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Introduction.

Greither and Harrison [0] defined finite cogalois extensions of fields and
established for such an extension K/k a 1-1 correspondence (‘cogalois corre-
spondence’) between the subgroups of (K*/k*),, and all the intermediate fields
of K/k, where (K*/k*)r denotes the full torsion part of K*/k*. In order to
extend the results in [0] to the infinite extensions of fields and to establish the
local version of [0], we grasp the notion of a strongly group-graded extensions
of fields as follows. Let K/k be a (possibly infinite) extension of fields. KQK
has a natural K-coring structure, whose group-likes Gr (KQK) forms a group
isomorphic to K*/k*, where ®=,. For a subgroup G<K*/k*=Gr(KQK),
the natural K-algebra map

@: K[G] — KQK

is induced from the inclusion Gc.the units in KQK, where K[G] denotes the
group K-algebra. The injectivity of @ is none other than the left (or right)
K-linear independence of G in KQK. We say K/k to be strongly G-graded, if
@ is bijective. In this case G turns out to be torsion and K/k a radical exten-
sion (1.1.3).

In Section 1 we give basic definitions and results on strongly graded exten-
sions, corings and Galois cohomology.

Section 2 is the main part of the paper. For a fixed prime p#ch.k, K/k
is called p-cogalois (resp. cogalois), if it is a strongly (K*/k*)p~-(resp. (K*/k™)tor-)
graded extension, where (K*/k*)p= is the p-primary part of (K*/k*)r. Such
extensions are necessarily algebraically separable. We reproduce Kneser’s theo-
rem (2.1.3), which present a criterion for a given G<(k}/k*).or be linearly in-
dependent, where k, is the algebraically separable closure of k. We show a
Kummer type theorem for p-cogalois extensions (2.2.3) and local and global
cogalois correspondence theorems (2.2.4), (2.3.3).

In Section 3 we show a Hopf-Galois correspondence for division k-algebras
which generalize the result on strongly graded extensions in Section 1.

Throughout the paper we fix a base field 2 and write ®=),, ch. k=the
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characteristic of 2. For a prime p#ch. 2, we denote by {,» (n=N) a primitive
p™-th root of 1 and use the symbol 7 for {,. Let ( )* denote the units-functor,
hence k*=k—{0}. Let R[G] denote the group k-algebra over a group G.

1. Strongly graded extensions of fields.

In this section we fix an extension of fields K/k. We denote by (K*/2*)tor
the full torsion part of K*/k*, which is denoted by Cog(K/k) in [0].

1.1. Let I(K/k) denote the set of 1-dimensional k-subspaces of K, which
forms a group with respect to the 'multiplication in K. We always identify
I(K/k) with K*/k* via

(1.1.1) K*/k* = I(K/k), xk*—>kx.

For an element g K*/k*=I(K/k) we write typically by u, (K*) a repre-
sentative of ge K*/k*, or a k-basis of g=I(K/k).

1.1.2. Let G<K*/k* be a subgroup. We have a natural k-linear map
(1.1.2.a) 0. Qhu,— K,

geG
which is induced from the inclusions ku,C. K. Let kCECK be an intermediate
field and put H=GN(E*/k*). We can view naturally as G/H<K*/E*. Take
a transversal 7 of H in G. Since G=HXT as sets, (1.1.2.a) can be viewed to
decompose as
(1.1.2.b) D kup, uy)—> PFEu;,— K,

heH, el teT

where the first map is obtained by applying @.cr(—) to the @-map for H and
the second is the ¢-map for G/H.

1.1.3. Let K=@,.cK, be a G-graded k-algebra with G a certain group,
where K, denotes the g-component. Clearly K, is a subfield of K containing k.
Moreover, for a normal subgroup H<|G, Ky=@renK: isa G-graded subfield of K,
by which we mean a subfield, as well as a G-graded k-subalgebra, of K. This
holds true, since K is naturally G/H-graded with Ky the neutral component.

