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Abstract. At each prime number p, the homotopy groups 7.(L,S°) of the v3!BP-
localized sphere spectrum play an crucial role to understand the category of vy!BP-
local spectra. For p >3, they are determined by using the Adams-Novikov spectral
sequence (ANSS), which collapses in this case.

At the prime 3, 7.(L, V(1)) is also determined by using the ANSS, in which E,, =
Ejo in this case. Here V(1) denotes the Toda-Smith 4-cells spectrum. In this paper,
we determine the homotopy groups 7.(L,V(0)) of the mod 3 Moore spectrum from
n.(L, V(1)) by the Bockstein spectral sequence (BSS). Actually, we first compute the
E>-term of the ANSS by the BSS and then study the Adams-Novikov differentials, and
obtain E,, = Ejy as well.

§1. Introduction.

Let %, denote the category of p-local spectra for each prime number p and BP
the Brown-Peterson spectrum at p. Then we have the Bousfield localization functor L, :
Sy — <, with respect to v,'BP for the generator v, of BP, =Zv;:i>0]. The
category L,.%, is easier to be understood than .#, itself and reflects some properties of
it. L,¥, is, in a sense, generated by the L,-localized sphere spectrum L,S°, because
L,X =X A L,S° for any spectrum X by the smash product theorem [10, Th. 7.5.6].
Besides, we have the chromatic convergence theorem due to Hopkins and Ravenel [10,
Th. 7.5.7], which says that hgm L,X = X for a finite spectrum X. Therefore it is very

important to compute the hoflnotopy groups 7, (L,S°). So far we know the homotopy
groups 7,(L,S°) for n < 2 given in [8] and for n =2 and p > 3 in [12]. The next place
to study is the case where n =2 and p = 3. They are computed by using the Bockstein
spectral sequences 7. (L,V (k)) = m.(L,V(k — 1)), where V(n) denotes the Toda-Smith
spectrum, and is known to exist if n <4 and p >2n (¢f [9]). (For L,V (k), we have
some other existence theorems in and [14].) Note that V(—1) = S° and V(0) is the
mod p Moore spectrum. On the other hand, 7, (L,V (n— 1)) is computed by Ravenel
(¢f. [9) in case of n<4 and n< p—1, by Mahowald in case of n=p—1=1,
and by the author and Henn and Mahowald [4] in case of n=p—1=2. In this
paper we study the Bockstein spectral sequence 7. (L, V(1)) = n.(L, V' (0)) and determine
n.(L,V(0)) at the prime number 3. Our main tool is the Adams-Novikov spectral
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sequence. In [6] Miller, Ravenel and Wilson introduced the chromatic spectral sequence
converging to the E)-term of the Adams-Novikov spectral sequence for computing
the homotopy groups 7.(V(n)). We use here the modified chromatic spectral sequence
which converges to the E>-term of the Adams-Novikov spectral sequence E; " (L, V' (0)) =
n.(LyV(0)) based on E(2) with Ej-terms H*M| and H*M}. Here E(2) denotes the
Johnson-Wilson spectrum with coefficient E(2), = Z3)[v1,v)"], MY = v7'E(2),/(3) and
M! =E(2),/(3,v{) are the E(2),E(2)-comodules and H*M = Exty;) g (E(2),, M).
H*M) was determined by Ravenel [7], and so it suffices to determine H*M| for the
Er-term E*(LyV(0)). In the first half of this paper, we actually determine H*M|
by using the Bockstein spectral sequence H*K(2), = H*M|, where K(2), = M) =
E(2),/(3,v1) and H*K(2), is determined by Ravenel [7]. The structure of H*M/ is
stated in [Theorem 2.3, and obtain the E-term E;"(L,V(0)) in [Theorem 2.6 In
[6] H°M| is determined, and we studied H'M/ in [1]. Unfortunately Theorem 4.4 of
[1] is incorrect, and so are Proposition 5.2 and Theorem 1.1 consequently. Here we
replace it by Lemma 4.2, which is proved in §7, and obtain H'M|. In the second half
of this paper, we determine the Adams-Novikov differentials d, on E"*(L,W) with
Ey*(LyW)=H*M], and then the homotopy groups n.(LyW) which are described in
MTheorem 2.8.  Here ¥ denotes a cofiber of the localization map ¥(0) — holim ¥(0) for

the Adams map «: X4V (0) — V(0). The homotopy groups 7, (L, V(0)), which is our
main result, are obtained in [Theorem 2.11 as a corollary of Theorem 2.8. The results
would have applications. Here we treat the f-family of the homotopy groups of
n.(L,S°) at the prime 3. We note that though the result of [2] depends on a result of
[1], it remains correct since the proof does not require the incorrect part.

This paper is organized as follows: In the next section, we state our results. Then
we prove [Theorem 2.5 in §3 assuming the behavior of the connecting homomor-
phisms J; : HSM| — H**'K(2), which will be studied in the following sections. In §4,
assuming the behavior of the differential of the cobar complex Q*E(2), which will
be studied in §§6 and 7, we prove [Proposition 3.4 which determines the differentials
of the Bockstein spectral sequence and is the key lemma to determine the E-term
Ey"(L,V(0)). In order to study the differential of the cobar complex Q*E(2),, we need
some relations in E(2), E(2), which is given in §5. In §8, we compute the differentials
of the Adams-Novikov spectral sequence, and prove [Theorem 2.8. The last section is
devoted to applications for f-elements.

§2. Statement of results.

Throughout this paper everything is localized at the prime 3. Let V/(0) denote the
mod 3 Moore spectrum and W be the cofiber of the localization map V(0) — L,V (0).
Since L, V(0) = holim V(0) for the Adams map o: X4V(0) — V(0), we can define

W as follows: Let %/(l)j denote a cofiber of o/ : ¥V (0) — V(0). In particular, V' (1),
= (1), the Toda-Smith spectrum. Then we have the canonical maps 7;: V' (1), —

j
V(1) and 4 : V(1); — K(l)j+1. We define W = holim V(1);. By definition, we have

T

cofiber sequences V(1) a, V), — V(1),, whose homotopy colimit yields another
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one

vl

(2.1) vy - w2 ow

Apply the Johnson-Wilson homology E(2),(—) with coefficient E(2), = Z(g)[vl,vzil] to
the cofiber sequence , and we have a short exact sequence

(2.2) 0— K(2), — M} =5 M} — 0,

where K(2), = (Z/3)[vi'], M| = E(2),/(3,v") and i.(x) = x/v;. Note that K(2), is
the coefficient ring of the second Morava K-theory K(2),(—), and M/ consists of
elements of the form x/vlj for x € K(2), and j > 0, with k(1), = (Z/3)[v;]-action given
by the relation: v (x/vlj ) :x/v{_l if j>1/ and =0 otherwise. Apply the functor
H*(—) = Extgq) g)(E(2),,—) to the exact sequence [2.2), and we obtain the Bockstein
spectral sequence

Ey*(LV(1))=H'K(22), = H'M]=Ey"(L,W).

