M > 0 large. Let By = D(0,p) x D(0,ry) = D(0,/p) x
D(0,ry) = V) be closed polydiscs centered at the origin. Let B; = D(0,p) x D(a;,r) < V;.
Let L; = Lip,,(D(0,p), D(x;,r)) be the set of Lipschitz functions of D(0,p) to D(a;,r)
with Lipschitz constant <M. Let H; < L; be the set of 7; € L; such that the restriction
to the open disk 7;[; , is holomorphic. Let 2(2) = {1, 2}V 5w = wow, - - - be a Cantor
set. Let s:2(2) — 2(2), s(wowywp---) =wywy---, be the shift operator.

For each 7; € L;, denote by 7/ : D(0,,/p) — D(0,/p) x D(a;,r) the mapping such
that image(z/) = sq~'(graphz;). It is defined by 7 (u) = (u,7;(4?)). Let pi(u,0) =u,
p2(u,v) = v be the projections. We are going to define the graph transform

I, :LiUL, — L UL,

by
I,(1) = pagint; [prgimt}] |,

so that
/(graph(ly,(1;))) = grapht;, (6)
graph(7;,(z;)) = BiN /' (graph 7)), (7)

and I;,-(Ll UL2) e L,' hold.

In order to show that I}, is well defined, let /:= Lip(g; — S;) be the Lipschitz
constant as a mapping of D(0,,/p) x D(0,rg). Note that /— 0 as p,ro — 0. Let
b = max(|b1|,|b2],|di|,|dz]). Choose small r,rg,p >0 and J > 0 appropriately so that

Valla] +1) < ro (8)
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and
/max(l, |og| +7+2pM) + b(r +2pM) <6 < |a; + bioj| — \/p. 9)

LemMa 1. For each tjeL;, I, (t;) :pgginrjf‘[plg,-m;]*l|l—)(o p) 18 well defined as
a mapping of D(0,p) to C. That is, pP1gint; : D(0,/p) — C is an injective map that
overflows D(0,p), ie., pigimt; (D(0,/p)) = D(0,p).

Proor. By (8) we see that n(D(0,./p) x D(«,r)) = D(0,/p) x D(0,ry) = V5 and

the mapping gint; of D(0,/p) is well defined.

Let 7j0 € L; be the constant function tjo(u) = o;. Compare pignr; with the linear
mapping p1 St (u) = (a; + bijoy)u as follows.
Lip(pigint; — p1Sinty)
< Lip(p1gint; — p1Sint;’) + Lip(p1Sint; — p1Sinty)
< Lip(p1) Lip(g; — S;) Lip(nt;) + Lip(p1Sint; — p1Simz).

The second term is the Lipschitz constant of the mapping u — (au + butj(u®)) —
(au + buoy) = bu(tj(u?) — o), ue D(0,/p). So

Lip(p1Sint} — p1Sint},)

< |by| Lip(u) sup|e;(u?) — o] + [bi suplu] Lip(ey(u?) — o)

<br+b\p-2\/pM = b(r+2pM).
By 7t} (u) = (u,ut;(u?)) = (u,05u + u(t;(u?) — o;)), we have

Lip(nt;) < max(1,|o| +r+2pM).
Hence
Lip(prgint; — p1Sintyy) </ max(1, oy + 1+ 2pM) + b(r + 2pM)
< 0.

Since |pigint; (u) — prgint; (u') — p1Simt; (u — u')| < Jlu —u'|, we have

\prgint; (u) — prgimz; (u')]

|ai—i_bi(xj|_5S |u—u’|

< |ai+bioqf| +5. (10)

By the Lipschitz Inverse Function Theorem (Appendix I of [3]), the mapping p, gint; is
a homeomorphism of D(0, V/P) onto its image, with Lipschitz inverse

Lip([pigine;]™") < (lai + bioy| =)™,
and the image of pigiz; contains D(0, /p(|a; + biw;| —6)) = D(0, p). ]
Next suppose furthermore that M > 0 is so large that

M > |a,- + b,‘OCj|_l |Ci + diOle



On the local convergence of Newton's method to a multiple root 901

and J,p > 0 are so small that

\ci+diocj]+5
<M d pM <r. 11
’Cll‘+bl’O€j| -0 an P =7 ( )

LemMmA 2. The graph transform I, : LiULy, — L; < Ly UL, is well-defined. That
is, Lip(1y,(t;)) < M and image(I},(t;)) = D(w;,r).