PROPOSITION. Let K be as above and assume K,=k. The following are
equivalent :

(@) K is strongly G-graded in the sense of [4, p. 15], that is, KK, 1=k
for all geG,

(b) G={geG| K,#0},

() dimyK,=1 for all g=G.
Moreover, if these equivalent conditions hold, then G is an abelian torsion group
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and G can be viewed to be a subgroup of I(K/k) via G—I(K/k), g—K,, so that
K/k is a radical extension.

PRrRoOF. Since 0#x<K, implies x'=K,-:, we get the equivalence (a)-(c)
(see [4, 1.4.5, p. 40]). Suppose (a)-(c) hold. By (c) we can view G<I(K/k).
If geG is torsion-free and K,=ku, then K ,,=@.czku", a subfield of K, is
isomorphic to the group k-algebra k[ Z], which is a contradiction. Hence G is
torsion. Q.E.D.

In virtue of we may define as follows.

1.1.4. DEFINITION. Let G<(K*/k*)ior. The extension K/k is said to be
strongly G-graded, if the ¢-map (1.1.2.2) for G is bijective.

1.1.5. PROPOSITION. Let G<(K*/k*)or and K=Pccku, be a strongly G-
graded extension of k.
(1) The subgroups H<G and the G-graded subfields ECK correspond bijec-
tively via '
H—>Ky; and E+——>GN(E*/kY),
where
(1.1.6) Ky= Pku,.

heH

(2) Let kCECK be an intermediate field and put H=GN(E*/k*). Then
the following are equivalent:
(@) FE is G-graded subfield of K,
(b) E/k is strongly H-graded,
(¢) K/E is strongly G/H-graded.

PrROOF. We can prove (1) directly. We show (2). From (1) we obtain the
equivalence (a)=(b). The equivalence (b)=(c) follows from (1.1.2.b), wherein
the composition is bijective in the present case. If (b) holds, then the first map
in (1.1.2.b) is bijective, hence so is the second, i.e., (c) holds. Similarly (c)=(b).

Q.E.D.

1.2. A K-coring is a K-bimodule € together with K-bimodule maps A: C—
C®xC and ¢: C— K satisfying coassociativity and left and right counit condi-
tions [7]. A group-like in a K-coring C is an element g&C satisfying A(g)=
g®xg, e(g)=1. We denote by Gr(C) the set of group-likes in C.

The only K-coring we deal with in Sections 1 and 2 is KQK, which has
the natural K-bimodule structure and the following K-coring structure [7, Ex-
ample 1.2, p. 393]:

A: KQK — (KQK)IQKRK) = KQKQK,  Ax®Qy) = xQ1Qy,
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e: KK — K, e(x®y) = xy.
The k-algebra structure on KQK makes Gr(K®K) a monoid, indeed a group.

PROPOSITION. There is an isomorphism of groups:

(1.2.1) K*/k* = Gr(KQK), x> x7'Rx .

This is a direct consequence of [8, Lemma 2.5b, b)]. We often identify
these groups.

For a subgroup G<Gr(K®K), the natural K-algebra map
(1.2.2) ?: K[G] — KQK

is induced from the inclusion G (KR K)*, where KQK is viewed as a K-algebra
via K=KQRK, x—xQ1.

1.3. Let K/k be a (possibly infinite) Galois extension with ¢=Gal(K/k).
The natural K-algebra map

(1.3.1) KQK _~,Map/g, K), xQy+——>F—x1())
induces the isomorphism of groups:
(1.3.2) K*/k* = Gr(KQK) = ZXg, K*),

where Map.(2, K) denotes the K-algebra of continuous maps ¢—K and Zi(g, K*)
denotes the group of standard continuous 1-cocycles ¢—K*. Especially when ¢
is finite cyclic with a generator y=¢ fixed, yields Hilbert theorem 90:

(1.3.3) K"/kx__"_“_,Ker(NK/k: KX—*kx), xk* F—ax“T(x),
where Nk, denotes the norm map (see, e.g., [1, 6.8, p. 239]).

REMARK. By taking the torsion part in[(1.3.2), we get the isomorphism of
groups
(Kx/kx)tor = Zé(g’ ﬂ(K)) ’

where u(K) denotes the group of roots of 1 in K. Hence, if K/ is finite Galois
and if p(K) is finite, then (K*/k*). is a finite group. This yields [0, Theorem,
p. 2697.