*

Here E;*(X) denotes the E>-term of the Adams-Novikov spectral sequence converging
to the homotopy groups 7.(X).
In [3], Henn computed the E>-term H*K(2), as follows:

THEOREM 2.3 (¢f. [11, Th. 5.8, Prop. 5.9].). The Ey-term Ey" (L, V(1)) = H*K(2), is
isomorphic to the K(2),[bio|-module

F® K(2),[b0] ® 4(5).
Here F = (Z/3){1, ho,hi1,b11, & Yo, ,,b11E}. Besides, we have relations:
mohi1 =0, me¢ =0, hu¢=0,
vshiobio = by, vahibig = —hiobi,
bié = vohoy = vahuhy,  bioé = —hiohy = v3 ' hiy,
307y = —bly, bW, = —vy 'buy, and by = vy by
The bidegrees of these generators are as follows:

[val] = (0,16),  [lhwoll = (1,4),  [JAull = (1,12),  [[bro]| = (2,12),
bl = (2,36), &l = (2,8), Wl = (3,16), Y]l = (3,24).

In this paper, we first deduce the Adams-Novikov E,-term EJ*(L,W) from
by using the Bockstein spectral sequence. In order to state the F,-term,
consider k(1) -modules

F = E(2, 1)*{1);1/01,vzhm/vf,v%hn/vlz,vzilb”/vl}
F* = E2,1){&/v, 035 Yo /v1, 05 'Y, /o1, buné/oi}
Fy=EQ2,n+2),{v>"" /o1 03" o o83,

n " 31(543)4H(37—1)/2
83 O/UIO3+1 (5£3)+( )/5/0?3}.

Uy



68 K. SHIMOMURA

Here |jv1|| = (0,4) and E(2,n), = (Z/3)[v1,05"]. We also use the notation K(1), =
vTk(1), = (Z/3)[vf"]. Then

THEOREM 2.5. The Ex-term Ey"(L,W)= H*M| of the Adams-Novikov spectral
sequence converging to w.(L,W) is isomorphic to the direct sum of k(1) -modules

(K(1),/k(1),) ® A(ho, (),
Y FE®A(%), and (F®F)®(Z/3)[bio] ® A(0).

n>0

The short exact sequence associated to the cofiber sequence V' (0) — LV (0) — W
yields the long exact sequence

H*E(2),/(3) — H*M? — H*M}! 5 HE(2)_/(3),

in which M = (Z/3)[vit',v}'] and the structures of H*M is determined to be K(1), ®
A(hyy) by Ravenel [7]. Observing the exact sequence, we obtain the E,-term from

MTheorem 2.5:

THEOREM 2.6. The Er-term Ey"(L,V(0)) = H*E(2),/(3) is isomorphic to the direct
sum of the k(1),-modules K(1),/k(1),{0({5)} ® A(ho),

k(1), @ A(hio) and  A(5) ® a(Z FEOFOF)® (Z/3>[blo]>.
n=0
In order to state the homotopy groups 7.(L, 7 (0)), we introduce more notations:
Fo = E(2,2) {v3/v,03° /0, 03h0/ 0], 050 /0", 038/, 03E / 17}
Fr = EQ,3) 402 fol! ool 2o 1525 /o
F,=EQ2,n+ 2)*{1);—”3"“/0;"3"_1, 023"+1h10/012'3"+1,
o g /0] 0y CEITEIR 3y (> 2)
F = B5(2,2), {v2/v1, 02010 /07 }
@ B4(2,2) {v3h1 /v},v3b11 fvr}
@ B3(2,2),{v3/v1,v3 /v1,v3h0/v1}
6—)B2(2,2)*{02h10/vl,v%h“/vl,v;h“/vl,vgbll/vl,vz’lbn/vl}
F* = Bs(2,2) {vy1 /vi}
@ B4(2,2),{v3¢/ v}, 0300/ v1, 05611 E /07 }
@ B3(2,2),{v; 'Yy /vi}
@ B2(2,2) {&/v1, 031 /v1, v3vh /01, 03611 & fv1, 03 /01, vSbn E i}
® 2(33(2,11 +2) {0 ¢ vy |lue Z —1(n)}

n>1

(2.7)

@ Ba(2,n+2), {03 vy |ue I(n)}),
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where Bi(2,n), = (Z/3)[v1,v3>", b1o]/(bL,), and
In)={xeZx=03"1-1)/2 or x=5-3"24+(3"2-1)/2}.

Studying the Adams-Novikov differentials ds and dy by results of [4] and [11], we
obtain the following

THEOREM 2.8. The homotopy groups n.(LyW) are isomorphic to the tensor product
of the exterior algebra A((y) and the direct sum of k(1) ,-modules (K(1),/k(1),) ® A(hy),
S a0 Fn and F @ F*.

For describing more homotopy groups, we further introduce the k(1) -modules:

Fo = E(2,2), {v103h10, v5*h10, 1028, 0105, 051, 019, }
Fl = E(zﬂ 3)*{05973}1107 Ulvg.é? 021657 UIU212i9lpl}

F,=EQ2,n+ 2)*{02453'#1_3"}110’ Ulv§3n+l_l)/2fy

5:374+(3"-1)/2 3l
V1Y, ¢, 010,

(£ DBE"-D2) 4 (5 )
F = B5(2,2), {h1,bio} ® B4(2,2),{v3b11, 0311611}
® B3(2,2)*{vzh11,vé‘h“,vlvgblo}
@ B»(2,2),{v1b10, v1b11, 10311, vy hnibiy, vy 2hii b }
F* = B5(2,2) {v]&b10} @ Ba(2,2) {031y, v2b11&, 0341 b1o}
@ B3(2,2),{v; ' ¢hio}
® B2(2,2) {010y "o, v3¢b10, 13011, 010391 bro, v3bn &, 0105y b}

® Y (Bs(2,n+2) {103 P lue Z —I(n)}

n>1
@ By(2,n +2) {0103 |ue I(n)}),

where M is isomorphic to M for M = F,,F,F* as k(1),-modules while there is one

dimension shift. Furthermore, put k(1)} :@k(l)*/(v{). Since holim L, V(1), =

J j
Lk V(0) by observing K(2), homology, the above theorem implies

TueoreM 2.10.  The homotopy groups m.(Lg)V(0)) are isomorphic to the tensor
product of the exterior algebra A((,) and the direct sum of k(1) -modules (k(1)])®
A(h10),>, 5 o Fn and F @ F*.

Observing the cofibration L,V (0) — L V(0) — L,W and the homotopy groups
7'[*(L1 V(O)) = K(U* ® A(hl()), we have

THEOREM 2.11.  The homotopy groups m.(LyV(0)) are isomorphic to the direct sum
of k(1), ® A(ho), (K(1),/k(1),)00 & A(h10), 2250 Fn ® A(L) and (F @ F*) @ A(().
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Here recall the conjecture due to Ravenel on the f-elements: S, € 7, (S°) if and only
if $=0,1,2,3,5,6 mod9. (See §9 for the definition of f-elements.) ‘Only if’ part is
shown in [11], in which we also show that f; € 7.(L,S°) if s=0,1,5 mod9. On this
conjecture, we have a supporting evidence:

THEOREM 2.12. B, € 7. (L,S°) if and only if s=0,1,2,3,5,6 mod9.

In the Ej-term, the f-elements of the form f,,, are defined [6] for integers a,b > 0
such that b < 3"@ if v(a) < 1 and b < 4 - 3"~ otherwise, where the integer v(a) denotes
the maximal power of 3 that divides a. Then we have homotopy f-elements:

THEOREM 2.13.  In the Adams-Novikov spectral sequence Ej(LyS°) = m.(L,S°), we
have the following:
(@) The element f, with v(a) =0 is permanent if a =1,2,5 mod9.
(b) The element B,,, with v(a) =1 is permanent if v(a—3)>2 and b <3, or if
v(a+3)>2 and b < 3.
(c) Every element B, with v(a) =2 is permanent.

