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1. Introduction.

Let G be a compact, connected, simply connected Lie group and e its unit.
Denote by AG the space of free loops on G and by £2G the space of based
loops on G the base point ¢. By the multiplication of G and compact open
topology AG is a topological group and £G is a closed normal subgroup. There
is an extension of groups

7

11— 06— AG —> G —> 1

with a canonical section s: G—/G defined by s(g)({)=g for any g and te
[0, 1]. We denote the multiplications of G and AG by g and 4 respectively and
the multiplication of 2G by the same symbol . We also define maps Ad: GX
2RG-2G by Ad(g, Dt)=glit)g™* for g=G, |€QG and t<[0, 1] and @: QG
XG—AG by @, g)=2A(, s(g)). Then @ isa homeomorphism and the diagram

2
QCXGCXRCXG —2—> 06x26xCx6 =2 pexe
(1.1) "’X")l q>1
2
AGX AG —- AG

is commutative where w is the composition
(QoeXT x1)e(log.a X AdX1e)e(log X de X 1agxa) .

The purpose of this paper is to show the following:

THEOREM 1. Let G be a compact, connected, simply connected Lie group and
p a prime. Then the following three conditions are equivalent:

(1) H*G; Z) is p-torsion free,

(2) H*Ad; Z/p)=H*(py; Z/D), where p, is the second projection,

(3) H¥BAG; Z/p) is isomorphic to H*BG; Z/p)QH*(G; Z/p) as an
algebra.
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If p is an odd prime, then H*(G; Z/p) is primitively generated if and only
if H¥(G; Z) is p-torsion  free (cf. [4]).. On the other hand, if p=2, then
HY(G,; Z)=Z/2 but H¥(G,; Z/2) is primitively generated. Therefore,
1 is a good characterization of the triviality of the p-torsion part of H*(G : Z).

As is well known, G is isomorphic to G;xXG,X --- XG, as a Lie group
where G,, G,, ---, G, are compact, connected, simply connected and simple Lie
groups. If G is isomorphic to G’XG” as a Lie group, then AG is isomorphic
to AG’'xXAG” and £2G is isomorphic to LG’ X 2G” as topological groups. More-
over the diagram

GXx QG Ad —> QG

—l 1o X T X 106 AdxAd =l
G'XC"X QG X QG — T s QG X G X QG — s G X QG

is commutative. Therefore, for the proof of [Theorem 1, we may assume that
G is simple.

This paper is organized as follows: In section 2, certain relations between
Ad*, 2* and p* (where Ad*=H*(Ad; Z/p) etc.) are proved. Using the classi-
fication of simple Lie algebras, we prove the equivalence of (1) and (2) of
in section 3. The equivalence of (1) and (3) is proved in section 4
using the following lemma :

LEMMA 4.1. If x, is a generator of H BAG,; Z/2), then x™+0 for any n.

REMARK. H*(BAG,; Z/2) is isomorphic to H*(BG,; Z/2)RH*(G,: Z/2) as
an H*BG,; Z/2)-module.

ACKNOWLEDGEMENT. The second author acknowledges his gratitude to the
Ministry of Education, Science and Culture for supporting him in part with the
Grant-in-Aid for Encouragement of Young Scientists while this work was done.

2. Basic properties of Ad and /.

Let G be a compact, 1-connected Lie group and 2G the space of loops on
G. We denote the group multiplication of G by p: GXG—G. The letter 2
denotes the multiplication of 2G defined by the formula

AU, 1)) = p®), @)

where [, I'e0QG. We write gg’ for p(g, g’) as usual.
The adjoint map Ad: GX2G—R2G is defined by

Ad(g, () = gl(hg™
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where geG and [=2G. We denote also by I’ the commutator map
I'(g, Ht) = glg ).
First we observe some basic properties of these maps.

PROPOSITION 2.1. The following diagrams commute :

Ad
GxX82G 026
(1) a 4
GXQG<RG RGXRG
GxQG 2G
(2) IXA“V Tl
Adx:
GXRGX QG GG

where 4 is a diagonal map and ¢ the inverse map defined by ((\)t)=I{t)" .

We denote the composition

x1 I1xTx1

Ax1
GCXRCXRG CGxGxQGXLG

GCXRCGXGX QG

by D for simplicity, where T is a switching map.

