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Introduction.

In [TA2], we showed Liouville theorems for harmonic maps and plurisub-
harmonic functions on a non-compact K\"ahler manifold by establishing a method
to estimate the energy of those maps and functions. In this article we shall
generalize those resuIts to a reduced analytic space $M$ of dimension $m\geqq 1$ which
possesses a non-degenerate $d$-closed positive current $\omega$ of bidegree $(m-l, m-1)$

and an unbounded exhaustion function $\tau$ whose level hypersurface satisfies a
$sIow$ volume growth condition relative to $\omega$ . Here it should be noted that any
pseudoconvexity, pseudoconcavity nor subharmonicity for the exhaustion func-
tion $\tau$ is not required as in [GW1], [KA1], [ST1], [TA1] and [WU1]. This
simplification of the assumptions for the triple $(\Lambda f, \tau, \omega)$ enables us to show a
Casorati-Weierstrass theorem not only for holomorphic maps, but also for
meromorphic maps (cf. [TA2]). Thus this theorem provides us a transparent
understanding of Liouville property for those analytic objects and a generaliza-
tion of the results obtained in [KA1], [KA2], [SIW], [ST2] and [TA2]. The
reader should refer to [NO] or [TU] for a general reference about differential
forms, positive currents, meromorphic maps and Stokes’ theorem on analytic
spaces.

Our main result is stated as follows.

THEOREM. Let $M$ be an irreducible reduced analytic sPace of Pure dimen-
ston $m\geqq 1$ . Suppose there exist

(1) a $d$-closed positive current $\omega$ of bidegree $(m-l, m-l)$ on $M$ whose
coefficients are $LiPschetz$ continuous and non-degenerate at some non-srngular

Point of $M$ (we set $\omega\equiv 1$ if $m=1$), and
(2) an unbounded exhaustion function $\tau:Marrow[\inf\tau, \infty)$ of class $C^{2}$ satisfying

$\lim_{rarrow\infty}\sup\frac{\int_{M(r)}dd_{c}\tau\wedge\omega}{g(r)}<+\infty$

,

where $M(r):=\{\tau<r\},$ $d_{c}=\sqrt{-1}(\partial-\partial)/2$ and $g:(-\infty, +\infty)arrow(0, +\infty)$ is a posrtive
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non-decreasing function with

$\int_{\inf\tau}^{+\infty}\frac{dt}{g(t)}=+\infty$ .

Then we have the following:
(i) Casorati-Weierstrass’ theorem holds for meromorphic maps into the n-

dimensional complex projective space $P_{n}$ (cf. Remark 1); $i$ . $e.$ , the image of any
non-constant meromorphic map from $M$ into $P_{n}$ intersects almost all hyperplanes
in $P_{n}$ .

(ii) Moreover, suppose $\omega$ is non-degenerate almost everywhere on M. If a
smooth subharmonic function $h$ relative to $\omega(i$ . $e.,$ $dd_{c}h\wedge\omega\geqq 0$ on the set of
non-singular points of $M$) satisfies

$\lim_{rarrow\infty}\sup\frac{m(h,r)^{2}\int_{M(r)}dd_{c}\tau\wedge\omega}{g(r)}<+\infty$

,

where $m(h, r):= \sup_{z\in M(\gamma)}|h(z)|$ , then $h$ is constant. In particular, $M$ admits no
non-constant negative smooth subharmonic functions relative to $\omega$ .

Before proving the above Theorem, we would like to mention several
remarks and to state corollaries which follow from the above Theorem.

REMARK 1. Here we fix terminology for meromorphic maps. Let $M$ and
$N$ be irreducible reduced analytic spaces of pure dimension $m$ and $n$ respectively.
A meromorphic map $f:Marrow N$ from $M$ to $N$ is defined as a reduced analytic
subspace $\Gamma_{f}$ of $M\cross N$ such that the natural projection $p:\Gamma_{f}arrow M$ is proper and
there are open dense subsets $V$ of $\Gamma_{f}$ and $W$ of $M$ so that $p$ induces a biholo-
morphic map from $V$ onto $W$ . For any subset $A$ of $M$ the image $f(A)$ of $A$

is defined by $q\circ p^{-1}(A)$ , where $q:\Gamma_{f}arrow N$ is the natural projection. We denote
by $E$ the degeneracy set of the natural projection $p:\Gamma_{f}arrow M$ and put $W:=$

