Open Access
Translator Disclaimer
October, 2000 Topology of complements of discriminants and resultants
Andrzej KOZLOWSKI, Kohhei YAMAGUCHI
J. Math. Soc. Japan 52(4): 949-959 (October, 2000). DOI: 10.2969/jmsj/05240949

Abstract

In this paper, we classify the homotopy types of spaces of monic polynomials which have no n-fold real roots or spaces of n-tuples of monic polynomials which have no common real roots, by using the "scanning method"([9]) and Vassiliev's spectral sequence ([15], [16]). In particular, we show that such spaces are finite dimensional models for the infinite dimensional loop space of spheres.

Citation

Download Citation

Andrzej KOZLOWSKI. Kohhei YAMAGUCHI. "Topology of complements of discriminants and resultants." J. Math. Soc. Japan 52 (4) 949 - 959, October, 2000. https://doi.org/10.2969/jmsj/05240949

Information

Published: October, 2000
First available in Project Euclid: 10 June 2008

zbMATH: 0974.55002
MathSciNet: MR1774637
Digital Object Identifier: 10.2969/jmsj/05240949

Subjects:
Primary: 55P10
Secondary: 55P15 , 55P35

Keywords: discriminant , homotopy equivalence , loop space , resultant

Rights: Copyright © 2000 Mathematical Society of Japan

JOURNAL ARTICLE
11 PAGES


SHARE
Vol.52 • No. 4 • October, 2000
Back to Top