PROPOSITION 2.2. The following diagrams commute :

: 1x Ad E
CxGxQG s GX QG
(1) w1 a4
Gx QG Qc
D Adx Ad
GXRAGCXG —> GXRGXGXAG — LG XRAG
@) 1><zl zl
Ad
Gx QG > QG
: IXT X1 . :
GX QG CXGXRCXRG —————> GXRGXGXRG
& Adl Ad xAdl
4

6 > QGXQC
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The above propositions are deduced directly from the definitions.

PROPOSITION 2.3. The diagram

D I'xrl’
GXAGXRG —> GXACGXGXRG —>RGX LG

1xa] |
r
Gx 892G > QG

commultes up to homotopy.
ProOOF. We write %/’ for A(, !"). Since
A(I'XT")D(g, 1, ')@) = gl)g™" (&) " (gl’/)gH"(t)~
and A is a homotopy commutative product, we have
(Ao(I'xI")-D)(g, I, I")= Ad (g, D*/"'xAd(g, I")xl'"*
= Ad(g, DxAd (g, ")’ '[!
= Ad(g, Ixl")*l’" %!
=1I'(g, i)
= [-(IxA))g, 1, 1.

We will deduce the algebraic formula on cohomology theory from the above
propositions. Let A* be the cohomology theory H*( ; R), where R represents
mainly Z/p, but the some arguments can be applied to the case of the more
general R. Notice that H*(QG; Z) is free and has no odd dimensional ele-
ments. We will use this fact implicitly in the following arguments.

We denote by « the induced map

Ad*: h*(2G) —> h*(G)Qh*(RG)

and I'* by 7. Put ¢=p* and ¢=2* as usual. They are the coproducts of the
Hopf algebras A*(G) and h*(2G). We put also

$(x) = p(x)—(x®1+1®x)  and
H(x) = P(x)—(xQ@1+1Rx)

as the reduced coproducts.
Now we can state some equations which put strong restrictions on the
algebraic structure of h*(G) and h*(R2G).

PROPOSITION 2.4.

) (¢@QD)ea = 1Qa)a,
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2) (1Q¢P)ea = do(aRa)-¢,
3) a(xy) = a(x)a(y)  for x, yeh*(2G),
where d=D*.

ProoF. We deduce these formulas simply by applying the functor A* to
the diagrams in [Proposition 2.2.

Similarly, from [Proposition 2.3, we obtain

PRrROPOSITION 2.5.
de(Y&1)e¢p = (1Q¢P)er .
We define a: h*(2G)—h*(G)Qh*(2G) by the equation
ale) = ala)—1Ra ,

where a=h*(2G). Let i: QGG X L2G be the map defined by i({)=(e, /). Since
Ad-i=1, one can easily show that

ala) = 1Ra+ > x'®a’, where | x| indicates the degree of x.
o<lai<lal
lz’ 1+l1a’i=lal

PROPOSITION 2.6.
D (pRDea = (1Qa)-a
2) AQF)a = do(@RA+ARL+1RaA)> .
PROGF. As mensioned above, a(a)=1Xa+a(a)=1Ra+ 33 x’&Qa’. Then
(p2D)a)(a) = 1Q1Qa+ X ¢(x)Qa’
= 1QIRa+Z{(x’'R@1+1Qx")Ra’+¢(x")QDa'}.
By (1) of [Proposition 2.4, this equals to
(1Qa).a)(a) = 1Qa(a)+ 2 x'Qala’)
= 1Q1Ra+Z (x'Vl®a’+1Qx'Qa’+x'Q@ala’)) .

So we obtain 3 ¢(x)Qa’'=X x’Qa(a’). This implies (1). The second equation
can be deduced from (2) of [Proposition 2.4 in the same way.

By using [Proposition 2.5, we can get the following proposition for 7 in a
similar fashion.

PROPOSITION 2.7.
do(r@1)ed = (1QP)er -

By (1) of [Proposition 2.6, we can compute @ inductively from the lower
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degree up to (primitive elements) QAr*(2G). a can be also determined induc-
tively up to A*(G)RQ(primitive elements) by using (2) of Proposition 2.6. Simi-
larly, [Proposition 2.7] says that 7 can be computed inductively up to A*(G)&
(primitive elements).

Now let T be a maximal torus of G. We denote by T% the set of all
transgressive elements with respect to the principal fibration

T
G — G/T — BT.