14. Let G<KK*/k*=Gr(KQK) be a subgroup.

LEMMA AND DEFINITION. The ¢-map (1.1.2.2) for G is injective (resp. sur-
jective), if and only if the @-map (1.2.2) for G is injective (vesp. surjective).

When ¢ (or @) is injective, equivalently when {u,},cs are k-linearly inde-
pendent in K, we shall say that G is linearly independent.
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PrOOF. The assertion follows from the following commutative diagram:

D Ku, K

g8EG ®¢
| ”)\ KQK

Kicgl1~ 9

where the vertical map is the K-linear map determined by u —u, (uz'Qu,),
g< G, which is bijective. Q.E.D.

1.4.1. Let p#ch.k be a prime and assume that {,&%. Then <{,k*><
k(Z,)*/k* is not linearly independent, since the representatives 1, {,, {3, ---, {B7°
are k-linearly dependent. Similarly, if ch. k2 and /& £, {(1+7)k*) is not linearly
independent.

1.4.2. Suppose that K/k is an abelian extension with ¢=Gal(K/k). The
isomorphism preserves the action of ¢, where ¢ acts on KRK diagonally
and on Map,(&, K) via (7 /)7")=r(fG") for 7, 7’4, f=Map,(4, K). By taking
G-invariants in we get

Gr (KQK)¢ = Home, group(8, £*) C Homgoup(@, K*).

Since Homg,oup(4, K*) is K-linearly independent by Artin’s theorem [1, 5.4,
Theorem 3, p. 184], it follows that Gr(K®K)¢ is linearly independent. For
example, if K/k is an n-Kummer extension for some n<N, then the n-torsion
part of K*/k* is linearly independent, as is well known.

2. Local and global cogalois theory.

Throughout this section we shall make use of the following notation. De-
note by k, the algebraically separable closure of 2. Let p be a prime and n=N.
Denote by p.(K) the group of n-th roots of 1 in K and put ,upw(K):UT/JpT(K).
For k*<M<K?*, denote by

(M/k*)n, (M/R*),» and (M/k*)ior

the n-torsion part, the p-primary part and the full torsion part of M/k*, respec-
tively. Hence (M/kx)pm——-Ur(M/k")pT and (M/kX)to,:@p;prime(M/kx)pw.

2.1. A criterion for linear independence. We shall show a criterion (2.1.3)
for a given G<(k;/k*)ir be linearly independent, which is essentially due to
Kneser [3]. A closer observation will be made in (2.1.2) in case that G<
(k;/k*)pm for some prime p+ch. k.
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2.1.1. LEMMA. Let p be a prime such that p+ch.k and let K=k(x) with
xPe kX —Rp*P,

(1) Either if p is odd or if p=2 and iExk*, then [K: k]=p and (K"‘/le")pm
={xk™>.

(2) If p=2 and i=xk*, then K=k() and (K*/k*),=<L(1£)R*).

Proor. We use Hilbert theorem 90 repeatedly.

(1) Case p=2 and i¢&xk*. Clearly [K: k]=2. Since (K*/k*),=<xk™> by
i¢& K—F and consequently ;& Ker Nk, 5o that (K*/k*),e=<{xk*) by

Case p is odd. Put E=k({,) and L=E(x)=k(Cp, x). (E*/k*)p=<Lpk*> by
This and the hypothesis xP¢&k£*? imply that x&E. (If x<E, then
xel,k*, so that x?k*?.) Hence L/FE is a p-Kummer extension with [L: E]
=p. Since [L: K] is prime to p, [K: k]l=p, so that K and E are linearly
disjoint over k. Even if {2 L, Np/g(p2)=Cp,#1. Hence (L"/Ex)pw_—-(L"/Ex)p
={xE*) by Finally we have

(L*/E) o> (K*/ B) o = <2k",

where ‘>’ follows from the linear disjointness of K and E.
(2) is verified easily by using [1.3.3) Q.E.D.

2.1.2. THEOREM. Fix a prime p#ch.k and let kX< M<k; with M/k* a p-
group. If p is odd, assume that {,&EM—k*. If p=2, assume that i¢EM—Fk*.
Then M/k* is linearly independent and (k(M)X/k")psz/k".