$M\backslash p(E)$ . Then
(i) $\Gamma_{f}$ is an irreducible reduced analytic space of pure dimension $m$ ;
(ii) $p$ induces a biholomorphic map from $\Gamma_{f}\backslash E$ onto $W$ and $p(E)$ is a

lower dimensional closed analytic subspace of $M$ ;
(iii) $f_{W}$ $:=f|_{W}$ : $Warrow N$ is a holomorphic map so that the closure of the

graph of $f_{W}$ coinsides with $\Gamma_{f}$ (cf. [NO], 4.4).
$\Gamma_{f}$ is called the graph of $f$ . Let $g:Larrow M$ be a surjective holomorphic

map from an analytic space $L$ onto $M$. Then the composition of the maps $f$

and $g$ can be defined as a meromorphic map and is written as $h=f\circ g:Larrow N$

(cf. [NO], 4.4).

REMARK 2. We point out an intrinsic relation between the assumptions
for the triple $(M, \tau, \omega)$ in Theorem and meromorphic maps from $M$ to analytic
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spaces. Let $f:Marrow N$ be a meromorphic map from $M$ onto a reduced analytic
space $N$, and $G_{f}$ the graph of $f$ . Using the natural projection $p:G_{f}arrow M$, we
lift the exhaustion function $\tau$ and the current $\omega$ on $G_{f}$ . We set $\tau^{*}:=\tau\circ p$ and
$\omega^{*}:=p^{*}\omega$ . Since $p$ is proper, in view of Remark 1 the triple $(G_{f}, \tau^{*}, \omega^{*})$ also
satisfies the same properties as $(M, \tau, \omega)$ . In particular, if $M$ satisfies Liouville
properties for meromorphic maps and plurisubharmonic functions on $M$, then
so does $N$. This argument is used to show Casorati-Weierstrass’ theorem for
meromorphic maps in the proof of Theorem.

REMARK 3. Let $M$ be an irreducible reduced analytic space of pure dimen-
sion $m\geqq 1$ , and let $\Psi$ be a smooth unbounded plurisubharmonic exhaustion
function on $M$ (cf. [RI]). We set $M_{o}:=M\backslash S_{M}$ witb the singular locus $S_{K}$ of
$M$. The following condition was introduced in [KA1], p. 293, $(C, 1)$ :

There exists a non-increasing continuous function $\eta\geqq 0$ such tbat

$\Lambda dd_{c}\Psi m$ $ $\eta\Psi d\Psi\wedge d_{c}\Psi^{m-1}$ on $M_{o}\backslash K$

and

$\int_{\delta_{1}}^{+\infty}\exp(-\int_{\delta_{2}}^{t}\eta(s)ds)dt=+\infty$

for a compact subset $K$ of $M$ and $\delta_{1}>\delta_{2}$ .
It easily follows from this condition that $\int_{M(r)}\wedge dd_{c}\Psi\leqq Cg(r)m$ with a con-

stant $C>0$ not depending on $r$ , where $g(r):= \exp(\int_{\delta_{2}}^{r}\eta(t)dt)$ (cf. Section 1).

Hence by assuming a non-degenerate condition for $\Psi$ , we can verify the same
Liouville properties as in Theorem for the triple ($M,$ $\Psi,$

$m_{\wedge^{-1}dd_{c}\Psi)}$ (cf. [KA1],
$(C, 2))$ .

For instance we consider a parabolic space $(M, \Phi)$ of pure dimension $m\geqq 1$

in the sense of Stoll (cf. [ST2]); i.e., $\Phi$ is a smooth unbounded exhaustion
function which satisfies the following conditions:

(i) $dd_{c}\Phi\geqq 0$ and $\wedge dd_{c}\Phi m\equiv 0$ on $M_{o}\backslash K$ for a compact subset $K$ of $M$ ;

(ii) $\Lambda dd_{c}\rho\not\equiv 0m$ (or $\neq 0$) on ,, where $\rho=\exp\Phi$ . Then $\Psi=\log(1+\rho)$ and
$\eta(r)=1/r$ satisfy the condition stated above.

From Theorem we obtain the following corollary which is a generalization
of our previous result [TA2], Theorem 2 (cf. [KA2], [SIW]).