§3. Proof of Theorem 2.5.

The proof of is based on the following lemma due to [6, Remark 3.11].
To state the lemma, we set up notations: Let K denote a Z/3-basis of the submodule
F ® K(2),[b1o] of H*K(2), given in [Theorem 2.3, and X/v{ denote an element of H* M|

such that v{_l()_c/ v/) = x/v; for an element x € K and an integer j > 0. Consider the
maps i, and J, in the long exact sequence associated to the short one

(3.1) S HUK(2), S HIM S MY 2 HR(Q), —

Note that i.(x) = x/v;. For each base xe K = H*K(2),, define an integer j(x) by
J(x) =j if o4x/v{) #0, and j(x) = oo otherwise. Define a k(1),-submodule B of
H*M| by

B:k(l)*{fc/v{(x) |xe K and i,(x) #0e H*M]}.

Here note that an element of the form X/v{” generates a k(1),-module isomorphic to
K(1),/k(1), whose (Z/3)-basis is {x/v{|j > 0}.

LEMMA 3.2.  For the submodule B defined above, H *M} = B® A((y) if B satisfies
the condition that the set {5(X/vf(x))|x eK,i.(x) #0,j(x) < oo} is linearly independent.

Therefore, we will study the connecting homomorphism &, : H*M| — H*"'K(2), to
find j(x) for each xe K. Note that if x ¢ Imd,, then i.(x) # 0 in H*"'M]. Thus a
computation of Jd; shows us all information that we need. We will not distinguish x and
X in the sequel. The following is our key lemma:

LemMa 3.3.  The connecting homomorphism Js : HSM| — H**'K(2), acts as follows:
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l. On F, (n>0),

6@ Y =23y (A=11if n=0,2=—1if n>0)

81 (03 3y hio/v83" 1) = (_1)11023”“71)/25

51( 3y /0103 +1) _025~3”+(3”—1)/2§

52(03"(5 + 3)+(3"71)/2£/U?.3 )=+ U;”“(l +1)+3(3"-1) /2¢1 T v§n+l(1 + I)HSHLI)/Z%-

2. On F,
do(v2/v1) =
S1(v2ho/vt) = bio
d1(v3h1/v}) = by
02(v2b11/v1) = v3h1ob1g
3. On F~*,

62(&/v}) = =13 'Y
83(va(v3 o) /o) = (0235115)
d3(v2yy /v1) = v2¢byg
)=

34(b11E/v}) = Y big.

This gives rise to all the differentials of the Bockstein spectral sequence. In fact,
suppose that 5s(x/vlj) = y in the above lemma. Then for an element a € H'E(2),/
(3,v{), we have 5S+,(ax/v{):ay. Take a to be an element of E(2,n),/(v) =
(Z/3)[vF*"] < HYE(2),/(3,v]) with j<4-3""1 or bl (e H*E(2),/(2,0]) for t >0
and e =0,1. Then we have

Osr2er(v3 X1 3 /v]) = 03" ybio,

for an integer u. Therefore, we see that

PROPOSITION 3.4.  The connecting homomorphism & : H* M| — H*T'K(2), acts as
follows:

So(v3 ! Jo1) = 037 E hy

50(02 (3t+1) /01)— +v9t 1+3h

So(v3 CrED ypd3 iy = 3 3O 0 s 1

51 (v3t+1h10/vl ) = Uzlbm

51< 3l+1 h / 2.3" +1) ( l)l’lflvgn+ t+(3”71)/26 (n > O)
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o1 ( 37(9t4-8) h / 10-3"+1 _ 3"+2z+5 34(3"— 1)/25 (n>0)

) =
o1 (v 2 hiy fof) = v3'bur;
02 (3" big/v1) = + 03" by
02 (v b11 fv1) = +03" E  hygbyg
02(v3'¢/v7) = =03

52(03"(9z+5i3)+(3"—1)/zé/v?.3n) _ i023"+1(3Z+1i1)+3(3"—1)/2¢1

_v§'1+1(3z+1i1)+(3”“—1)/2§g2 (n=0);

0253(03 2 hibig " v7) = v3'buibyy!
52A+3( 3t+1h1 bs+l/v ): 3tbs+2
Sae3 (03 E (03 W oo 01) = 03" (0 %b11€) by

52s+3(v3ti1¢1bf0/vl) = +U§t+lfbfarl5
525+4( t+1bs+2/vl) — 3t 1+1h bs+2

523+4( +1b1 bs-i—l/vl) — t+1i1h10bs+2

Gas1a(13'ChY ! fo1) = =03 Mgy
)

52S+4(v§”b11£b 0/01 = ”lﬁlbé’él
for n,s >0 and te Z.

COROLLARY 3.5. The map i, : H'K(2), — H*M] sends each of the following ele-
ments in K to a non-zero element:

hio, 03 ho, 03y
for s, te Z with s=1 (3) or s=8 (9).
vy by, v3Ehy, VA,
for ttue Z with ue3Z or u=3"9t+5+3)+3"—-1)/2.
3 bl 3 st I Ry s 3Ly s
for s,te Z with s > 0.

These elements in form the set B, and shows [Theorem 2.3.

§4. Computation of the connecting homomorphism.

In this section, we will prove by assuming some results on the cobar
complex Q*FE(2), which will be shown in the following sections.

Let (E(2),,E(2),E(2)) denote the Hopf algebroid associated to the Johnson-
Wilson spectrum E(2). For an E(2),E(2)-comodule M with coaction ¥ : M —



The homotopy groups m.(L,V(0)) 73

M @), E(2),E(2), H*M = Exty) g (E(2),, M) is given as the cohomology of the
cobar complex Q*M with Q°M = M ®E(2)*E(2)*E(2)®s and the differential d, : Q°M —
Q"M defined by d(x® ) =y¢X)@y+>_(-Dx®@y»® - R4(y)® - ®
v+ (-D)""x®@y®1 for xe M and y=y, ® - @ y, € E(2),E2)®. Consider the
connecting homomorphism &, : H*M| — H*''K(2), associated to [2.2]. By definition,
we see that

(4.1) if dy(x) =v/ymod (3,0]™") in QF1E(2),, then dy([x/v]]) = [].

Here [x] denotes a cohomology class represented by a cocycle x.
Now we state several lemmas:

LEMMA 4.2.%)  There exists a cochain x(8-3") e Q'E(2), for each n >0 such that
x(8-3") = v8*" 1y mod (3,v1) and

d, (x(8 . 3n)) — _01]0-3n+lU§-3”+(3"—1)/2X mod (370110,3%2).
Here X denotes a cocycle that represents .

LemMA 4.3.  In the cobar complex Q*E(2)
f; represents \; in E5(LyV (1)) and

ds(fy) = v1v32b11 ® X mod (3,07),

we have cochains f; (i =0,1) such that

*9

di(f;) =0 mod (3,07).
LEMMA 4.4.  There exist cochains X (0),X(2) and X(8) € Q*E(2), such that X (n) =
vy X mod (3 v1) and
(a) &(X(0)) = —viv;'fy mod (3,v7),
(b) (X (2) =vi*® X —vio;’f} mod (3,0]) and
db(X(8)) = —v{r32° @ X7 +vfv; /] mod (3,07),
for the elements f; (i=0,1) of Lemma 4.3. Here z represents (,.