PrRoOOF. We can assume that M/k* is a finite p-group, since it is a directed
union of finite p-groups. We show the claim by induction on |[M/k*|. Let
g=p if p is odd, and let ¢g=4 if p=2. Put K=k(M).

Case |M/k*|=p. Take an x&M such that M/k*=<{xk*). Since {,¢& xk*
(equivalently x?& k*?, if $p=3), the claim follows from (2.1.1)(1).

Case |M/k*|Zp. Take R*<N<M and put E=Fk(N). The claim holds for
N by the induction hypothesis. Since (E"/k")pm:N/kx, it follows that N=
MNE* and M/N=E*M/E*. Assume {,=E*M, then {,x<E* for some x&M.
Since (Ex/k")pw:N/k", {xeN, so that {,=M. This implies {,€k*CE* by
the hypothesis for M. Hence the induction hypothesis can be applied to E*M/E*
and it follows that EXM/E* is linearly independent and (K >‘/E")psz"M/E".
We have the linear independence of M/k* by the argument in (1.1.2.b) and get
(K x/Iazx)pm:M/ k* by applying the 5-lemma to the following commutative dia-
gram:

1—> N/k* > M/ k> M/N 1 (exact)

| |

1—>(Ex/k")pw—>(Kx/k")pw——>(K"/E")pw (exact). Q.E.D.
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Here we can reproduce the result by Kneser [3].

2.1.3. THEOREM. Let B*<M<k}; with M/E* torsion. Assume that ch. k+2.
Then M/k* is linearly independent, if and only if (@) {,&EM—Fk* for all primes
p#ch.k and (b) 1+iEM—Fk*. When ch. k=2, the assertion holds true with con-
dition (b) deleted.

PROOF. The ‘only if’ part is essentially proved in part (c) of the proof
of [0, Lemma 1.2, p. 285]. See also (1.4.1).

We prove the ‘if’ part. As in [3], by replacing M/k* with (M/B) oy WE
may assume that M/k* is a finite p-group with p a prime=ch. 2. Moreover we
can restrict ourselves to the case that p=2+ch. 2 and /e M—k*, since we are
done in (2.1.2) in other cases. Put E=k@E)Ck(M). The assumption 1+i¢& M— k>
and (2.1.1) (2) imply that M/E*NE*/k*=<ik*), which is linearly independent.
Since i E, the quotient group E*M/E*=(M/k*)/<ik*> is linearly independent
by (2.1.2), so that M/k* is linearly independent by the argument in (1.1.2.b).

Q.E.D.

2.2. Local cogalois theory. We fix an algebraic extension K/k of fields
and a prime p¥ch, k.
Modifying [0, Definition, p. 258 we define as follows.

2.2.1. DEFINITION. The extension K/k is called p-pure, if
{Cp & K—Fk (case p is odd),
iE K—k (case p=2).

PROPOSITION. (K"/k")pm is linearly independent, if and only if K/k is p-
pure,

ProOOF. Apply (2.1.3) to the inverse image MCK* of (K*/k*) o When
p=2, note that i M—Fk> if and only if 1+i&M—k*, Q.E.D.

2.2.2. DEFINITION. Put G=(K*/k™) e K/k is p-coseparable (resp. p-cogalois),
if the @-map K[G]—KKK (1.2.2) is surjective (resp. bijective).

It is easily verified that, if K/k is p-coseparable, then K/k is separable and
K/E is p-coseparable for any intermediate field kCECK.

The following are equivalent by definition and the previous proposition: (a)
K/k is p-cogalois, (b) K/k is strongly (K"/kx)pm-graded in the sense of (1.1.4),
(¢) K/k is p-pure and p-coseparable.

The following theorem is a direct consequence of (2.1.2).

2.2.3. THEOREM. Fix a prime p such that p#ch.k. Then the subgroups
M/lz"<(k§/k")p.,o with B* <M<k} such that
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{Cp & M—Ek* (case p is odd)
1 M—Fk~ (case p=2)

and the p-cogalois extensions kCE(Cks) correspond bijectively via

M/k* —> k(M) and E+—>(E*/k%) .

