Modified analytic trivialization via weighted blowing up

By Toshizumi FUKUI

(Received July 31, 1991)

We consider the classification of real function-germs. It is well-known that there are modulus near non-simple germ for the differentiable equivalence. For topological equivalence it does not cause modulus, but seems to be too weak to provide a workable theory. T.-C. Kuo introduced the notion of the modified analytic trivialization (MAT) for a family of function-germs in [4], and generalized it naturally $[5,6]$. (We give the definition of it in more general form in § 1 , and also call it MAT.) The associated equivalence relation preserves computability, but is slightly weaker than bianalyticity and much stronger than homeomorphism. He showed a finite classification theorem for isolated singularities in $[5,6]$. The next problem to be considered would be to describe MAT constant strata explicitly or what kind of singularities form a modified analytic equivalence class? Several authors have studied this problem, see e.g. [4,2,7]. In this paper we show a generalization of Kuo's theorem in [4], establishing MAT for a class of singularities in \boldsymbol{R}^{n}. As a consequence, we obtain that the Briançon-Speder family, for example, admits a MAT. In [3], S. Koike showed that the Briançon-Speder family does not preserve "tangency of arcs." Thus MAT does not preserve "tangency of arcs," as S. Koike conjectured before.

The author would like to thank Professor S. Koike for helpful advices.

§ 1. Definition.

Let $\pi: X \rightarrow \boldsymbol{R}^{n}$ be a real-analytic proper modification from a real space X to \boldsymbol{R}^{n}. Assume that there is a complexification of π, that is a complex-analytic proper modification. Let I be an open cube in \boldsymbol{R}^{m}, containing the origin 0 , and $f_{t}(x)=F(x ; t)$ a real analytic family of real analytic functions, defined in a neighborhood of $\{0\} \times I$ in $\boldsymbol{R}^{n} \times I$, with parameters $t \in I$. We say that F admits a modified analytic trivialization (MAT) along I via π if there is an analytic family of analytic isomorphisms H_{\imath} of neighborhoods of $\pi^{-1}(0)$ in X, which

[^0]induces a family of homeomorphisms h_{t} of neighborhoods of 0 in \boldsymbol{R}^{n} such that
$$
f_{t^{\circ}} h_{t}(x)=f_{0}(x), \quad \text { for } t \in I .
$$

This is a natural generalization of Kuo's original MAT in [4].

§ 2. Theorem.

Let $a=\left(a_{1}, \cdots, a_{n}\right)$ be an n-tuple of positive integers. Assume that the greatest common divisor of a_{i} 's is 1 . We can write

$$
F(x ; t)=H_{k}(x ; t)+H_{k+1}(x ; t)+\cdots, \quad H_{k} \not \equiv 0,
$$

where $H_{j}(x ; t)=\Sigma a_{\alpha}(t) x^{\alpha}, a_{1} \alpha_{1}+\cdots+a_{n} \alpha_{n}=j, \alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$.
Theorem. Suppose that the weighted initial form $H_{k}(x ; t)$ of $F(x ; t)$ satisfies the following condition (\#) for $t \in I$.

$$
\left\{x \in \boldsymbol{R}^{n}: x_{i}^{a_{i}-1} \frac{\partial H_{k}}{\partial x_{i}}(x ; t)=0 \quad \text { for } i=1, \cdots, n\right\}=\{0\} .
$$

Then F admits a MAT along I via the real weighted blowing up with weight a.
We give the definition of the real weighted blowing up in the next section. When $a=(1, \cdots, 1)$, this statement is basically the same as the theorem in $\S 3$ in [4], although our X need not be smooth in general. Remember that, in [2, 7], it is required that the following supposition that the Newton polygon $\Gamma_{+}\left(f_{t}\right)$ is independent on t. But in our theorem the Newton polygon $\Gamma_{+}\left(f_{t}\right)$ may depend on t.

Example 1. $F(x ; t)=x_{3}^{5}+t x_{2}^{6} x_{3}+x_{1} x_{2}^{7}+x_{1}^{15}$ (Briançon-Speder [1]). This is a family of weighted homogeneous polynomials with weight ($1,2,3$). Since $\left\{\partial F / \partial x_{1}=x_{2} \partial F / \partial x_{2}=x_{3}^{2} \partial F / \partial x_{3}=0\right\}=\{0\}$ for $t \in I, F$ admits a MAT along I via the real weighted blowing up with weight (1,2,3). Here I is an open interval in \boldsymbol{R}, not containing $-15^{\frac{1}{7}} \cdot\left(\frac{7}{2}\right)^{\frac{4}{5}} / 3$.