Assuming these lemmas we will prove by which we obtain
3.4.

PrROOF OF LEmMMA 3.3. In [6, Prop. 5.4] it is shown that dy(v2) = v1 mod (3, v7),
do(v3) = v3v}rymod (3,0F) and dp(vd") = —oF?" ! %3" f mod(3,v?'3"71) for n>2,
which implies the first equations in the parts 1 and 2 of Cemma 3.3. In fact, hy; = [£}'].
Besides, we see that d(v2b11) = v1; @ byy mod (3,07), since dy(b11) =0 and dy(rp) =
vltf. Therefore the fourth one in the part 2 follows from the relation A5y = U%hloblo
of Theorem 2.3.

In [1, Prop.s 5.2, 5.3], it is shown that

d(x(1)) = vibyy mod (3,v7), di(¥(2)) =vibyy mod (3,17),

di(x(3") = —=(=1)"of?" VP mod (3,0072) (> 0),

*)This is the correction of the last congruence in [1, Prop. 5.2].
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where x(n) and y(n) are elements such that
x(n) =vity and y(n) =viy mod (3,v1).

These show the second equation in the part 1 and the second and the third ones in the
part 2. The third one in the part 1 follows from Lemma 4.2. Since f3 =u" V*f,
and X3" = o2 X mod (3,11) up to homology by Mheorem 2.3, we see the fourth one
of the part 1 from (b).

Now turn to the part 3. By (a) we obtain the first one. The fourth
one also follows from it, since by = —v;'bi1f, by MTheorem 2.3. The second one
follows immediately from [Cemma 4.3. Since do(v2) = v14; and d5(f;) = 0mod (3,v?) by
[Cemma 4.3, we see that ds(vaf,) = v ® fymod (3,v}), which is homologous to
v112X ® byg by the relation Ay, = v2b1o¢ = v2¢byy of Theorem 2.3. This shows the
third equation. L]

§5. Some relations in E(2) E(2).
Note that in E(2),E(2) we have the following relations (c¢f. [1, (3.8), (3.9)]):

9 -1 3 -1.3 2.1 9,1
tl :UZ ll’?R(Uz) _UIUZ tz —1)102 V+U11)2 t2

(5.1) = v3t; — 010y ' 5 + vfoat; + 03 (0y 110+ £8) — vfvaty + 071 mod (3,0})

ty=0v3 't,—vvy't),, mod (3,v7),
in which 7x(v3) = v3 + vt} — 0]t and

(5.2) V = —03t; —vinatd + vivaty — vioat! + oft] — vjoatd — 058,
Therefore we see the following relation in the cobar complex Q*E(2).:
(5.3) ¢ =v3'c mod (3,v),

for a cochain ¢ e Q“*E(2)..

Note that dy : E(2), — E(2),E(2) is computed by dy(x) = nz(x) —x. Since #7z(v2)
= vy +v1f; —vjf; mod (3) by Landweber’s formula, we compute the following mod
(3,1)?),

do(v3) = —v1028} + 030 + vjvaty 4 vt} + 008

4\ — 3.3 4.3 5,2.3 6, .6 7,2

< do(v3) = —v1v3t; + 070368 — vivyt] + vivats

Y e %) o ) 4T
do(v]) = 01058 + viv3t] — vivs (65 + 42) + viv38 + V830 + o]
do(03) = —v10lt3 + v70%° mod (3,07),

where =1} — 1.
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Moreover, we have
(5.5) (/. [O]) For di : E(2),E(2) — E(2),E(2)%*,
di(ty) =0
di(t) = —t; ® t; — v1byg,
where by = -1 @1 — 5 @ 1.

LEMMA 5.6. There exist cochains T',T, and T in Q'E(2), such that

di(T) = -] ®z° — by —vy’gy mod (3,07),

di(T) = —vt] ® 2° — vabyy — v5°g) + 010,76 @ (3 — £8143) mod (3,v}),

d\(T) = —v22° @ 1] — vabyy — v3°%g])

+o0, 6 ®@ (15 - 557) —vi; 't @ (15 — £]157) mod (3,09).
Here
z=0't+ 008 — 0t b =608 - @4,
Go=t®hH—-6Rt and gy=6tH L.
Proor. First consider the cochains 73 = 13 — 1], and 73 =13 — £113. Then we see
di(1) = —v3t; ® z — vaby — v3go mod (3,v;) and
di(5z) = —v%z@ i — vpbyy — gy mod (3,v1),

by computing

dl(l3) = - ®l§ —HQ& 119 — by
_ 32
= -1 Q®t —v3r ® 1 — by,
(-6 ="'+t + @6 +6Q 1]

g+ @ -l @L+H® T,
di(-16) =0+ @1 +1®6+6® 1
=1’QH+1®6—gh— 154

mod (3, v;).

Now put T’ = v527%;], and 9-th power of di(i;) yields di(T’). In fact, by (5.3) we
see that b}, = vi%h;; mod (3,v9).

We define 7 = 1,7’ and compute di(T) = di(2T') = v15; @ T' — 07031} ® 2% +
v3b], + vi8gg) mod (3, v3).

In the same manner we verify that the element 7 = v, T’ for T’ = v;277; satisfies the
last congruence. (]



76 K. SHIMOMURA

§6. Proofs of Lemmas 4.3 and 4.4.

Let x denote a cochain that represents ¢ in H2K(2),, and define X € Q>E(2), by

*9
X = 02_4x9.

LEMMA 6.1.  The element X is a cocycle of Q*K(2), that represents & in H*K(2),,
and it satisfies the following in the cobar complex Q3E(2),:

bX =003 5 @X — v} @ X —vjv3 ® X mod (3,0).

Proor. By definition with (5.4) we see that
0=dr(x") = dh(v3X)
=0 X +ojr @ X +viv3; @ X
+ 050218 ® X + v3dx(X) mod (3,v]). O
As we noted in [1, (5.1), we have an element w such that d(w)= x>+ vpx
in Q*K(2),. Since x’ = vix by (5.3), we obtain that di(w> — v3w) = 0, that is w® — v3w

is a cocycle. shows that w3 — v3w is bounded, but nothing bounds it by
degree reason. Therefore, w satisfies

(6.2) di(w)=x*+vx and w'=uvw in Q*K(2),.

By this, we have di(w’) = x¥" + vJx° = v}2X3 + v*X mod (3,v]), and so by (5.4),
(6.3) di (v w?) = —oju; P @ w? + lor PP @ w® + X 4+ X

mod (3,07) since do(vy'2) = vy'8(do(v2))°.

Since hjo¢ =0 in H>K(2), by [Theorem 2.3, we have cocycles y, such that d(y,)
= ®x in Q°K(2),. Define y; = —v5'(y3 +£ ®w). Then da(y,) = —v; (£ @ x* —
B® (X +0x)=18®x.

Put Yy =v5%y) and Y, =v;%y]. Then we have

LEMMA 6.4. Y;=yp;, mod(3,v1) (i=0,1) and Y3 = -0, Y1 — 0537 @w? mod (3,07).
Besides,

d(Yo) =1 ®X—i—vlvz_3rs ®X—|—vlzvz_1t13 ® X mod (3,013)> and

H(YN)=60X v, (Y —£2 @ X) +0v{(1;°] ® Y1 — 5% ® X) mod (3,0}).