Let P(A) be the primitive module for a Hopf algebra A.
The following two propositions are due to Ishitoya, Kono and Toda [10].

THEOREM 2.8. For any element x=h*(G), the following are equivalen?:

) xreTE;
2) o(0)—1Rx € M*(G)RIm =z*;
(3) pxX)—1Qx e ImTER Imz*.

ProproOSITION 2.9.
n xeT¥=Imx",
2) P(h*(G)) = TE,

Let a(a)=2x'®a’. If ala’)=0, then (RL)-a)(a)=0 and by using (1) of
IProposition 2.6, we deduce that x’ is primitive and x’=T%*. If we assume that
x’eT% for a whose degree is less than a certain degree n, we conclude that
it holds in the degree n by using (1) of [Proposition 2.6/ and [Theorem 2.8 It
follows inductively :

PROPOSITION 2.10. For any element a< h*(QG),
ala) € TEQAL2G).

We remark the naturality of a or 7 and their behavior under the cohomology
operations.
Since the following diagram commutes
Ad(resp. I')
G'xXQ2G’ QG
fxof | o |
Ad(resp. I")

G'XQGC ——

where f: G’—G is a homomorphism of Lie groups, « (resp. 7) is natural in the
following sense.
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PropPOSITION 2.11.
) ([*R2f*)ea = a-2f*,
(2) ([*QRf*)er =7 2f*.

Since a (resp. 7) is the composition of the induced homomorphisms from
continuous maps and the Kiinneth isomorphism, the Steenrod power operations
commute with a (resp. 7) like as the following :

PROPOSITION 2.12. Put P=3"* where p* is the i-th power operation. Then
1) (PRP)ea=a-P,
2) (PQP)r =7-P.

In some cases, a can be computed from the Hopf algebra structure of A2*(G).

This method is a key computational tool in this paper. We define ad: GXG
—G by ad(g, g’)=gg’g " as usual. Ad can be extended naturally on

LG = {l:I-G, [(0)=¢}
and the diagram

GXQG—> GXLG —> GX(LG, QG)—Bip—» GX(G, e)
ad | Ad| Ad| ad |
6 — LG — (LG, 26) i> (G, ¢)
commutes. Let ¢ be the composition
p* o .
h*(G, ¢) —> h*(LG, G) — h*(2G).
PROPOSITION 2.13. The following diagram

g

A*G) ———  B*Y(QG)

- ‘]

. 1Ra .
h*(GYQh*(G) ——— h*(G)Qh* ' (2G)

commutes.

3. Some calculations of a.

First, we handle the case that & vanishes. This is also a part of the proof
of our main theorem. Assume that a<h*(G) is primitive. Then ad*(a)=1Ra
and we can deduce

a(e(a)) = 1Qa(a) = pi(a(a))
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by [Proposition 2.13. If H*(G; Z,) is torsion free, the horizontal localizations
are injective in the following commutative diagram

®e

HXQG; Zp) H*QG; Q)
“} -
®Q

H¥G ; Z ) QH*QG ; Zp)) HYG; QQQH*RG; Q).

Since H*(QG ; Q) is generated by o¢(primitive elements of H*(G; @)), a= p¥ in
this case. By the mod p reduction, we obtain

PROPOSITION 3.1. If H*(G; Z) is p-torsion free, @ vanishes on H*(QG ; Z/ p).

In the case that H*(G; Z) has p-torsion, @ does not vanish. The most
typical case is G=E;, p=2. By the result of Kono-Mimura and Toda [21],
one has

h*(E¢) = Z/2[ %3]/ (xD)QRE(Sq¢ xs, S¢*Sq¢*xs, X15, X117, X23)

where x, is a generator of degree 7 and E( ) represents an exterior algebra
and we can choose x,; so as to satisfy

B(x15) = x3QS¢*S¢*xs .
We will show a lemma to determine ad*(xs).
LEMMA 3.2. If ¢(x)=33; a:®b; for x=h*(G) and a;, b; are primitive, then
ad*(x) = ? (a,@b;—(—1)de&cidestip,R)q,)

PROOF. Since 4*<(1X¢)*-¢¢=0, one has

0= x+e*x+2 a;t*b;

and C*bi——:—bi, we obtain {*x:-—x+2i aibi.
Since
ad = po(IX p)o(1X1Xe)o(LXT)(4X1),

we can calculate ad*x as follows:

*

7
1Qp*

xRIPI+1R(xR1+1Rx+2 a: Qb))+ 2 a,Qb:QL+1&Kb.)
1R1IR:*

2RI +1R(x R +1R(—x 4+ a:b)+> a; (=)
+2 a.&Q(0:1—1b,)
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IQT

1QRIRI+1IRXUARQx +H(—x+2 a;:0,)RL -2 (—”l)degai deglih,Da;)
+2 a:Q(1®b;—b:R1)
4*®1
——— xQI+1Qx +(— 2+ a:b)RQL— (—1)der @i deetip, g,
+2(a:&Qb;—a;b: Q1)
- 1®x+2 (ai®bz‘_(_l)degaidegbibi@%) .

On the other hand, we can show easily (for example, by the result of

and [137])
WQEe) = Z/2[a,]JQE(as, @y, ais)  for <15,

where a; is a generator of degree / and the following equations hold:
a, = o(xs), Ay = o(xy), a.. = Sq¢*Sq*a,.
Then we obtain
PROPOSITION 3.3. In H*(QE.; Z/2), we have
a(as) = 1Qas+x3Qa.,
alaw) = 1QRa+x5Qat .

PrOOF. For simplicity, we put x,=S¢'Sq¢’x;. Since o{(x,)=S¢*Sq¢*a.=a},
by applying (2.13) and (3.2) to x,;, we obtain

aa,) = 1Qau+xiXas .

Then, by the relation S¢*Sq¢’a;=a,, we can conclude that a(a;) must be 1R a,
+xiQa.

In the case of p=2, by the naturality of a, one can show easily that there
are elements

as € h*(2G) such that @ # 0 for G=G,, F,, Spin(7), and
a.s € h*(2G) such that @ # 0 for G=E, E;.

The most complicated case is (G, p)=(Spin(2"+1), 2). Let G be its 3-
connected cover and X the two stage Postnikov space obtained from SO(27+41)
by killing its homotopy group of dim=4. Then, there is a fibration

K(Z, 3) — X —> K(Z/2, 1)
and one can show easily

h*(X) = h*(K(Z, 3))Qh*(K(Z/2, 1)).
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Let j:SO@2"+1)—X be the inclusion and B : BSO(2"+1)—»BX the map induced
from 7 which is an H-map bestween associative H-spaces SO(27-+1) and X.
Since Sq'w,=w;, we have

Sq'e(Bj*w,) = a(Sq'Bj*w,)
= o(Bj*ws;)
= j*o(ws) = 21
where z,=h'(X) is a generator. We put z;=d¢(Bj*w,) € Ph*X). Then
h*(X)=Z/2[z,, 23, Sq®zs, Sq'Sq’2s, -+, S¢**Sq** ™ --- SgPz,, ---].

By the result of [10], the Hopf algebra structure of the Z/2-cohomology of
Spin(n) are known:

h*(Spin(m)) = A(x;13=j<n, j#2)QE(xss-1),
H(x;)=0 for j+2°—1, P(Xaso) = 2 X0i@Xojoy,

i+j=28-1

where A( ) indicates the module generated by the simple system of generators
and 28'<n<28. So, if n=27-+1 or 27+2, then s=r+1. One can determine
h*(G), by using the result of Kono [12]:

RHG) = A(x,|3< 5 <27 +1, j#2!, 24+ 1D)QE (Xar+1-y)
®Z/2thor I@AWsr sy Uarazesy ) Uarsar-2ancss),
S@PUsri1 = Usriorr, SQUzriosy = Usrigrass, s
S PUprsar-s4.s1 = Usragr-2sis-
Let us show the following proposition :
PROPOSITION 3.4. S¢*" ‘usrisr-1-1=Xpr+1_1.