Example 2. $F(x ; t)=x_{3}^{3}+t x_{2}^{\alpha} x_{3}+x_{1} x_{2}^{\beta}+x_{1}^{3 \alpha}$ (Briançon-Speder [1]), where α is an odd number with $\alpha \geqq 3$, and $2 \beta+1=3 \alpha$. Similarly we obtain that F admits a MAT via the real weighted blowing up with weight (1,2, α). Here I is an open interval in \boldsymbol{R}, such that $F(-, t)$ defines an isolated singularities at 0 for any $t \in I$.

EXAMPLE 3. $\quad F(x ; t)=x_{3}\left(x_{1}^{4}+x_{2}^{6}+x_{3}^{12}\right)+t x_{2}^{7}$. Since $\partial H_{k} / \partial x_{3}=x_{1}^{4}+x_{2}^{6}+13 x_{3}^{12}$, F satisfies our condition (\#) for $a=(3,2,1)$. Thus F admit a MAT via the
real weighted blowing up.
Example 4. $F(x ; t)=x_{1}^{4}+2 t x_{1}^{2} x_{2}^{4}+x_{2}^{8}$ admit a MAT along I via the real weighted blowing up with weight $(2,1)$, where I is an open interval in \boldsymbol{R}, not containing -1 .

§ 3. The real weighted blowing up.

For an n-tuple $a=\left(a_{1}, \cdots, a_{n}\right)$ of positive integers, define a map φ of \boldsymbol{C}^{n} to C^{n} by

$$
\varphi: \boldsymbol{C}^{n} \ni\left(z_{1}, \cdots, z_{n}\right) \mapsto\left(x_{1}, \cdots, x_{n}\right)=\left(z_{1}^{\alpha_{1}}, \cdots, z_{n}^{\alpha_{n}}\right) \in \boldsymbol{C}^{n} .
$$

Let $\tilde{\omega}: M \rightarrow \boldsymbol{C}^{n}$ be the blowing up at $\{0\}$, i.e. $M=\left\{\left(z_{1}, \cdots, z_{n}\right) \times\left[\zeta_{1}: \cdots: \zeta_{n}\right]\right.$ $\in \boldsymbol{C}^{n} \times \boldsymbol{C} P^{n-1}: z_{i} \zeta_{j}=z_{j} \zeta_{i}$ for $\left.1 \leqq i<j \leqq n\right\}$, and π is the restriction of the projection $\boldsymbol{C}^{n} \times \boldsymbol{C} P^{n-1} \rightarrow \boldsymbol{C}^{n}$. Let G be the direct product of the groups of a_{i}-th roots of the unity for $i=1, \cdots, n$. The group G acts on M by $g \cdot\left(\left(z_{1}, \cdots, z_{n}\right)\right.$ $\left.\times\left[\zeta_{1}: \cdots: \zeta_{n}\right]\right)=\left(g_{1} z_{1}, \cdots, g_{n} z_{n}\right) \times\left[g_{1} \zeta_{1}: \cdots: g_{n} \zeta_{n}\right]$ for $g=\left(g_{1}, \cdots, g_{n}\right) \in G$. Then there is a natural map of $Y:=M / G$ to \boldsymbol{C}^{n}. This is an isomorphism over $\boldsymbol{C}^{n}-\{0\}$, and the inverse image of 0 is isomorphic to the weighted projective space with weight a. We call it the (complex) weighted blowing up with weight a.

Next we take the "real part" of the weighted blowing up $Y \rightarrow \boldsymbol{C}^{n}$. Let S be the subset of \boldsymbol{C}^{n} such that the image of a point of S by φ is real, and \tilde{S} the proper transform of S by $\tilde{\omega}$. Since G acts on \tilde{S} invariantly, we obtain a real analytic map of the quotient space $X:=\tilde{S} / G$ to \boldsymbol{R}^{n}. We call $X \rightarrow \boldsymbol{R}^{n}$ the real weighted blowing up with weight a. Since the greatest common divisor of a_{1}, \cdots, a_{n} is $1, \boldsymbol{R}^{n}-\{0\}$ is dense in X. It is easy to see that X is a real analytic variety.

§4. Proof.