2.2.4. THEOREM. Let K/k be a t-cogalois extension for a prime p+ch.k and
put G=(K>*/k*) .

(@) For any intermediate field kCECK, E/k and K/E are both p-cogalois
and we have naturally

(K*/ ) o () B) o = (K / EX) o

(b) The subgroups H<G and the intermediate fields kCECK correspond
bijectively via
H— Ky (1.1.6) and E > (E"/ k") o o

PrROOF. The extension K/k is strongly G-graded. Take any FCECK.
Then K/E is p-cogalois, since itis p-pure and p-coseparable. We have the com-
mutative diagram:

K[G] —?p"% KQK

cano. l ) lpro j.

KUK /)] = K@K

Hence the canonical map G:(K*/kx)pwH(Kx/Ex)pm is surjective and we have
naturally (K*/E*) «=G/H with H=(E*/k*) -=GNE*/k*. By (1.1.5)2), E/k
is strongly H-graded, i.e., p-cogalois. Since we have shown any intermediate
field is G-graded, we get (b) from (1.1.5)(1). Q.E.D.

2.2.5. Next we observe p-cogalois extensions which are simultaneously
Galois.

PROPOSITION (cf. [0, Theorem 2.2]). Let K/k be a p-cogalois extension and
put G=(K*/k") .

(1) Assume that K/k is finite with n=[K:k]l=|G| and let m be the ex-
ponent of G. Then K/k is Galois (resp. Kummer, resp. cyclic), if and only if
CnEK (resp. En<=k, resp. {nEK and G is cyclic).

(2) Assume that K/k is Galois with ¢=Gal(K/k) and define the pairing
<, 021 aXG-pu,«(K) by
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{Fy xk*) = x~'7(x), red, xk*eG.
Then we have the isomorphism of groups
(2.2.5.a) G =, 24, po(K)), 8-, &
and the homeomorphism
(2.2.5.b) g =, Homgroup(G, K*), 741, ¥,

where Homgroup(G, K*) has the open-finite topology. Moreover the subgroups
H<G and the closed subgroups H <G correspond bijectively via

H—H*={reg|<y, H>={1}} and 4 — H*={g=CG|{IH, g>={1}}.

PrROOF. (1) The proof in cases of ‘Galois’ and ‘Kummer’ is easy, hence
omitted. When K/k is finite Galois, it follows from the 1-1 correspondence in
(2) that G is cyclic if and only if ¢=Gal(K/k) is cyclic. Hence K/k is cyclic,
if and only if {,=K and G is cyclic.

(2) The isomorphism (2.2.5.a) follows from Taking a finite Galois
and p-cogalois sub-extension FCE;CK with G;=(E*/ k"), We have

Homgroup(Gly Kx) == Homgroup<Gh EE) (by (1) above)

= HomEz—alg(El[Gijy EX)

= Homg, -a1g(E:QE;, E2) (since E;[GrI=EiQE)

= Gal(E;/k).
By taking lim; we get the homeomorphism (2.2.5.b). We have the last asser-
tion, since the composition

{H<G} «— {kCECK} —> {closed K <G}
(2.2.4)(b) Galois corresp.

coincides with the correspondence described in (2). Q.E.D.

2.2.6. ExaMPLES. Fix a prime p+#ch.k Put ¢=p if p=3, and put ¢=4 if
p=2.

(1) If {,=k, then by (2.2.3) the extension corresponding to (ks /R*) oo is a
unique maximal p-cogalois extension of k.

(2) (A typical example of a p-cogalois and pro-cyclic Galois extension). K
:UnQ(Cpn) is a p-cogalois and infinite Galois extension of k=@({,) with

Gal(K/k) = lim Z/p"Z and (K*/k*),» = im Z/p"Z.

(3) Suppose K/k is p-cogalois and Galois with [K: k]<p’. By (2.2.5)(1)
we can list up the possible (K R peo and Gal(K/k). As a result we get the
following: If p=3 and K/k is non-abelian, then K/k is of the form K=£~({,2, x)
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with {,EkBL,e, xP*ck*—E*? and xP°&E*?%, and we have
(K"/k")pm =Z/pZxZ/pZ and Gal(K/k)=Z/pZXZ/pZ.