Proor. The first one follows from (5.3). By definition, Y3 = 0,837 = —v37 )] —
1)2’181127 Qw’ = —0Y, — vz’lgtf7 ® w’ mod (3, 019).
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A direct computation with (5.1) shows the following:
dr(05°]) = v,°0 @ X7 = vy (11 — v1v,°8 + vjvs ') @ VI X
= 0, nr(v3) (11 — v103°6 + vfey ') ® X mod (3,07),
and 57x(v3) = v + do(v3) is read off from (5.4).

For Yi, noticing that do(v5'%) = v;8dy(v}) mod (3,v}), we compute with (5.4) the
following:

~10.9\ _ 11,3 9, 2.-12.6 9, .—10,27 9
dr(vy "y) = —vivy @ ¥y Hoju, TH @y vyt @X

—-11,3 10 2,126 10

+ 0,6 @ 3 X — v, P @ 3 X
_ 3 ~1/,3 6
+ 1)131)2’%? ® Y — vf02’9t§ ®RX mod(3,vi‘). H

PrOOF OF LEmMMA 4.3. Define first /=@ X +/4®7Yy, and f{ =1 Y| —
th ® X. Then shows that f/ represents y; = {ltyo,hy;, &Y for each i =0, 1.

1

By Lemmas (5.6, and with (5.3) we compute

d(fy) = -0’ @ ®X — 0, @1 ®X)

=0t ®z@ X —v;'g0 ® X)
dg(—vlvz’?’T@X) = 1)11)2’3(0311 ® z + vabyy +U§go) XX
Gz® Y)=—01z®@H1 ®X
A(—01z1 @X)=v1z®@1H1 X+ 0111 ®zR X

mod (3,v}). Then we have the first one by putting f = f; —v105°T @ X +v1z® Yy
—vzh1 ® X.
Similarly, we compute

B(f)=-1Q@60X +un,' 11 (@Y — 1§ ®X)
+HEX +ubp@X —viv; LR ®X
dg(vlvgltz ® Y)) = —vlvz_ltl ® 113 ®Y — 0102_112 ® 113 XX
d3(0102’97_“3 ®X)=v10,° (—v3z2® 85 — v3b1g — g§) @ X
(—01z® Y1) =01z ® tf' XX

mod (3,v}). Notice that vjo;!(fh ® 1 — 11 @ 1%) = v1v;°g}’, and we obtain the second
one by setting f; = f{ +viv;'b ® Y + 0102‘973 RX —1vz® Y. O
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PrROOF OF LEMMA 4.4. (a) Set X = X +v105'Y) and f) = ;' (6 @ Y1 + 10 ® X),
and we obtain

d(X) = vivy'fy mod (3,07)
by the computation:
(X)) = —ov, ' @ X
(0107 Y1) = =005 @ Y1+ 010, 65 @ X —viny2(6 ® Y1 — 1Y ® X)

mod (3,v7). Indeed, these are seen by using Lemmas and and the congruence
do(v;1) = —v1vy% mod (3,v?) seen by (5.4).

For a while, we argue in the E»-term E>"(LyV(1)). Notice that f, represents an
element in 02‘1<h11,h11,5>, and Y, 1s an element of <{Ahjo,h19,&). By a relation of the
Massey products, we see that & <hy, hi1,E> = {hyy, hy, by )€ and <hyy, hyy, by )y = —byg.
Therefore, hy1[fy] = —v5'b11é = —hiyy, by a relation in MTheorem 2.3, and so [f,] =
—, mod Ker hy. also shows us that Ker iy < E5" (L, V(1)) is gen-
erated by hjohyg. Therefore we have an integer k € Z/3 such that [f,] = —y, + khobio
and a cochain ey such that ds(eg) =f, + fy — kt} ® by for f, given in the proof of
[Cemma 4.3. Furthermore the relation v3/9big = hy1by; certifies the existence of a
cochain B such that d\(B) = v3ti ® bio — 5 @ byy.

Putting X (0) = X + kvjvy'byy — v (v3'ey + kv B) leads us to the desired congru-
ence.

(b) Put X(2)=unX®—0Y; —0vjv;°Y} and note that fi=1HQ@YI —H®X
mod (3,v1) for f; in the proof of Lemma 4.3 We then obtain d&>(X(2)) from
computation

b0 X)) =0 @ X —vin @ X —viv?] @ X°
= vltf ® X3 —I—vf(tl —1—1)102_3[;) ® X
dy(—vy YOS) = —121113 ® X3 - U?UE9T9 ® X3

(03032 YY) = =008 @ Y — vjo,° 1] @ X

4 _ _
—01023113 ® Yl3 — Uf(ll — 01023t23) R X3

mod (3,v]) by Lemmas and [6.4.
By defining X(8) = v3X° — v1v,3Y{, we compute that

d(v§X9) = vlvgtf QX+ vfr3 ® X’
d(—v113° YY) = v} °0 @ Y7 — v (38 — 0303%8) ® X°

3

mod (3,07). Since 73 + 0% = —v3z} — 13649, we have the result. ]

§7. Proof of Lemma 4.2.

In this section, we correct [1, Th. 4.4], whose X should be replaced by our x(8).
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LEMMA 7.1.  There exists an element x(7) such that x(7) = vjt; mod (3,v;), and
di(x(7)) = vib3, —v{v;X mod (3,0}),
for a cocycle X that represents C.
ProOF. Put  x(7)" = 03f] — vjv38 + 033t} — I T" — v0]2° — viv3t)2® + v}3 T —

vv3t3 — vdus*T3 for T', T and T given in [Lemma 3.6. Using (5.3), (5.4), (5.5) and
[Cemma 3.6, we compute the following mod (3, 0}):

di(v51]) = (—011);‘1131 + o030 @ va%t?z + vi‘vztgc

S 33 33 5y 4 60,26 32 7,13 9
+op (=0t G+ 0) Fo)(vl F vt ) o) @1

di(—v035) = —v1 (36 4 of + va%tfe +ofntl) ® 8

(al)

4.3 o 9 4 4

di(0303t]%) = —vi0t ® 11186 + 078 @ 11 + 000ty ® lllsd

+o/tf @¢® +Ul31)§t19®t192
23y _ 22 213 2 27 27
di(—iT?) = iy’ ® 2%, + vibj) +viv, gy

7.9\ — 2..6.3 9 4..4.9 9 5.,3.3 9

5,342 9 6,.5.3 9 7,46 9

4.4.9_9\ — 5,3.3 9.9 4.4.9 9 4.4_9 9

” 7 4 -2
di(v}3T) = v]t] @ T + v]v3(—122° ® 1] — v2b11 — v,°%g]

+ o0y @ (15— 1657) —vinh ® (15 - 1))

_ 43 9 o 19 2619
= vy (—0z @1 — by — 1,79y,

+oy 0 @ (15— 114)))

53,3y _ 5,33 o 9
di(—vin ) = vy ® 1,

6, —43\ _ .6.5.3 9 6,5 6,23 7,,—5.3 3

The elements underlined with the same number are cancelled each other. Since the sum

of the elements underlined with (al) is —v?vig} and g = vi%o — v1 (V)] ® r + 12t @ 13

+0](5 @ ta+ 1113 ® 1)), the sum of the elements underlined with (al) and a is:
R el = P © R i @8 + 5RO R + AR