COROLLARY 1. Let A $qC^{n}$ be an irreducible (reduced) analytic subset of
pure dimension $m\geqq 1$ . Suppose

$\int_{\delta}^{+\infty}\frac{dt}{tn(A,t)}=+\infty$ ,

where $n(A, r):= \int_{A\cap I\Uparrow zU<r\}}m\Lambda dd_{c}||z||^{2}/r^{2m}$ and $\delta>0$ . Then Casorati-Weiersfrass’
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theorem holds for meromorphic maps from $A$ into $P_{n}$ and $A$ admits no non-
constant smooth negative plurisubharmonic functions.

Set $\tau(z)=\log(1+||z||^{2})$ and $\omega=A^{1}dd_{c}\tau$ . Then the above corollary immediately
follows from Theorem because $n(A, r)$ is a non-decreasing function in $r$ . The

class of analytic subsets of $C^{n}$ satisfying the condition $\int_{\delta}^{+\infty}(tn)A,$ $t))^{-1}dt=+\infty$

$i_{S}$ strictly larger than that of affine algebraic varieties (cf. [ST1]).

Next we obtain the following corollary (cf. [KA1], Corollary and [TA2],

Theorem 3).

COROLLARY 2. Let $(M, ds_{M}^{2})$ be an $m(\geqq 1)$ -dimensional complete Kahler
manifold with a pole $O\in M$, and let $\Phi$ be the distance function from $O\in M$ relative
to $ds2M$ Suppose that

$|radial$ curvature at $x|\leqq\epsilon/((\Phi(x)+\gamma)^{2}\log(\Phi(x)+\gamma))$

for all $x\in M$, where $\gamma>e$ is a constant and $\epsilon=1/((4m-1)(\gamma+1))$ .
Then Casorati-Weierstrass’ theorem holds for meromorphic maps into $P_{n}$ .

Moreover, if a non-negative plurisubharmonic function $h$ on $M$ satisfies

$\lim_{rarrow\infty}\sup\frac{m(h,r)}{(\log r)^{\delta}}<+\infty$ ,

where $m(h, r):= \sup.\in M(r)h(w)$ with $M(r)=\{\Phi<r\}$ , and $\delta=(1+2\epsilon-4m\epsilon)/2$ , then
$h$ is constant.

Corollary 2 will be proved later.

REMARK 4. In the above corollaries the analytic set $A$ and the manifold
$M$ are Stein. However there exists an example which satisfies the conditions
of Theorem and is neither holomorphically convex nor holomorphically separable
but is meromorphically separable. It is constructed as follows:

Let $X$ be an $m$-dimensional non-singular projective algebraic variety equipped
with a K\"ahler metric $\omega_{X}$ . Let $F$ be a flat line bundle of infinite order on $X$ .
We can choose a system of transition functions $\{f_{ij}\}$ of $F$ such that $|f_{ij}|=1$

on $U_{t}\cap U_{j}$ for a suitable locally finite covering $\{U_{i}\}$ of $X$. Let $\zeta_{i}$ be a fibre
coordinate function of $F$ restricted over $U_{i}$ . Then $\rho(\zeta):=|\zeta_{i}|^{2}$ defines a smooth
exhaustion function on $F$. Putting $\tau=\log(1+\rho)$ (or $\log\rho$ ) and a K\"ahler metric $\omega_{F}=$

$dd_{c}\rho+\omega_{X}$ , we have $\int_{F}dd_{c}\tau\wedge\wedge\omega_{F}m<+\infty(\dim_{C}F=m+1)$ . Since any global holo-

morphic function on $F$ is constant unless $F$ is of finite order, $F$ is neither
holomorphically convex nor holomorphically separable. However $F$ is meromor-
phically separable because $F$ admits a projective algebraic compactification.
The reader should refer to [GR] about the detail of the above discussion.
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REMARK 5. The growth condition for the integral in Theorem is optimal
in the following sense:

Let $(M, p, ds_{M}^{2})$ be a real two dimensional model space(i.e., the metric
$ds_{M}^{2}$ is rotationally symmetric relative to the point $p$ of $M$ ) whose metric in
Polar coordinates centered at $P$ is written as $dsX=dr^{2}+f(r)^{2}d\theta^{2}$ . Then the
function $f:[0, +\infty)arrow[0, +\infty)$ satisfies that $f(O)=0,$ $f’(O)=1,$ $f(r)>0$ for $r>0$

and $f$“ $(r)=K(r)f(r)$ ($K(r)$ is called the radial curvature function). For a given
$\epsilon>1$ , we assume that $f$ is convex and $f(r)=r(\log r)^{\epsilon}$ outside a compact subset
$[0, b_{\epsilon}]$ , where $b_{\epsilon}>0$ is a constant depending on $\epsilon$ . The convexity of $f$ assures
nonpositive radial curvature. Setting $\Phi(x):=dist_{M}(p, x)^{2}$ , we obtain a smooth
exhaustion function on $M$. Then $\log\Phi$ is subharmonic on $M\backslash (p)$ with respect
to the complex structure determined by $ds2M$ (cf. [GW2], Proposition 2.24).

Hence $\tau:=\log(1+\Phi)$ is a strictly subharmonic exhaustion function on $M$ and

it is easily verified that $\int_{M(r)}dd_{c}\tau\sim\gamma^{28}$ for any $r>b_{\epsilon}$ and $M(r)=\{\tau<r\}$ (cf.

[WU2] $)$ . Since $\epsilon>1,$ $\int_{1}^{\infty}dr/r^{2\epsilon}<+\infty$ . On the other hand, $M$ has the conformal

type of the unit disk since $\int_{1}^{\infty}dr/f(r)<+\infty$ (cf. [GW2], Proposition 5.13).

Therefore $M$ admits many non-constant bounded holomorphic functions.
However in the case of Corollary 1 it is not clear whether the growth

condition for the function $n(A, r)$ is optimal or not. Nevertheless, it seems
natural to expect that the analyticity of $A$ in $C^{n}$ may imply a certain stronger
result than ours. Here we propose the following problem:

PROBLEM. Let $A\subset_{arrow}C^{n}$ be an irreducible (reduced) analytic subset of pure
dimension $m\geqq 1$ . Suppose

$\lim_{rarrow\infty}\frac{\log n(A,r)}{\log r}=0$

Then, does $A$ admit no non-constant bounded $holomorp/uc$ functions

1. Proof of Theorem.

We denote by $P_{n}^{*}$ the dual projective space of $P_{n}$ . We denote the homo-
geneous coordinates of $P_{n}$ (resp. $P_{n}^{*}$) by $\sigma=(\sigma_{0}$ : $\sigma_{1}$ : ... : $\sigma_{n})$ (resp. $\xi=(\xi^{0}$ : $\xi^{1}$ :

: $\xi^{n}$)). Then it is easily verified that a function $\Lambda(\sigma, \xi):=||\sigma||||\xi||/|\langle\sigma, \xi\rangle|$

$\geqq 1$ on $P_{n}\cross P_{n}^{*}$ ( $\langle a,$ $b\rangle=\Sigma_{i=0}^{n}a_{i}\overline{b}^{i}$ and $||a||=\sqrt{}\overline{\langle a,a\rangle}$) satisfies the following
properties:

(i) $\chi=dd_{c}\log\Lambda(\sigma, \xi)$ on $P_{n}\backslash Supp(\xi)$

for any $\xi\in P_{n}^{*}$ , where $\chi$ is the Fubini-Study form on $P_{n}$ ;
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(ii) $A:= \int_{\xi P_{n}^{*}}\in$ A $(\sigma, \xi)\wedge\chi*n$

is a positive constant not depending on $\sigma\in P_{n}$ , where $\chi*$ is the Fubini-Study
form on $P_{n}^{*}$ ;

(iii) There exists a positive constant $C_{*}$ not depending on $(\sigma, \xi)\in P_{n}\cross P_{n}^{*}$

such that
$|\partial_{\sigma}\log\Lambda(\sigma, \xi)|_{\chi}\leqq C_{*}\Lambda(\sigma, \xi)$

for any $\xi\in P_{n}^{*}$ and any $\sigma\in P_{n}\backslash Supp(\xi)$ .
Here $(\xi)$ is the hyperplane on $P_{n}$ defined by $\xi\in P_{n}^{*}$ .
First we consider a holomorphic map $f:Marrow P_{n}$ from $M$ to $P_{n}$ . Suppose

that $f$ is non-constant and there exists a subset $E$ of $P_{n}^{*}$ such that $E$ has
positive measure and the image of $f$ in $P_{n}$ does not intersect any hyperplane
contained in $E$ .