Let z_{1}, \cdots, z_{n} be a complex coordinate system of \boldsymbol{C}^{n}. Let u_{i}, v_{i} be real coordinate functions with $z_{i}=u_{i}+\sqrt{-1} v_{i}$. We identify the real tangent space of \boldsymbol{C}^{n} with the holomorphic tangent space of \boldsymbol{C}^{n} using the map defined by

$$
\frac{\partial}{\partial u_{i}} \mapsto \frac{\partial}{\partial z_{i}} \quad \text { and } \quad \frac{\partial}{\partial v_{i}} \mapsto \sqrt{-1} \frac{\partial}{\partial z_{i}} .
$$

Then the usual euclid metric is given by

$$
\left\langle\sum_{i} \alpha_{i} \frac{\partial}{\partial z_{i}}, \sum_{i} \beta_{i} \frac{\partial}{\partial z_{i}}\right\rangle=\operatorname{Re} \sum_{i} \alpha_{i} \bar{\beta}_{i} .
$$

It is easy to see that
grad $\operatorname{Re} f=\sum_{i} \overline{\frac{\partial f}{\partial z_{i}}} \cdot \frac{\partial}{\partial z_{i}}, \quad$ and $\operatorname{grad} \operatorname{Im} f=\sqrt{-1} \operatorname{grad} \operatorname{Re} f$,
for a holomorphic function $f=f(z)$. Thus $\sum_{i} \alpha_{i} \frac{\partial}{\partial z_{i}}$ is tangent to each level surface of f if $\sum_{i} \alpha_{i} \frac{\partial f}{\partial z_{i}}=0$.

We return to our situation: $F(x, t): \boldsymbol{R}^{n} \times I \rightarrow \boldsymbol{R}$. First we consider the case for $m=1$. Using the coordinate $x, t=t_{1}$, we consider the complexification $F^{c}: \boldsymbol{C}^{n} \times \tilde{I} \rightarrow \boldsymbol{C}$ of $F: \boldsymbol{R}^{n} \times I \rightarrow \boldsymbol{R}$, where $\tilde{I} \subset \boldsymbol{C}$ is a small domain with $\tilde{I} \cap \boldsymbol{R}=I$. Put $\tilde{F}:=F^{c}{ }_{\circ}\left(\varphi \times i d_{I}\right)$, where $i d_{I}$ is the identity map of I. Define a real vector field V by

$$
V=-\frac{\sum_{i=1}^{n} \frac{\partial \tilde{F}}{\partial t} \cdot \frac{\overline{\partial \widetilde{F}}}{\partial z_{i}} \cdot \frac{\partial}{\partial z_{i}}}{\left|\frac{\partial \widetilde{F}}{\partial z_{1}}\right|^{2}+\cdots+\left|\frac{\partial \widetilde{F}}{\partial z_{n}}\right|^{2}}+\frac{\partial}{\partial t}
$$

where - is the complex conjugation. This is tangent to each level surface of \tilde{F}, whenever V is defined. For $s=1, \cdots, n$, the functions $w_{s}=z_{s}$ and $w_{j}=\zeta_{j} / \zeta_{s}$, $(j \neq s)$ form a coordinate system on $\zeta_{s} \neq 0$ in M, and $\widetilde{\omega}$ is expressed as $z_{s}=w_{s}$, $z_{i}=w_{s} w_{i}, \quad i \neq s$. Then $\partial / \partial z_{s}=\partial / \partial w_{s}-\sum_{j \neq s}\left(w_{j} / w_{s}\right) \partial / \partial w_{j}, \partial / \partial z_{i}=\left(1 / w_{s}\right) \partial / \partial w_{i}, \quad i \neq s$. Note that $\partial \tilde{F} / \partial t$ and $\partial \tilde{F} / \partial z_{i}(1 \leqq i \leqq n)$ are of order k and $k-1$ in z respectively; their lifts are therefore divisible by w_{s}^{k} and w_{s}^{k-1} respectively. Now observe that the denominator of z_{i}-component of V is equal to

$$
\sum_{j=1}^{n} a_{j}^{2}\left|z_{j}\right|^{2 a_{j}-2}\left|\hat{\sigma} F / \partial x_{j}\left(z_{1}^{a_{1}}, \cdots, z_{n}^{a_{n}} ; t\right)\right|^{2}
$$