Besides, the underlined parts with b, ¢ and d are computed as follows:
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vlzt127 ®z — vlzvglf ®z = —0151)2_3t§ ® 2’
vint @1 —vint @ 4 —vjvsPgl =] (3@ 14 —v3t @ 17), and
VW3 @ 6] + vty @ %) + 0803b1g = —v[3( @ 6 — 1 ® 113)
using (5.1). Now we obtain

di(x(7)") = vib}; + v} Z 4+ v]X’
for

Z= (A48 -2 o4 +fedi1iie

+ 034> ® z9D -8 ® z19z9B +0,76 ® @1 - z19z§7B)

12 24 — _
—(P®L A0 ®E +0,°(Le5 +HE6R ) -0 h e

Y=+ -3t @ 0,70 @ T

10300 —3H @ -0} ®5 -1 ®un).
We introduce an element w= —z —uvy't, =vy't} + vy, — v7°5. Notice that z° =
z3 mod (3,v7). Then the parts underlined with 4, B, C and D amount to v3f; ®
Bw®l), 36 @151 Q@w), v3w® @13 and vw? @ z* mod (3,v7), respectively, and so we
have

Z=00W @1+1®@w’)+ 8@t —vdw’ @ w’.

Since we have d)(vw) =1 ® £ mod (3,v;) by (5.5), we obtain

di(Sw®) = -3 (W R 1T+1@w) + £ @1/ — vdw? @ w?)

mod (3,v7) by (5.3). Therefore the cochain x(7) = x(7)" + vjv§w® satisfies the desired

congruence by putting x’ = —v;X. In fact, ¢ is represented by a cocycle whose leading
term is vy ® 13 + 05 '%3 ® £7, and moreover T is congruent to t; — {1, mod (3,vy).
[l

PrOOF OF LEMMA 4.2. Put x(8) = — V3 + v{x(7) for ¥ in[5.2]. [Cemma 7.1 implies
the lemma for n=1, since V3 = —v5#; mod (3,v1) by (5.1) and [5.2), and (V) =
vib;; mod (3,0}) by [1, (3.7)]. For a large n, use to obtain the lemma. ]

§8. The Adams-Novikov differentials on EJ (L, W).

In this section, we compute the Adams-Novikov differential d, : ESX' (L, W) —
ESTH=Y( L, W) for r>2. Note that E;5(L,W) is given in and that
d, =0 unless » = 1mod4 by degree reason.

ProposITION 8.1. For all r>2, d, =0 on K(1),/k(1), ® A(h19,{5).

PrOOF.  Suppose that there are elements x € A(h1o,{,) and y € EX" (L, W) with filt
x = for integers 0 < s <2, r>4 and j > 0, such that d,(x/v{) =0 for u <r and

d,(x/vlj) =y #0.
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Then d,(x/v{™) = y' #0 for some ' <r and y’' e E5" (L,W). Since r is finite, we
may assume that for each k >0, d,(x/v]™*) =0 for u <r and

di(x/v]™) = y/vf # 0 € BT (L W)

from the beginning. Thus y generates a module isomorphic to K(1),/k(1), in
ES*T(LyW). On the other hand, shows that E5*(LyW) = H*""M] does
not contain such a module since s+ r>r >4. This is a contradiction. O

In the following, an equation d,(x) = y means not only the indicated one but also
dy(x) =0 for s <r.

LEmMA 8.2.  Suppose that d.(x) = y on an element x of F, or F @ F*, then we get
dy(xb7yC3) = ybi&3
for s >0, e=0,1 and xbj\(5 € E3" (L. W).

ProoF. Since by represents the homotopy element £, the relation d,(x) = y implies
d,(xbiy) = ybi

The same proof that shows d,(x) = y in the spectral sequence for 7. (L, W) works to
show d,(x{,) = y{, in it, since the proof depends on the result of the differentials of the
spectral sequence for 7.(L, V(1)) in which it is shown in that d,(x) = y if and only
if dy(x(3) = yls. O

For the differentials on F @ F* and F,, we study the exact sequence
s BN LV (1) 2 BN (L W) s EYN(LaW) 25 EJTN (L V(1) —
associated to the cofiber sequence in order to use the results on E5 (L, V' (1)):

(8.3) ([11, Prop.s 8.4, 9.13], [4]) The differential ds of the spectral sequence for
(L V(1)) acts as follows:

ds(v3"1) = — 103" by, ds(v3'b1y) = —(t = )03 hyoby,,
ds (03" ) = —103'b11Ebi,, ds(v3" 1) = = (1 + 1)v3'Eb}y;
ds(v3"") = = (1 4+ D)oy huibiy, ds(v3""'biy) = —103" b,
ds(03 o) = —(t+ 1oy 2bnchiy  ds(v3'9hy) = = (1 = 1)v3"2Ebi;
ds(v3'b1o) = —1v3 2 hy b3y, ds(v3'b1y) = —(t — 1)v3'hiobi,,
ds(v3' " "Wo) = —(t = D)oy *bucbiy,  ds(v3'Ybro) = —(1+ vy~ b3,

Here we take 1 for A in [I1], for short, and the undetermined integer k of is shown
to be 1 by [4]. Thus the results of (8.3) follow.

LemMA 8.4. Let x be an element of F, or F@® F*. Then we see the following:
(1) If x=1i.X) and d.(X) =y in E-*(LyV (1)), then

dr(x) = i(y) in E2"(La(V(1)).
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Q) 1 d(6.() =dur(y), then
dx) =yt

Here --- denotes an element of J given by

J = E(2,1), {vah10/v1, v3h11 01, EJv1,b1ié/o1} ® (Z)3)[b1o] ® A(S).

Furthermore the generators of J have the bidegrees:
03" o /vrll = (1,16(3s + 1)), [[o3hn/o1]] = (1,16(35 +2) +8),
035 /1| = (2,485 +4), ||v3°b11E /vy = (4,485 + 40),
b1l = (2,12) and ||| = (1,0).

Proor. Part (1) follows from the naturality of the differential d,.

The hypothesis d,(ds(x)) = ds4,(y) of (2) implies d,(x) = y mod Kerd,;, = Imv; by
naturality. Besides, d.(x) € E5* for s > 5 and @, Ej* = G, where G = (F ® F*) ®
(Z/3)[b1o] ® A({,). Define J =Im(v; : G — G), and we see d,(x) =y mod J. The
structure of J follows from [Theorem 2.3. ]

PropOSITION 8.5.  The differential ds on (F ® F*)® (Z/3)[bio] ® A((y) is read off
from the following results on F ® F* (by Lemma 8.2):

a) ds t“/v]):—tvg’_lhnblzo/v]
a')  ds(v3/v)) =0
by ds(od o /e?) =
342, [02)
)
)

( (v

( (v

( (v ty ' biy /o1
() ds(v

(d)  ds(v

(d)  ds(vy by /vy

(@) ds(v3 o v1) = —103'bri&biy /vy
( (v

( (v

( (v

( (v

(d

(t— D3~y b3y Jv1 + ko3 hiob? Gy Juy for some ke Z/3
—(t= 1 2’+1h10b10/1)1

3t+1b /1)1

~—

)" ds(v3 o /o) =

b)"  ds(v3'E/v) = (1 - 1)031_2%%0/171
)" ds(v'bné/v}) = (t+ 1)o3" Ny biy /vy
4" ds(3 /o) = —(t+ 1)u3Ebiy /v

)" ds(v3 /o)

Proor. The first four equations of (8.3) give rise to (a), (d), (a)* and (d)* by
Lemma 8.4 (1).
IProposition 3.4 shows the following:

t 3h11b20 —54(1)3t 2b2 /Ul) t lh10b30 —56( 31— zbllb /01)7

372b11EDT, = 07(v3 Wbty /1), v 2EbSy = 07(v3 2 bTy /1)
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Since i.04(y) =0, (1) implies that the second four equations of (8.3) yield
(a"), (d"), (a")*, and (d’)*.
Furthermore, [Proposition 3.4 shows the following:

3103 g /v7) = v3'byo, 31(v3 2 hyy Jv?) = v3'byy,
52 (03 v?) = —v3' Ny, 94(v3'b11E/vT) = 03 b1o;  and
vy 2hibiy = —6(vy 'biy/v1), v3'hiobiy = —06(v3' ' b11bTy/v1),
03" b1 ébiy = =07 (03 Wobio/v1), 13 EbYy = —d9(v3 Y biy/v1).