Since we may assume that $M$ is a Paracompact Hausdorff space, $M$ has a
partition of unity of class $C^{\infty}$ . Therefore there exists a smooth real $(1, 1)$ form
$\omega_{K}$ such that coefficients of $\omega_{K}$ are locally bounded around $S_{M}$ and that $\omega_{M}$

defines a smooth hermitian metric on $M_{O}=M\backslash S_{M}$ .
We set $\psi:=\log\Lambda$ . Since $\tau$ is an exhaustion function of class $C^{2}$ and

coefficients of $d_{c}f^{*}\psi$ A $\omega$ are continuous on $M$, there exists a measure zero set
$I_{1}\subset\tau(M)$ such that for any $r\in\tau(M)\backslash I_{1},$ $\partial M_{r}\cap M_{o}(\partial M_{r} :=\{\tau=r\})$ is a real hy-
persurface of class $C^{2}$ in $M_{o}$ and the following Stokes’ Theorem holds

$\int_{M(r)}dd_{c}f^{*}\psi$ A $\omega=\int_{\partial M_{\gamma}\cap M_{O}}d_{c}f^{*}\psi$ A $\omega$

(cf. [TU], VII. Integration Theorems).

Since $\partial M_{r}\cap M_{0}$ is a real hypersurface of class $C^{2}$ , we define its volume

element $dS_{r}$ by $dS_{r}:=*(d\tau/|d\tau|_{M_{0}})$ so that $A\omega_{M1M_{O}}/m!m=d\tau/|d\tau|_{M_{0}}\wedge dS_{r}$ at
every point of $\partial M_{r}\cap\lambda f_{0}$ . Here $*$ is the star operator relative to $\omega_{MIM_{O}}$ . On
$M_{o}$ , we can represent the form $\omega$ locally

$\omega=\sigma_{m-1}^{*}\Sigma\omega_{if}dz^{J_{i}}\Lambda d\overline{z}^{J_{j}}$

so that $\omega_{i\overline{j}}$ are locally bounded around $S_{M}$ . Here $\sigma_{k}^{*}=(\sqrt{-1}/2)(-1)^{k- 1}\sigma_{k-1}^{*}(k=$

$1,$ $\cdots$ , $m$ and $\sigma_{0}^{*}=1$ ), $J_{i}=(]_{1}, \cdots , J_{m-1}^{L}),$ $j_{1}<\cdots<j_{m-1}$ and $i\not\in J_{i}$ . For any $r\in$

$\tau(M)\backslash I_{1}$ , we define a function $h_{r}$ on $\partial M_{\gamma}\cap M_{o}$ by the following equation:

$h_{r}\lambda_{r}=d_{c}f^{*}\psi\wedge\omega$ and $\lambda_{r}=dS_{r}/|d\tau|_{M_{O}}$ on $\partial M_{\gamma}\cap M_{0}$ .

For any point $z\in\partial M_{r}\cap M_{0}$ , we can choose local coordinate systems $(z^{i})$ around
$z$ and $(w^{\alpha})$ around $w=f(z)$ so that $\omega_{M}(z)=(\sqrt{}\overline{-1}/2)\sum_{i=1}^{m}d_{Z^{i}}\wedge d\overline{z}^{i},$ $\omega(z)=$

$\sigma_{m-1}^{*}\Sigma_{i=1}^{m}\omega_{t7}(z)dz^{J_{i}}\wedge d\overline{z}^{J_{i}}$ , and $\chi(w)=\sqrt{-1}\Sigma_{\alpha=1}^{n}dw^{\alpha}Ad\overline{w}^{\alpha}$ . Since $\omega_{i\overline{t}}(z)\geqq 0$ and
$f(\partial M_{r})\cap Supp(\xi)=\emptyset$ for any $\xi\in E\subset P_{n}^{*}$ , we have by the property (i) and
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Schwarz’s inequality

$h_{r}(z)=m$ ! 2 ${\rm Re}\{\Sigma_{i=1}^{m}\Sigma_{\alpha=1}^{n}f_{i}^{\alpha}\partial_{\alpha}\psi(w, \xi)\tau_{f}\omega_{i7}\}(z)$

