Open Access
October, 2003 Convergence of the Feynman path integral in the weighted Sobolev spaces and the representation of correlation functions
Wataru ICHINOSE
J. Math. Soc. Japan 55(4): 957-983 (October, 2003). DOI: 10.2969/jmsj/1191418759

Abstract

There are many ways to give a rigorous meaning to the Feynman path integral. In the present paper especially the method of the time-slicing approximation determined through broken line paths is studied. It was proved that these time-slicing approximate integrals of the Feynman path integral in configuration space and also in phase space converge in L2 space as the discretization parameter tends to zero. In the present paper it is shown that these time-slicing approximate integrals converge in some weighted Sobolev spaces as well. Next as an application of this convergence result in the weighted Sobolev spaces, the path integral representation of correlation functions is studied of the position and the momentum operators. We note that their path integral representation is given in phase space. It is shown that the approximate integrals of correlation functions converge or diverge as the discretization parameter tends to zero. We note that the divergence of the approximate integrals reflects the uncertainty principle in quantum mechanics.

Citation

Download Citation

Wataru ICHINOSE. "Convergence of the Feynman path integral in the weighted Sobolev spaces and the representation of correlation functions." J. Math. Soc. Japan 55 (4) 957 - 983, October, 2003. https://doi.org/10.2969/jmsj/1191418759

Information

Published: October, 2003
First available in Project Euclid: 3 October 2007

zbMATH: 1053.81063
MathSciNet: MR2003755
Digital Object Identifier: 10.2969/jmsj/1191418759

Subjects:
Primary: 81S40
Secondary: 81S30

Keywords: correlation functions , Feynman path integral , uncertainty principle

Rights: Copyright © 2003 Mathematical Society of Japan

Vol.55 • No. 4 • October, 2003
Back to Top