On the other hand, if p=2, K/k is necessarily abelian.

2.3. Global cogalois theory. We fix an algebraic extension K/k of fields.
In our terminology, K/k is pure (see [0, Definition, p. 258]), if and only if
K/k is p-pure for all primes p+ch. k.

2.3.1. PROPOSITION. (K*/k*)or I8 linearly independent, if and only if (a)
K/k is pure and (b) (K*/B*),={1} with |=ch. k.

PROOF. As in part (b) of the proof of [0, Lemma 1.2], if E2Fk is a simple
purely inseparable extension of exponent 1, then (E*/k*), cannot be linearly
independent since (E*/k*),=E*/k* is infinite. Hence, if (K*/k*)ior is linearly
independent, (b) holds. It follows from (2.1.3) that, under (b), the linear inde-
pendence of (K*/k*).: iS equivalent to (a). Q.E.D.

We generalize the definitions in [0, p. 257] as follows:

2.3.2. DEFINITION. Put G=(K*/k*)wo.. K/E is coseparable (resp. cogalois),
if @: K[G]-KXK (1.2.2) is surjective (resp. bijective).

The following theorem is a generalization of Greither and Harrison [0,
Theorems 1.5, 1.6, pp. 260-261] to the infinite extensions of fields.

2.3.3. THEOREM. Let K/k be an algebraic extension of a possibly infinite
degree.
(1) The following are equivalent :
(@) K/k is cogalois,
(b) K/k is pure, coseparable and separable,
(¢) K/k is pure, coseparable and (K*/k*y={1} with [=ch.k.
(2) Let K/k be cogalois and put G=(K*/k*)tor.
(a) For any intermediate field kCECK, E/k and K/E are both cogalois
and we have naturally
(K™ /B )ior/(E™ /R )tor = (K*/E™)tor «

(b) The subgroups H<G and the intermediate fields kC ECK correspond
bijectively via
H— Ky (1.1.6) and E+——>(E*/E ).

PRrROOF. Part (1) is a direct consequence of (2.3.1).
(2) The proof of (2.2.4) goes word for word. Q.E.D.

Assume that K/k is cogalois. For every prime p=ch. ., the sub-extension
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K,/k which corresponds to (K X/kx)pw in (2.3.3)(2.b) is a p-cogalois extension and
we have K=Q,K,.

REMARK. Even if M, B*<M<k;, satisfies the condition that {,& M—k*
for primes p#ch.% (and for p=4 if ch.k+2), k(M)/k is not necessarily pure.
Hence in the global case the correspondence M—k(M) is not injective. For
example, when we put

k:Q, M1:<\/?3, W, k<, M2:<'\/i§, /%/—an’ kx>,

we have M,+ M, and k(M,)=k(M,). On the other hand there exists the global
version of (2.2.5).

2.3.4. The correspondence in (2.2.4)b) vields a 1-1 cogalois correspondence
for a certain class of Galois extensions which involves Kummer extensions.

PROPOSITION. Let B*<M<k; with M/k* torsion. Assume that, for every
prime p satisfying (M/k*),#{1}, @)L,k and (b) (M/E*)pn-1S(M/k*)pn for any
2<neN implies {pneM. If (M/E).S(M/EX),, assume in addition that i<k.
Then there is a 1-1 correspondence between the intermediate groups k*<N<M
and the intermediate fields kC ECk(M), which is given by N—k(N).

ProoOF. The assumptions assure that the extension K,/k corresponding to
(M/F*), is ‘Galois and p-cogalois’ or 2-Kummer. Since A(M)=Q®K, and any
intermediate field of 2(M)/k is a composition of those of K,/k’s, the assertion
follows from (2.2.4)(b). Q.E.D.

Greither and Harrison [0, Theorem 2.3] follow directly from this result.
The assumption ch. 2=0 is not necessary.

COROLLARY ([0, Theorem 2.3]). Let
f(T) = (T"I—al)(T"?—az) cee (T"r_ar)

be a polynomial with a;k* and n;<=N such that every n;is not divided by ch.k,
and let K be the splitting field of f(T) over k. Assume that {,=k for every
odd prime p dividing some n;. If 4 divides some n;, assume in addition that
ick. Then any intermediate field of K/k is generated over k by monomials in
roots of f(T).