$\leqq f^{*}(|\partial_{\sigma}\psi(\sigma, \xi)|_{\chi})(z)\Psi_{r}(z)$

for $z\in\partial M_{r}\cap M_{0}$ , where $\Psi_{r}(z)$ $:=\sqrt{}\overline{*(d\tau\Lambda d_{c}\tau\Lambda\omega)*(dd_{c}f^{*}\psi A\omega)(z)}$ , defined on
$\partial M_{\gamma}\cap M_{o}$ . Since there is a measure zero set $I_{2}$ such that

$0 \leqq\frac{\partial}{\partial r}\int_{M(r)}dd_{c}f^{*}\psi$ A $\omega=\int_{\partial 1I_{\mathcal{T}}\cap M_{0}}*$ ( $dd_{c}f^{*}\psi$ A $\omega$) $\lambda_{r}<+\infty$

and

$0 \leqq\int_{\partial M_{T}\cap M_{0}}*(d\tau\Lambda d_{c}\tau\wedge\omega)\lambda_{\gamma}=\int_{\partial M_{r}\cap M_{O}}d_{c}\tau$ A $\omega$

$= \int_{M(\gamma)}dd_{c}\tau$ A $\omega<+\infty$

for any $r\in\tau(M)\backslash (I_{1}\cup I_{2})$ , by Schwarz’s inequality the function $\Psi_{r}$ is integrable
over $\partial M_{r}\cap M_{o}$ for every $r\in\tau(M)\backslash (I_{1}\cup I_{2})$ . Since $f^{*}(|\partial_{\sigma}\psi|_{\chi})$ is integrable on
$(\partial M_{r}\cap M_{0})\cross E$ and $E$ has positive measure, the properties (ii) and (iii) and
Fubini’s theorem imply

$\int_{M(r)}dd_{c}f^{*}\psi\wedge\omega\leqq C\int_{\partial M_{\gamma}\cap\lrcorner f_{O}}\Psi_{r}\lambda_{r}\leqq c\sqrt{\int_{M(r)}dd_{c}\tau\Lambda\omega\frac{\partial}{\partial r}\int_{M(\gamma)}dd_{c}f^{*}\psi}$A $\omega$ ,

where $C$ is a positive constant not depending on $r$ . Since $\omega\geqq 0$ on $M_{o}$ and
$\omega>0$ at least one point of $M_{o}$ , by the unique continuation theorem for holomor-

phic maps we have $u(r):= \int_{M(r)}dd_{c}f^{*}\psi\wedge\omega>0$ for all sufficiently large $r$ . Hence

by the assumption and the above inequality we have

$(*)$ $u(r)^{2} \leqq C’g(r)\frac{\partial}{\partial r}u(r)$

for any $r(\gg 0)\in\tau(M)\backslash (I_{1}\cup I_{2})$ , where $C’$ is a positive constant not depending
on $r$ .

The inequality $(*)$ implies that

$\int_{\tau_{0}}^{+\infty}\frac{dt}{g(t)}<+\infty$

for some $r_{0}>0$ . This contradicts the choice of $g(r)$ .
Next we consider a meromorphic map $h:Marrow P_{n}$ from $M$ to $P_{n}$ . Suppose

that $h$ is non-constant and there is a subset $E$ of $P_{n}^{*}$ such that $E$ has positive
measure and the image of $h$ does not intersect any hyperplane contained in $E$ .

Let $\Gamma_{h}cM\cross P_{n}$ be the graph of $h$ . Then the natural projection $q:\Gamma_{h}arrow$

$P_{n}$ is holomorphic and satisfies the same property as $h$ . However in view of
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the observation made in Remark 2 and the above discussion we have already
seen that Casorati-Weierstrass’ theorem holds for holomorphic maps from $\Gamma_{h}$

to $P_{n}$ . Hence $q$ is constant, and so is $h$ . Therefore Casorati-Weierstrass’
theorem holds for meromorphic maps from $M$ to $P_{n}$ .

TO show the latter assertion we have only to consider the integral $v(r):=$

$\int_{M(r)}dh\wedge d_{c}h\Lambda\omega$ for a smooth subharmonic function $h$ relative to $\omega$ . If $h$ is

non-constant, then by the assumption we can show the inequality $(*)$ for $v(r)$

similarly. The proof of Theorem is completed.