Proor. Compare [}, (7;) with the linear function
Is,(tj0) = ple-mjfB[plS,-ij]_l SU o+

as follows.
Lip(15,(7;)) < Lip(Zs,(z0)) + Lip(Zg, (7)) — I's,(7j0))
< Lip(Xs,(tj0)) + Lip(pagint; — paSimtiy) Lip([prgint;] ™)
+ Lip(paSimtyy) Lip([prgime}] ™ — [p1Sintyy) ™)

¢ + d,'O(j

S - (la; + bioy| — &)~
_ai+b,-ocj+ (lai + bioy| —9)

+|e; + dioy| Lip([prgint}] ™ — [p1Simzy] )

and
Lip([prgint; ]~ = [piSimzy) )
< Lip([pigint}]~") Lip(pigint] — p1Simt)y) Lip([p1Simz] )
< (|ai + bigy| =)' -3 - |a; + bioy| .
Thus
Lip(0;,(5) = {925 < .
Since I3,(1;)(0) = o; and pM <r, we have I},(z;)(D(0,p)) = D(o,r). ]

Note that the restriction to the set of holomorphic functions 7, : HiUH,; —
H;, c H UH, is also well defined because g; is holomorphic.

By the definition of I, it is clear that (6) and (7) hold. This implies that I},
is ‘injective’ as an operation of germs of functions. That is, if I},(7;) = Iy,(z]) for
7j,7; € L;, there exists a small neighborhood 0 e U’ = D(0,p) such that the restrictions
to U’ coincide:  7j|y;, = 7j|;.  Hence the restriction to the set of holomorphic functions
Iy |y, um, 1s injective.

Note also that

[\S)

(BiUB)Nf (B UB,) = (fi|3,-)_l<Bj)

i,j=1
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where (fj Bl_)_l(B_,-) = B;N 7! (B;), and furthermore that

n 2
- -1 -1
ﬂ f k(Bl U Bz) = U (ﬁVO BWO) T (ﬁvn—l B""nfl ) (Bwn)'
k=0 W0y, Wy=1

For each wy,...,w,_; € {1,2}, there exist open subsets V7, V> of B,,, N{u # 0} such that

(fwo B )_1 "'(fwnq B, )_I(Bi)\{%vo} oV, i= 1727 (12)

]1’0
and V1NV, =¥, since the blow-down operations ffl are homeomorphisms when

restricted to the outside of the v-axis. This implies that
graph (L., (t1)) N graph (L., (12)) = {qw, } (13)
where Iy, =1y, o---olj  since
graph(Lyy.., (7)) < 1;01 .- «fwfnl(B,-), 1, €L,

As the limit n — oo, we are going to show that for each w = wow, --- € 2(2), there
exists a unique function o(w) € H,,, < L,,, such that

(Yol )™ (o, )7 (Bu) = graph(a) < B, (14)
is the graph of o(w). Here we suppose p > 0 is small enough that
L= +Db)p(l+ M) <1 (15)
LemMA 3. The graph transform _I},,. :LiUL, — L; is a contraction with respect to
the sup norm || -| of a function on D(0,p). That is,
175,(7) = To ()l < Al — 5ll, 7,75 € L. (16)

Proor. Let (u,v) € D(0,,/p) x D(o;,r). Since

pagin(u, 7 (u?)) = Iy, (57) (prgim(u, (1))

we have
| p2gin(u, v) — I5,(7;) (pr1gin(u, v))]
< |pagin(u, v) — prgim(u, 7;(u?))|
+ Lip(15, (1)) | prgim(u, 7 (u?)) — prgin(u, v)|
where

|Prgim(u, v) — prgim(u, 7 (1))
< Lip(p) Lip(g: — Si)|n(u, v) — n(u, 7;(u?))]
+ | prSim(u, v) — prSim(u, 7;(u?))|
< Nu(v = 5(u?))| + blu(v — 7;(u?))]

< (£ +b)plo -5, k=1,2.
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Thus
|p2gim(u, v) — Iy, (t7) (prgim(u, v)| < Ao — 7;(u?)]. (17)

Given 7, let v =7/(u?) and u’ = pigin(u,t/(4*)) to obtain

|1, (e (') = I (1) ()] < A7) (u?) = 7).