Therefore, we apply (2) to show

ds (03 o Juf) = 13" biy Jor + -
ds(v32hyy Jv?) = (t — 1) byl vy + - --
ds(v3'¢/v]) = — (1 = D)3 by /o1 + -+
ds(v3'b1&/v}) = (t+ )3 by Jvr 4 -

by using the last four equations of (8.3). Let (J)“' denotes the submodule of J
with bidegree (s,7). Then we see that (J)™" =0 if (s,u)=(6,16(3t— 1)+ 32),
(7,16(3t —2) +36) or (9,16(3t— 1)+ 56), and = (Z/3){v3" " hiob3ylr/v1} if (s,u) =
(6,16(3t — 1) + 56). Therefore we obtain (b), (c), (b)* and (c)*. O

We here recall the folklore lemma which will be used later:

Limva 8.6. Let X LY %7z 5x be a cofiber sequence with E(2),(h) = 0.
Then in the exact sequence Ej(LyX) N E;(L,Y) 2, E;(L,Z) LN E;*N(X), we have
the following:

(1) If we have a chart

and x is a permanent cycle, then f,(|x]) = [y], where [-] denotes a homotopy class.
(2) If we have a chart

then do(x) = x'.
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(3) If we have a chart

then ds(z) =

COROLLARY 8.7. Consider the cofiber sequence V(1) Lstwhw Lz V(1).
Then the induced mapi, : n.(LyV (1)) — m._4(Ly W) acts as follows:

(a) (03" hio) = 03" hobiy/v mod Ker f,

(a')  i(03 o) = 03" hiobfela /v mod Ker

(b)  i(0"1E) = — (1 + u)p3“hiy /of mod Ker f;  (u# 0 (3))

(b")  i(0"EG) = — (1 + u)p3“¢hipls/vi mod Ker B (u #0 (3)).

ProOF. We obtain the following charts

3,2 U 3
Uzhloblo/vl E— vzl’lloblo/vl
%
b1y /vy 2y 2h10b1o

and

U1

—(1+u)p3"ebjy/v} —— —(1+u)v3"Cbiy /vy

%

0
3u+llp /1)1 Uzu-i-lgblo

from Propositions 3.4 and B3 (d), (d)*. Since vy "2hjo and v;3""'¢ with u # 0 mod 3 are
permanent cycles by [11, Th. A], i.(v3"hiob1o) = vy ' hiob3,/v? and i.(v3"" Eb) =
(1 +u)v3“biy/v} by (1). Now divide it by 1o which represents 8, € 7. (S?),
and we obtain (a) and (b).

In the same way, we obtain (a’) and (b’) by [Lemma 8.2 O

ProposITION 8.8.  The differential ds on F, ® A((y) is read off from the following
relation on F, (by Lemma 8.2):

(a) ds( 3" (3141) 43" 1) { 9Z+1h1ob /01 n=20
: 0 n>0
(a/) ds( 3n+1(3t 1) Ui],3n_l) :0

(b) ds(v §n+2t+3”+1h 0o/v 23n+1+1) {+v§t6b /Ul n=0

(_1>n 3"+2Z+3 3n— 1 /sz /U] n> 0

0 n=201
c d U3l’+2t+8~3nh pl03"+1y — nt n "~ |
(c) ds(vy 10/ ) —; RS S I/Zfb o/ n>1
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(d) ds( "(914+5+3)+(3"-1) /26/ 437y _ §'1+1(3z+1+1)+3(3” 1)/2— 1%[)%0/01 (n>0)
(@) ds(eie/vf) =0
(') ds(vy" 2 vf) = —v3" Yy bip /v1.

Here the symbol + on the right hand sides denotes an undetermined sign.

Proor. Put bH(0)=91+2 and b(n) =3"(9t+ 5 + 3)+ (3" — 1)/2 for n>0.
Then we  compute  ds(@(vd"E/v43")) = ds(d™ " 1y) = e =
k57(02 - lplb o/v1) for ko =—1 and k, =1 (n>0) since b(n )—3”— 1=0 or 3
mod 9. In fact, ds(v3;) = —(1 + 1)v3"~ 1£b by [11, Prop. 9.13]. Therefore
8.4 (2) implies (d) and (¢’), since (J)™" =0 for (s,u) = (7,16(b(n) —3" —2) +44)
(n>0).

Take x/v{ € F,. For the cases (a), (a’), (b), (c) and (e), ds(d.(x/v{)) =0 by the
relation ds(vihi9) = 0 = ds(vi€) shown in [11, Prop.s 8.4, 9.13]. Therefore, ds(x/v{) € J
by [Lemma 8.4 (2). Comparing degrees, we have (a) for n >0 and (a’), and (c) for
n=20. Besides,

ds (037 /0}) = kw3 hiobiy /v + kovy' b1 ELy fon
ds (037 /0}) = k3v3 " hiobiy /v + kavy' 0b11 L vy
ds(vgn+2l+3n+lh10/012.3n+1+1) = ksv] 3mH2443(3"-1) /25[9 o (1>0)
ds(v ;”*%8 3 o /0103 = k6vg'1+2z+5~3"+3(3”"—1)/25]9%0/01 (n>1)
ds(v38E Jul) = kg 0D Lo o1 + kg0 T hyibiy Jv1

for some k;e Z/3 (1 <i<8). Since v hybiy/vy is hit by ds of v3""7byy/v1 by
[Proposition 8.3, we take ks =0 by replacing vy ™*¢/vt by 03¢ /vt — kgv) ™ byo /vy,
that is,

ds(vyTEEJul) = kgv3 TOEDT o 1.