REMARK 6. Let $f:Marrow P_{n}$ be a meromorphic map from an irreducible
reduced analytic space $M$ to $P_{n}$ . If the image of $f$ omits a hyperplane $H\subset$

$P_{n}$ , then the image $f(x)$ of any point $x$ of $M$ consists only one point because
$f(x)$ is a connected compact analytic subset of $P_{n}\backslash H$ and $P_{n}\backslash H$ is Stein. This
fact implies that the meromorphic map $f$ is already holomorphic if $M$ is a
normal analytic space. However this argument does not hold generally if $M$

is not normal (cf. [NO], Theorems (4.4.1), (4.4.6), (4.4.8). The results there
are for complex manifolds, but they can be applied to normal analytic spaces;
see [F1], Appendix).

2. Proof of Corollary 2.

Let $\phi$ be the distance function from the point $0$ of $M$ relative to $ds_{M}^{2}$ .
Then by Hessian comparison theorem for $\Phi^{2}$ we can verify the following facts:
(2.1) $\tau:=(\log(1+\Phi^{2}))^{1+2\epsilon}$ is strictly plurisubharmonic on $M$ (cf. [TA2], Proof

of Theorem 3, (2.34) $)$ ;

(2.2) $\int_{\{\Phi s\}}<\wedge dd_{c}\Phi^{2}m\leqq C_{1}s^{2m}(\log(1+s))^{2m}$ for any $s>0$ , where $C_{1}$ is a positive

constant not depending on $s$ (cf. [TA2], Proof of Theorem 2.4, (2.18)

and (2.19) $)$ .
Hence we have the following estimate:

(2.3) $\int_{t\tau<r\}}\Lambda dd_{c}\tau m\leqq C_{2.\epsilon}r^{4m\epsilon/(1+2\epsilon)}$

for any $r\gg O$ , where $C_{2}$ . is a positive constant not depending on $r$ .
Since $0<4m\epsilon<1$ , Casorati-Weierstrass’ theorem for the triple $(M,$ $\tau,$

$m_{\wedge^{-1}dd_{c}\tau)}$

follows from (2.3).

Next we show the latter assertion. Let $h$ be a non-constant, non-negative,
plurisubharmonic function on $M$ satisfying

(2.4) $\lim_{rarrow\infty}\sup\frac{m(h,r)}{(\log s)^{\delta}}<+\infty$ ,

where $m(h, s)= \sup_{z\in t\Phi<}}h(z)$ .
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By (2.3) and (2.4), there exist $r_{0}>0$ and $C_{3}>0$ not depending on $r$ such
that

(2.5) $m(h, r)^{2} \int_{M(r)}\wedge dd_{c}\tau m\leqq C_{3}r$

for $r>r_{0}$ , where $M(r)=\{\tau<r\}$ and $m(h, r)= \sup_{w\in M(r)}h(w)$ .
Since $\tau$ is a smooth strictly plurisubharmonic exhaustion function on $M,$ $M$

is a Stein manifold. Hence there exists a proper embedding $\zeta:M\subset_{arrow}C^{2m+1}$ of
$M$ into the $2m+1$-dimensional complex vector space $C^{2m+1}$ . By identifying $M$

with the image $\zeta(M)$ , we may consider that $M$ is a closed submanifold of $C^{2m+1}$ .
Then there exist a neighborhood $V$ of $M$ in $C^{2m+1}$ and a holomorphic retrac-
tion $\pi$ : $Varrow M$ (cf. [GUR], Chap. VII, $C$ and Chap. VIII, C). Since the pull
back $h^{*}$ of $h$ by $\pi$ is plurisubharmonic on $V\subset C^{2m+1}$ , we can apply a standard
smoothing argument to $h^{*}$ . Hence for a sequence $\{r_{j}\}_{j\geqq 0}$ of Positive numbers
with $r_{j}=2^{j}r_{0}(j\geqq 1)$ there is a decreasing sequence $\{h_{j}\}_{j\geqq 1}$ of smooth functions
on $M$ such that

(2.6) $h_{j}$ is plurisubharmonic on $M(r_{j})$

(2.7) $\{h_{j}\}_{j\geqq 1}$ converges to $h$ on $\Lambda l(r_{i})$

(2.8) $m(h_{j}, r_{i})\leqq 2m(h, r_{i})$ for all $j\geqq i$ .
We set

$\omega:=m_{\wedge^{-1}dd_{c}\tau}$
$u(h_{j}, r):= \int_{M(r)}dd_{c}h_{j}^{2}\wedge\omega$ .