If u? runs through in D(0,p), u' runs through in a region that contains D(0,p). By
taking the supremum over D(0,p), we obtain the lemma. O]

So far we have constructed two contraction mappings I, : LiUL, — L; = Ly UL,
i=1,2. Note that the restriction to the set of holomorphic functions Iy |y g,
H\UH, — H;, c H UH, is also a contraction. For each w = wyw;--- € 2(2), con-

sider the sequence of the mappings Iy, Lgws---s Lwgow, qs--- Where Iy, =
Iy, -1, - By the contraction mapping principle there exists a unique a(w) € L1 U L,
such that
o0
{600} = () Ty 1 (L) (18)
n=1

Since H, U H, is a closed subset of L;UL,, we have o(w) e H UH,. Note also that

a(w) = 1Iy,, (ﬂ Loy, ( w,,)) = Iy, (a(s(w))). (19)

Repeated application of implies that
a(w) = Ly, (0(s" (W), n>0. (20)

Here let us show (14). By (17), we have

p2f; (W 0) = L, () (prf7H (', 0))| < 2o — 5 (u))] (1)

for any (u',v) € D(0,p) x D(o;,r) and any t; € L;, where u=sq !(v') is in any fixed
branch. Given w = wyw;--- € 2(2), we apply (21) repeatedly to see that

P2fyy Sk (W' 0) = D, () (01! ()
< Ao —1;(u')] (22)

for n>0 whenever pif - fi1 ) D(0, ) Now let us consider a point

Wn—1
ﬂn 1 wol ’ 1;,111(3‘1’;1)' Let( ) f f;u,i (l/l U lnmand applym

to see that

[v" —a(w)(u")| < 2ri".
Taking n — oo, we have (u”,v") € graph(a(w)) because 0 < A < 1. The other inclusion
(Vg Sl *1 (B,,) = graph(a(w)) is obvious from (18), so (14) is proved.

Wn 1

As a consequence we have the following theorem.
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THEOREM 4. Consider the dynamics (5) and suppose that |a; + bjoy| # 0, i,j=1,2.
There exist r,ro,p >0, M >0, and an embedding (homeomorphism onto its image)
g:2(2)— H{UH, such that the followings hold.

1. For w,w' e X(2) with w #w', we have

exaph(a(w)) Neraph(o(w’) ={ 4 70020 23)
The shift operator s acts on o, the Cantor family of curves. That is,
() = I3 ((500) 24)
and
graph(o(w) = By, 1/ (graph(o(s(w))) (25)

for each we X(2).
2. The graph G(o) =, ) graph(a(w)) is the maximal local invariant set in
B, UB,, that is

0

G(o) = Oo /(B UB). (26)

3. The local stable set of {qi,q>}, written by W} ({q1,q2}), is equal to G(o). That
is, f"(z) = {q1,92} as n— oo for each z € G(o)\{q1,¢>}-

4. The local superstable set of {q\,q2} is G(o). That is, there exist constants
0 < ¢} <ch such that

ctlul® < |pifu,0)] < luf’,  (u,0) € G(o)\{q1,42}- (27)

Proor. Choose small 7,7y, p > 0 and a large M > 0 such that (8), (9), (11) and
hold. The mapping o: 2(2) — H, U H; is well defined by (18), and is injective because
I g,um, 1s injective.

Suppose that w=wow;--- and w’' =wiw]---€X(2) are w#w'. There exists
n > 0 such that wo = w(,...,w,_1 =w/_, and w, # w/. From and we see that

le(w) — (W)l = [[Tvgw, 1 (@(5" (W) = Loy, (a(s™ (W)l
< 2| (s" (w)) — a(s"(w"))]]
< 2rA"

which implies that ¢ is continuous since 4 < 1. By (12) we see that ¢ is a homeo-
morphism. By (13) and [20), we have (23).

We have already seen and (25) in and (7).

Let (u,v) € (),—,/"(BiUB,). For each n >0 there exists w, € {1,2} such that
f™(u,v) € B,,. Thus (u,v)e (), fiil -+ /i1 (By,) = graph(c(w)) by (14), where w :=
wowy ---. It is obvious that graph(a(w)) = (),—, f "(B1 UB,) and we have [26).

Let ¢ = (Ja; + bioy| +0)"" and ¢} = (Ja; + boy| — )", By [10), we have for
(u,v) € G(0)\{q1,92}. This also implies that f"(u,v) — {q1,q2} as n — oo, since
v — a;] < M|ul. [
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The graph transform 7, determines the power series expansions of holomorphic
functions o(w) inductively as follows.

PropOSITION 5. Let w' =wiw;---, w'=wiw{.---€e2(2). Let o(w)(u)=
S omuk, oW (u) =32 ofu* be power series expansions. If wj =w; for k=
0,...,n, then we have oy =a; for k=0,...,2" —1.