Now we determine the numbers k; for 1 <i < 7. Consider the following charts:

kavy W b3 Co o1

d: 5

kivahioh}y v} + kab11EC J0} —— kyvahiob?y /o1 4 kab11EL Joy
N
/Ul —> Uzhlo
and

k3vy Th3y Jvr — kavy Ty b3y Co o
ds

kavy Shiob?y /T + kavy®b11EG [0} —2— ksvy hiohdy /o1 + kavy 011 EL /oy

\dS

0
3,3 % 4
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obtained from Propositions B.4 and 8.3 (b), (c)*. The numbers k», k3 and k4 are seen to
be zero by (1), since v3hio and vy*hyy are permanent cycles by [11, Cor.
10.7]. Besides shows that k; = 1. By similar charts, the third and the
fourth equations imply

i*(vgn+2t+(3)z+l_1)/26) _ (_1>nk5 ;n+2t+3 311 1 /zéb /Ul (n > 0)

i*(USHZHS'SMBLI)/%) — ke 3M2145.3743(371 1) /2@ e (= 1)

n+2 n+l_
using Propositions B.4 and B3 In fact, for n>0, v§+t+(3+ D2¢ and

32745.314(3"-1)/2 .
v, ¢ are permanent cycles by [11, Cor. 10.7]. Now compare with
Coro ary 8.7, and we obtain
. 0 n=1
ks =(-1)" if n>0, and k:{
s=(=1) : -1 n>1.
If n=0, then ks = +1 by applying [Lemma 8.6 (3) to the following chart (up to sign):

) i 2 14
) ‘po o — —Uy WYobiy/v1

% ys
i 2,0 w 2
+v3h1o/v] S/ + ¢ <hio/vy —— chi/v1.

Consider again the chart

k7v3Wobiola/ 1

%

kgvS &b o /vt —— kquSEbS Ly vy

AN
oSe /vt~ 5,(u8e /vt

obtained from Propositions B4 and B3 Since & (v3¢/vf) = oSy, — ]G -
kgvgt+6//l11b1() is a permanent cycle by [11, Cor. 10.7], we obtain k7 = 0. O

These propositions give us the following charts of E,-term with ds, in which
holizontal lines of length 4 denote multiplication by vy, lines of slope 1/3, multiplication
by /1o and lines of slope 1/11, multiplication by /;;. The differential ds is expressed
by arrows of slope —5. Besides, the same pattern of period (10,2) denotes elements
obtained by multiplication by bj. .

The following chart is the one on F ® (Z/3)[b19], where > starting from di-
mension 12 is multiples by bjy with

vglbn/v]

Uzhlo/vlzi Uzhlo/Ul

Uz/vl/
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The other one , - ° is generated by

U%blo/vl
v%hll/vlz—vghu/vl

A
4 Wﬁ-. 3

The next one is the E>-term with ds on F* ® (Z/3)[b1o]. Each dot can be read off from
the degree of the generator.

”H'*LHW_

o 46 50
lz.x_“r*

44 50 73 94 98
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.\LL“.JL}%L

of og 121 142 146

For the part with {,, just shift the dimension by (1,0).
Now turn to the differential do: E(LyW) — E3t(LoyW). In the following,
everything is computed up to sign as in [11, §10].

PROPOSITION 8.9.  On the elements of Eg (L, W) originating (F @ F*) ® (Z/3)[b10] ®
A(L,), dy is read off from the following (by Lemma 8.2):

@) do(vy ™ hio/v1) = v3"T1b3, u1

(b)  do(vy"Bhyy/or) = vy bubly /vy
© (622 fo1) = 02 g, /02
(d)  do(v3*8/v1) = 0]y b,y 07
(@) dy (0740 v1) = 0] by /o1
(b)*  do(v3'bi1&/v1) = 03" 2 b7y /vy
()% do(v3 Wy [o1) = 03 3ED, Jui
(d)*  do(v3 o /v1) = 03" 3builhiy/vf.

Proor. It is shown in [11, Prop. 10.5]
d9(09t+4h ) 9l+1b150, dg(v9t+8h )—U§t+4b11b10,

do(v3"708) = 03" PYbly,  do(v3'bii&) = vy Py by,

Then (1) implies immediately (a), (b), (a)* and (b)*.
Put 4 = U%bll (I‘CSp. 0251&1, Uzlﬂo, U%b]o), B = U%hlobfo (resp. Ugfbf’o, ngblléb%();
Uzhllblo) Uzbublo/vl (resp. vy b3y /v1, Wobiy/v1, v3bi,/v1) and D = vahyoby, (resp.
v3EDYy, vy biiEbYy, v3hbyy). Then ds(A) = —B by (8.3), 6.(C) = B by [Proposition 3.4,
and ds(C) = D by [Proposition 8.3, Now (2) implies dy(A/v1) = D, which
shows (c), (c)*, (d)* and

dg(UgH_gblo/IM) = UzH_Shllb 0/1)1

The equality (d) is obtained by dividing this by bj. ]

The following completes the computation of the differentials.
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PROPOSITION 8.10.  On the elements of E; (W) originating F, @ A((>), dy is given by
the following (by Lemma 8.2):

(a) d9<v§”““’*” o} 1) =0 (1> 0)
(@) do(e; OV 1) =0
(©)  do(v3 P hio/vi") = 03" b fv7
G hlo/v31) =0
()  do(vy"*E/v}) =
Proor. Consider the total degree
s gy _ [ 100 mod 144 n =1
E & |:{ 4 mod144 n>2,

84 modl144 n=0
o3 D /43 1 = 4100 mod 144 5 =
4 modl144 n >0,

03 o /031 = 119 mod 144

08¢ /vt = 118 mod 144.

Then the chart shows that nothing can be hit by dy of these elements. Thus we obtain
(a), (a’), the second one of (c), and (e¢). For the first one of (c), we compute

o1 (do(vyhio/vy')) = do(v3E) = v3Pobiy = d11 (v3Ebiy/v7)
by [11, Prop. 10.5], and see the equation by (2). O

THEOREM 8.11. The E\o-term Eyo(W) is isomorphic to the direct sum of
k(1),-modules (K(1),/k(1),) ® A(h10,(2), > a0 Fn ® A(Lp) and (F @ F*) ® A() for
k(1),-modules in (2.7).

PrOOF OF THEOREM 2.8. Since Ej,(W) has a holizontal vanishing line by
8.11, we have Ej," (W)= E%*(W). Furthermore, there arises no extension problem
in the spectral sequence, since n.(L, W) is a 7. (V(0))-module and so (Z/3)-vector
space. Therefore we obtain the homotopy groups 7.(L, W) = E,(W). O

§9. [f-elements.

The B-elements in the E>-term for x,(S°) are defined in [6]. Here we modifies it
in the E>-term H*E(2) for n.(L,S°) as follows: Let 0 — E(2), kR E22), — E(2),/(3)
— 0 and 0 — E(2),/(3) — v;'E(2),/(3) — M{ — 0 be short exact sequences, and 9 :
H*E(2),/(3) —» H*E(2), and ¢': H*M! — H*"'E(2),/(3) the connecting homo-
morphisms associated to the short exact sequences, respectively. Then for an element of
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the form v§/v? in H'M|, we define
ﬂa/b = 55/(”5’/”{7) e H'E(2),
and f, = f,/;, which is essential in the Ej-term H*E(2), for m.(L,S?). . i
Consider the cofiber sequences defining the spectra V(0) and W :S° = S% —

V(0) L 28 and ¥(0) 5 LiV(0) = W 5 X¥(0), respectively. If an element v¢/v? is
a permanent cycle, then so is f8,,, by Geometric Boundary Theorem (c¢f. [9)).

PrOOF OF THEOREM 2.12. By [Mheorem 2.8, we see that the elements v]/v; for
j=0,1,2,3,5,6mod9 are all permanent cycles. Thus ‘if” part is shown. ‘Only if’
part is shown in [I1]. O

PROOF OF THEOREM 2.13.  The element v§/v? with 9|a is in F} or F, of (2.7), and so

shows (c). For the case 9t a, the part (a) follows from [Theorem 2.12.
vy *3 /vl comes from Fy of (2.7), and we obtain the part (b). ]
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