Since $h_{j}\geqq h\geqq 0$ , by (2.6) $h_{j}^{2}$ is plurisubharmonic on $M(r_{i})$ for all $j\geqq i$ , so that
$u(h_{j}, r)$ is non-negative for any $r\in(r_{0}, r_{i}]$ . By Stokes’ theorem, (2.5), (2.6)

and (2.8) we have the following inequality similarly to $(*)$ in the proof of
Theorem:

(2.9) $u(h_{j}, r)^{2} \leqq C_{4}r\frac{\partial}{\partial r}u(h_{j}, r)$

for any $r\in(r_{0}, r_{i}]$ and illl $i$ , where $C_{4}$ is a positive constant not depending on
$r$ and $i$ . Now we may assume that for any fixed $i$ , there is an infinite number
of integers $j\geqq 2i$ so that $u(h_{j}, r_{i})>0$ . Otherwise, for every $i$ there would be
an integer $N(i)\geqq 2i$ such that $u(h_{N(i)}, r_{i})=0;i.e.,$ $h_{N(i)}$ is constant on $M(r_{i})$ .
By (2.7) this implies that $h$ is constant on all $M(r_{i})$ and hence on $M$. This is
a contradiction. Thus, if necessary, taking a subsequence of $\{h_{j}\}$ , we may
assume that $u(h_{j}, r_{i})>0$ for any $i$ and $j$ with $j\geqq 2i$ . Since $u(h_{j}, r)\geqq u(h_{j}, r_{i})$

for any $r\in[r_{i}, r_{2i}]$ , integrating the inequality (2.9) we have

$u(h_{j}, r_{i}) \leqq\frac{C_{5}}{i}$
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for any $J\geqq 2i$ , where $C_{5}$ is a positive constant not depending on $i$ and $J$ . Hence
by (2.6) we have

(2.10) $\lim_{iarrow\infty}u(h_{2i}, r_{k})=0$ for any $k\geqq 1$ .

On the other hand, $h^{2}$ is also plurisubharmonic on $M$ since $h$ is a non-negative
plurisubharmonic function on $M$. Hence $h^{2}$ is integrable on every $M(r)$ and
$h_{2j}^{2}$ converges to $h^{2}$ on every $M(r_{2i})$ . Moreover we may assume that $\{h_{2j}^{2}\}$ is
uniformly bounded on $M(r_{2i})$ because $h_{2j}$ decreasingly converges to $h$ on $M(r_{2i})$ .
Therefore, if necessary, taking a subsequence of $\{h_{2j}\}$ , we conclude that $h_{2j}^{2}$

converges to $h^{2}$ in $L^{1}(M(r_{i}), \wedge dd_{c}\tau)m$ . Therefore by (2.10) we have

$\int_{M}h^{2}dd_{c}\theta\Lambda\omega=\lim_{iarrow\infty}\int_{M}h_{2i}^{2}dd_{C}\theta\Lambda\omega$

$= \lim_{iarrow\infty}-\int_{M}\theta dd_{c}h_{2i}^{2}\wedge\omega=0$

for any smooth function $\theta$ with compact support on $M$.
Since $dd_{c}\tau$ gives a K\"ahler metric on $M$ by (2.1), it follows that $\Delta_{\tau}h^{2}\equiv 0$ in

the sense of distribution, where $\Delta_{\tau}$ is the Laplacian defined by $dd_{c}\tau$ . Hence $h^{2}$

is smooth on $M$ by Weyl’s lemma. Since we may assume $\inf_{z\in M}h(z)>0$ without
loss of generality, it follows that $h$ is a smooth plurisubharmonic function on
$M$ with $\Delta_{\tau}h^{2}=2h\Delta_{\tau}h+2|dh|_{\tau}^{2}\equiv 0$ on $M$. Therefore $h$ is a constant. This is a
contradiction.
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