Proor. Induction on n > 0. It is easy to see that the case n = 0 holds. Suppose
that the case n holds, and let w' = wjiw{---, w”" =w{w{--- € 2(2) with w;, =w/ for
k=0,...,n+1. We are going to show that af = o] for k=0,...,2"1 —1.

Let a(s(w"))(u) = >, Bu*. By the induction hypothesis, 8, coincides with
the coefficient of u* in the power series expansion of a(s(w”))(u) for k=0,...,N
where N =2"—1. The power series expansion of zm(u,a(w’)(u?)) is (u,Bou+ Biu’
o BN o0 Thus gin(u, o(w') (6?)) = (au + bi(a(w')(u?)) + -+, o + ciu +
di(c(w')(u?)) +---) and g;m(u,ac(w")(u*)) have the same power series expansion with
respect to the variable u up to higher order terms of degree >2N + 1. This implies
that the coefficients o of the expansion of o(w') = Fg“_é (a(s(w"))) coincides with o of

aw”) = Fg(g (a(s(w"))) for k=0,...,2N + 1 where 2N +1 =21 1, O
3. Local dynamics of Newton’s method around a multiple root.

If F is defined as in (1), Newton’s method of F is written by

h(z) Y =x*+ h2(2)>
2y +ho(z)” 2y +ho(z)

NF(z) = (

where |ho| < ¢||z]|?, || < ¢|z|?, and |hs| < ¢||z]]® in a neighborhood of the origin
z=(0,0) € C? for some constant ¢ > 0.
Suppose that a small ¢ > 0 is fixed. Let

Ao = {(x,y) € C*[|x] < ¢ly]},
By ={(x,») e C*|[y| <elx[}, and
Co=CUC,
={(x,») € C*| |y — x| <elx[} U{(x,») € C*[ |y + x| <ex]}.
Let A=)~ A, where A, =UNNF'4,), n>0;, B=|) B, where Bj=

n=0 "1

U\NF-'(U) and B,,1=UNNFY(B,), n>0;, C=()_,C, where C,=UN
NF(C,), n>0.
Let J,p > 0 are small. Let

U= {(x,y) e C*||x| <dp, |yl < p}
and
By ={(x,y) € U‘ 12y + 620X2| < S\X‘z}

where ¢y is the coefficient of x?> in ho. Suppose that p is small enough that
132 + ha| < (1/2)|x]* and |—ca0x? 4 ho| < g|x|* in BY.



906 Y. YAMAGISHI

LemmA 6. B{ < By < B.

PrOOF. Suppose that J,p >0 are sufficiently small. If (x,y)e U\Bj we have
|¥| = emax(|x],|y]) = ||z|| and

2 el o
NF = < < < op,
PN )] = |t < Py <
2_ 2 2 2 3
Y oxt4h| [T+ X"+ 7]
Pa2NF(x, )| = . (28)
| ) 2y +ho 2|yl = ellzlI?
Denote by m = |y/x|. In the case that ¢|x| < |y| < |x| =||z||, we have e <m <] and
2+l4c 24 14¢6 24 14¢6
(g =M ElEe o lrp, o erltcp,
2m — c|x]| 2m — cop 2e — cop
If 5|y| < |x| < |y| = |lz|l, we have 1 <m <", |y| = m|x| <mdp < p, and
l+m24cly l+m2+4cp m+m=)d 4 cp
(28) = LD mop < |
2 — ¢y 2—cp 2 —c¢p
If x| <oly[ < [y] = ll=]l,
14067+ c|yl 1+6*+¢p
28) < —— = DI<———
2—clyl 2—c¢p
Thus NF(x,y)e U. For (x,y)e B, we have
2 2
x|"—(1/2)|x
|P2NF(x, y)] > b 2( 4 )‘2‘ =
elx|” + &|x|
and NF(x,y) ¢ U. O

The image NF(Bj) — NF(By) is unbounded since the locus of the denominator of
NF, 2y + ho(x,y) =0, is a local curve that lies in B.
Under the coordinate systems (&,7) = (x, y/x?) and

= o plNF(X, y) 1
(& H) = (pzmx, V) NFC, y>> ’

the point on the #-axis (&,#) = (0,#) is mapped to (Z, H) = (0, —2n — ¢y). It is a local
diffeomorphism around each (&%) = (0,7) if a; # 0.