PROOF. Since z(x,r+1-,)#0 in the Serre spectral sequence of the fibration
G—-SO0QR"+1)-K(Z/2, 1), we have t(x,r+1-,)=2% " in the Serre spectral sequence
of the fibration G—SO@2"+1)—X. Similarly, by comparing the Serre spectral

sequences of the fibrations which are the horizontal raws of the following
diagram

G G K(Z, 3)

N l

G —> SO@2"+1) — X,

we obtain 7(u,r)=Sq*" "'Sg*" % --- Sq’zs.
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So,
S 't(Ugriar-1-1) = Sg¥" IS % -+ S¢*Sqit(usr)
:'qu’r—lsqu-z'... S¢®Sq'Sq* 'Sq* ? -+ Sqtzs
—_ ngr—lsqzr-z ngsqgr—1+1(sq2r—2 quza)
= sq’”'lsqﬂ-z SQZ(SQN-Z - Sq%zy)?
= quTOIqur_z s (SQISQZT—Z vee quzs)z
— S(]gr—lzg’r—l
— Z%r+l
Thus S¢®" 'usr.er-1-, maps transgressively to z2"*'. Since x,r+1, is a unique

element whose image of the transgression is z"*!, the result follows.

Since Qr*: h“‘(.QG)—»h?*(QCN?) is epic, there is an element u< h?"+*" -3 QG)
satisfying N
‘Qﬂ'*u == G(u21'+zr—1_1) = h2r+2r_1_2(QG) .

If we put a=Sq¢*" 'u, then Qn*aza(xzrﬂ_l‘).
Let 7: Spin(2™+1)—Spin(2™ +2) be the natural inclusion. Then, the generator
x; corresponds by z*. In A*(Spin(2"+2))RQh*(Spin(2™+2)), we have the equation

ad*(xZT+l_1) = 1®x2r+1_1+x2r_2®x27’+1+er+1®x21'_2 .

By |Proposition 2.13, we have

a(o(Xzr+1-1)) = xzr—2®t2T_l s

because o(x.r.1)=t>""' where t is a generator of h%(Q Spin(2"+2)). So, a(u)
can not vanish.

Now, we turn to the case of odd primes.

In the case (G, p)=(F,, 3), we have

h*(G) = Z/3[us]/ (uDQE(us, u)QE(X11, X15)
and we can choose the generator x,; so as to satisfy
(x11) = usQug .
Since u, and u, are primitive for dimensional reasons, we have
ad*(x1) = 1Qx 1+ u.Que—uQu; .
If we put a,=o(us), a;,,=0(x,;) and a,,;=a(x;;)="5p'a,, then

a;(am) - "‘ug®a2 and &(014) = ——-u3®a§ )
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ecause o{uy)=h'(QG)=0. Since a, is a generator of h*(QG)=Z/3, we deduce
that a+ p%. By the naturality, a+ p¥ holds for the case (G, p)=(Es, 3), (E., 3),
(Es, 3). The case (G, p)=(E,, 5) is quite similar and one can prove that there
exists an element a,, satisfying a(a,,)#0. Thus in all cases that the cohomo-
logy of G has non-trivial torsion part, we have a=+ p¥.

4. The proof of the main theorem.

We proved already that (1) and (2) of our main theorem are equivalent.
Since the fibration

(4.1) Gz‘—)BAGg"“")BGZ
has a section, we obtain
H*(BAG,; Z/2) = H¥BG,; Z/2)QH*(G,; Z/2)

as the H¥(BG,; Z/2)-module by computing the Serre spectral sequence.
By the result of [5], we have

HX(G,; Z/2) = Z/2[x5]/(x5)QE(xs),  Sg*xs = x5
H*BG,; Z/2) = Z/2[ys, Yo, Y11, S@y:= Y&, Sq¢'¥¢= 1

where x,; and y, are the generators of degree /.
We will show the following lemma :

LEMMA 4.1. If x, is a generator of H¥BAG,; Z/2), then x"+0 for any n.

PrOOF. We can put x%=¢;x}y,+e,x:y, wWhere ¢, e,=Z/2 for dimensional
reasons.

On the other hand, one can prove easily that
(D*

H¥(AGy; Z/2) = H¥G.; Z/2)QH*(RG.; Z/2)
= Z/2[x:]/(x)QE(x5)RZ/2[ as, as, ai01/(a3)

for *<10 by calculating the Serre spectral sequence. By using the diagram

(.1,
(D*QRO*)*as = 0 (PQP)DP*as

= 0*(as)Qe(1))

= 0*(a;QRQ1+1RQas+a3Ra3) .
Since

alas) = 1Ras+xiQa,
and
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o* = (1Q4*@1)-(1Qa®1)-(1XT*R1) ,
we obtain
Hag= a:RQ1+1Qas+ai®ai+xiRa, .