Note that it is G-invariant. Its lift is equal to $w_{s}^{2 k-2} U(w ; t)$, where U is defined and analytic in a neighborhood of $w_{s}=0$; and U is positive in some neighborhood of ($\left.\tilde{\omega}^{-1}(0) \cap \tilde{S}\right) \times I$ in $M \times \tilde{I}$ because of (\#). Thus V has a real analytic lift \tilde{V} there expressed in the form

$$
\tilde{V}=w_{s} V_{s}(w ; t) \frac{\partial}{\partial w_{s}}+\sum_{j \neq s} V_{j}(w ; t) \frac{\partial}{\partial w_{j}}+\frac{\partial}{\partial t},
$$

where V_{1}, \cdots, V_{n} are real analytic near $\left(\tilde{\omega}^{-1}(0) \cap \tilde{S}\right) \times I$. The coefficient of $\partial / \partial w_{s}$ vanishes on $\left\{w_{s}=0\right\}=\left(\tilde{\omega}^{-1}(0) \times I\right) \cap\left\{\zeta_{s} \neq 0\right\}$.

Note that the numerator of the first term of V equals

$$
\sum_{i=1}^{n} \frac{\partial F}{\partial t}\left(z_{1}^{a_{1}}, \cdots, z_{n}^{a_{n}} ; t\right) \cdot a_{i} \frac{\overline{\partial F}}{\frac{\partial x_{i}}{}}\left(z_{1}^{a_{1}}, \cdots, z_{n}^{a_{n}} ; t\right)\left(\bar{z}_{i}^{a_{i}-1} \frac{\hat{o}}{\hat{\partial} z_{i}}\right) .
$$

It is easy to verify that

$$
\bar{z}_{i}^{a_{i-1}^{-1}} \frac{\partial}{\partial z_{i}}=r_{i}^{a_{i}-1} \cdot \cos a_{i} \theta_{i} \cdot \frac{\partial}{\partial r_{i}}+r^{a_{i}-2} \cdot \sin a_{i} \theta_{i} \cdot \frac{\partial}{\partial \theta_{i}}
$$

where $z_{i}=r_{i} e^{\theta_{i} \sqrt{-1}}$; thus this is tangent to S, and G-equivaliant. Therefore \tilde{V} is tangent to \tilde{S}, and a G-equivaliant vector field. Then the trajectory of \tilde{V} gives analytic isomorphisms of $X=\widetilde{S} / G$. By our construction these are the desired ones.

In the case for $m \geqq 2$, an argument similar to that in $\S 3$ in [4] works; and we omit the details.

§ 5. Problems.

1. Can we replace the condition (\#) in Theorem with the following condition (4)?
(9): H_{k} defines an isolated singularity at $\{0\}$.
2. Find a modified analytic invariant. The Milnor number $\mu(f)\left(:=\operatorname{dim}_{R} \boldsymbol{R}\{x\}\right.$ $\left./\left(\partial f / \partial x_{1}, \cdots, \partial f / \partial x_{n}\right)\right)$ is not such an invariant. For example, $f_{t}=\left(x^{2}+y^{2}\right)^{2}$ $+t x^{10}+x^{11}$. How about the Lojasiewicz exponent ($:=\min \left\{\alpha: \exists C,|\operatorname{grad} f| \geqq C|x|^{\alpha}\right.$ near 0$\}$)?

References

[1] J. Briançon and J. Speder, La trivialté topologique n'implique pas les conditions de Whitney, C. R. Acad. Sci. Paris, Ser. A, 280 (1975), 365-367.
[2] T. Fukui and E. Yoshinaga, The modified analytic trivialization of family of real analytic functions, Invent. Math., 82 (1985), 467-477.
[3] S. Koike, On strong C^{0}-equivalence of real analytic functions, preprint.
[4] T.-C. Kuo, The modified analytic trivialization of singularities, J. Math. Soc. Japan, 32 (1980), 605-614.
[5] T.-C. Kuo, Une classification des singularités réelles, C.R. Acad. Sci. Paris, Ser. A, 288 (1979), 805-812.
[6] T.-C. Kuo, On classification of real singularities, Invent. Math., 82 (1985), 257-262.
[7] E. Yoshinaga, The modified analytic trivialization of real analytic families via the blowing-ups, J. Math. Soc. Japan, 40 (1988), 161-179.

Toshizumi Fukui
Department of General Education Nagano National College of Technology
716 Tokuma
Nagano 381
Japan

[^0]: This work was partly supported by Grand-in-Aid for encouragement of young scientists No. 02740060.