LEMMA 7. If (x,y) ¢ Co, then |y* — x2 > (¢/(1 +¢))|z]|*.
Proor. Let { = y/x. By the minimum modulus principle,

min | —1]= min [*—1]
(x,»)¢Co (=+1+eel?
where |2 — 1] = |2ee™ + £22’| = ]2 4+ ¢e’| > &. Thus |p> —x?| > ¢x|?, and e|x|* >
(8/2(1 +¢)) max(|x|, b’!zg if [y?<(1 +8)2\X\2- If [p° = (1+ o) (12— X = |y]” -
IX[7 > (1= 1/(1+e)[y]" = (e/(1 +&))ll=]|". O
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LemMma 8. NF(U\Cy) < Ay.
Proor. If (x,y) e U\Cy,

PpiINF(x, y)' - h cp
= < <é&
PNF(x,p)| |y =x2+h| = (¢/(1+¢)) —cp
since p > 0 is small. ]

The lemma above implies that B, = Cy for n > 1, Ay < A] < --- is an increasing
sequence of sets, and that Cy o C; o --- is a decreasing sequence. It is also clear that
B,, n >0, are pairwise disjoint and the decomposition (3) holds.

To describe the structure of the set C, let us choose the coordinate system (u,v) =
#(x,y) :=(x,y/x). Let ¥, V1 and V> be neighborhoods of the origin (u,v) = (0,0),
(u,v) = q; = (0,1) and ¢, = (0, —1) respectively. Let V' =zn"'(V;) be a neighborhood
of the v-axis u=0. By the assumption (2), there exist local diffeomorphisms
gi: Vo —V;, i=1,2, such that (¢°NFO¢_1>|V,- =sqon log;!, ¢:(0,0) =¢; and

\/i2(az +ay+a)! 0

(DYi) (4, 0)=(0,0) =
* VA2 N ar+ao + a)

This gives the local dynamics

fViUV—=V, fl,=f

that satisfies the condition (4), under which [Theorem 4 can be applied. Thus the set

$(C)=¢([),—, Cu) is equal to the graph G(o) of the Cantor family of holomorphic

curves o : 2(2) — H; U H,, by re-choosing sufficiently small neighborhoods if necessary.
Let Bii :=¢(BiNCy), Bia:=¢(BiNCy). It is clear that

2
B = U S Sl (Bu,)

W1y Wp=1

is a disjoint union and each w*ll S 11 (B1y,) i1s nonempty. Thus B, consists of 2"
components.

Finally let us consider the dynamics in Ay under the coordinate system
(u,v) =p(x,y):=(x/y,y). Let pi(u,v)=u, pr(u,v)=v be projections. Both
pilpo NFop~')(u,v), i =1,2, are divisible by v and

D(¢ONFO¢ l)y(u,v):((lo) - (() 1/2)‘

By an argument similar to Schroder’s equation (see [2], Theorem 6.2.3 and its Remark),

Y(u,v) == lim 2"pr(po NF" o 1) =v 4 -
n—oo

is uniformly convergent in a neighborhood of the origin (u,v) = (0,0). As a local
function around the origin, ¥ = v-unit. Thus pi(p o NF o ¢~ ') is divisible by . By
the new coordinate system (&,7) = (u,¥(u,v)), we obtain the dynamics
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(&m) — <nx(é, 77),%77) (29)

where y = pi(po NF o g™ 1) /y.

By the C”" center manifold theorem (see [3], Appendix III), there exists a C”
function ¢ = u(y) = u(Re(n),Im(yn)) around the origin (&,%) = (0,0), whose graph is
invariant under the dynamics [29). In the next section we will show that it need not be
holomorphic.

4. Invariant curve in the attracting set.

Consider the local dynamics

(X, y) = F(X, y) = (yf<x> y),},y),

defined in a neighborhood of the origin, where f(0,0) =0 and 0 < |A] < 1. It is the
composition of the mapping (x, y) — (A~f(x, y), Ay) with the blow-down map (x, y) —
(xy,y). If there exists a local holomorphic curve x = u(y) =7, ¢,»" that passes
through the origin and is forward invariant under F, its coefficients ¢, are uniquely
determined by the functional equation

¥ (1), y) = u(4y). (30)

PROPOSITION 9. If f(z) = ax + by is a linear function with ab # 0, there exists no
invariant holomorphic curve x = u(y) that passes through the origin.

ProoF. From (30), we obtain ¢;4 =0, ¢4 = b and cn+1/1”+1 =acy, n>2. Thus
¢p = a2/ 2 n>2, and the radius of convergence of the power series x is equal
to 0. ]

On the other hand, for any holomorphic function u(y) =3, c¢,y" there exists
an f such that the curve x = u(y) is invariant under F. For instance, f(x,y)=

x—u(y) +u(2y)/y.
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