Now, in the Eilenberg-Moore spectral sequence

Cotor#*162:215(7 /2 Z/2) == H*(BAG,; Z/2),

s(as), s(a}), s(x3) correspond to x, x5, ¥, respectively, so the above equation
yields a relation

Xi+yxs+ - =0.
(See for the computation of the Cotor and the spectral sequence of this

type.)
So & must be 1. Since S¢'x;=x3 and Sq¢'x;=0, we get

x4 = quzxé = 51x§}’6+52x5y7
and
0= Sqlx‘é = 51x§y7+52x§y7 .

Thus &;=¢,=1 and we have two relations xi=x;y,+x}y, and x{=x;y,+x%y,.
So x¥=xiyi=x,;y% mod (y,, ¥¢). Inductively, we have the equation

- m
5™ = %3737 707 mod (4, Ye) -

Thus x%2=+0 for all n. Since x; is a permanent cycle of the Serre spectral
sequence of the fibration [(4.I), the generator of H*(BAG,; Z/2) is not nilpotent.

H*(G ; Z) has non trivial 2-torsion part if and only if G is G,, F,, E¢, E,,
E; or Spin(n) (n=7). For these cases, there exists an injective homomorphism
7: Gy;—G such that

ix: 7(Gy) — 7(C) = Z

and, by the naturality, the generator of H*(BAG; Z/2) can not be nilpotent.
Thus if p=2, (3) of the main theorem implies (1).
In the case of (G, p)=(F,, 3), there is an element a,,€ H*(QG ; Z/3) satis-
fying
a(ay,) = 1Qa,—usKa,
as shown in section 3. A similar calculation in the proof of gives
2*(a0)=—usRa,. So, by using the Eilenberg-Moore spectral sequence, one can

conclude that there is a relation of the form y,us+ - =0 in H*BAG; Z/3).
In the Serre spectral sequence of the fibration

F4_—‘>BAF4_—>BF4y
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v,&Qus must be killed by the differential from 1x,, and this spectral sequence
does mnot collapse. Then, by the naturality, the Serre spectral sequences for
(G, p)=(E, 3), (E;, 3) and (E,, 3) can not collapse.

In the case of (G, p)=(E; 5), by using the element a,,c H'*(QE;; Z/5), a
quite similar argument shows that the Serre spectral sequence

E;—> BAE; —> BE,;
does not collapse.
Thus (3) of the main theorem implies (1). To complete the proof of the
main theorem, we have only to show that (1) implies (3).
AG is considered as the gauge group of the trivial principal G-bundle over
S!' and Map (S}, BG) is connected because =;(BG)=0. So, by the result of
Atiyah-Bott [4], one has

BAG = Map(S?, BG).

Denote by X the (0)-localization of a simply connected space X. Then, by
the result of Hilton-Mislin-Roitberg [9], we have

Map (Sly BG)(O) = Map (Sly BG(O)) .
Since BG, is the direct product of the Eilenberg-MacLane spaces, we obtain
Map(S', BGw) = BGwyX G -

If we assume that (1) of the main theorem, then H*(BG; Z) is also p-
torsion free. (See Borel [5].) Denote the Poincaré series of H*(X; R) by
PS(X; R). Then PS(BG; Z/p)-PS(G; Z/p) is equal to PS(BG; Q)-PS(G ; Q).
Hence it is equal to PS(BAG; Q). So, if the mod p cohomology Serre spectral
sequence of the fibration G—BAG—BG has non-trivial differentials, then there
is a coefficient of PS(BAG ; Z/p) which is less than the corresponding coefficient
of PS(BAG; Q). But it is impossible by the universal coefficient theorem.

Thus the mod p cohomology Serre spectral sequence of the fibration G—
BAG—BG collapses and H¥(BG ; Z/p)QH*(G ; Z/p) is the tensor product of a
polynomial algebra and an exterior algebra. If p+2, this is free and commuta-
tive since x?=0 for any element x of odd degree. Thus (3) holds.

Assume p=2. Since the mod p Serre spectral sequence is trivial, by com-
paring the rational case, clearly H*(BAG ; Z) is p-torsion free. So, if x is the
mod p reduction of an element ¥ H°?¢(BAG; Z), then %* is of order 2 and
must be zero. Thus x? itself is zero and (3) of the main theorem holds.
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