PROOF. Apply to M=(Va,, "¥Va,, -, "Va,, Cm, k*) and K=
k(M), where m=the least common multiple of {n;}. Q.E.D.
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3. A Hopf-Galois correspondence for division algebras.

We generalize (1.1.5) to a Hopf-Galois extension. In this section, K denotes
a division k-algebra. We use the notation and terminology of [6] for the theory
of coalgebras. Especially, a Hopf algebra means a bialgebra with the antipode
([6, Definition, p. 71]).

M. Takeuchi develops a certain Galois theory of the Picard-Vessiot type
in the context of C-ferential fields, with C a cocommutative coalgebra. As is
pointed out in [9], the theory goes parallel for J-comodule k-fields L/E, with
J a commutative k-bialgebra. We go partially after the comodule fields-Picard-
Vessiot theory, but we deal with division k-algebras.

Let (J, A, ) be a k-bialgebra. For a right J-comodule V, we denote its
structure by p=py: V—-VQ]J and its invariants by V,={ve V|p@)=v&1}.

3.1. Let J be a k-bialgebra and K a right J-comodule division k-algebra.
It is easy to see that K, is a division subalgebra of K.

3.1.1. Note that, though K is non-commutative, K-corings are defined in
an obvious way and KXK has the natural K-coring structure as in (1.2) (see
[7, 1.1-1.2]). View KK as a right J-comodule via

o®p0 KQtw®J KQKem
KRJRKRJ KQKRJRJ KRKQ]J,
where tw denotes the twist map and m denotes the multiplication. We mean
by a quotient J-comodule K-coring a quotient object as a J-comodule and K-coring.
KQk,K is a quotient J-comodule K-coring of KQK. Similarly to [8, Theorem
2.0], we can prove the following from [7, Theorem 2.17.

(3.1.1.a) KQK

LEMMA. There is a 1-1 correspondence between the J-comodule division k-
subalgebras EC K which contain K, and the quotient J-comodule K-corings of
KQkK, which is given by E—KXgK.

3.1.2. LEMMA. Let V be a left K-space and simultaneously a right J-comodule
such that py: V—V®] is left K-linear, where VR is viewed as a left K-space
through pxg, i.e.,

x.(0Qa) = px(x)(vRa)

for xeK, veV, ac]. Then
0: KR, Vo—>V, o(xQv) = xv
1S injective.
PROOF. Suppose Kerg=0. Choose a non-zero element w=2)}.,x ;Qv;=Ker ¢
with » minimal. Clearly r#1. We can assume x,=1. By the minimality of
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r, {v;} are left K -linearly independent and x;& K, for j=2. Since x,&K,, we

can choose a k-linear map f: J—k such that f(1)=1 and y,#x,, where y; is

the image of x; under the composition K—»K@]KQIK. Note y,=1. Then
o

o' =21y,Qv;eKera, since 0=(VRpov(Zxp)=2yv;, We have

r

0#w—0w = E}Z(x,-—yj)@)vj e Kero,

a contradiction to the minimality of ». Hence Ker ¢=0. Q.E.D.
We view KR J as a K-bimodule via

x.(z2Qa).y = (xz2¥a)ox(y)

for x, yeK and zQasKRJ. Then KRJ is a K-coring with the following
structure:

(.13)  KQJ— KQJRJ = (KQ)NQ(KR]), KQJ—> Kk =K.

. We also view K®J as a right J-comodule via

K@tw

(3.1.4) KQJ 25 KQJo] (KRR .

Following we call a coideal aCJ a right bi-ideal, if a is a right ideal
of J.

3.1.5. PROPOSITION. Assume
B: KQK — KQJ, Bx®y) = (x@Dp(y)

is bijective. Then any quotient J-comodule K-coring of K] is of the form
KR(J/a) for some right bi-ideal aC ].

Proor. Clearly (K®J),=J. Note that K,=k, since

K, = Ker (K é@ KQJ) = Ker(KIi’_‘:Z KQK)=Fk.
Let w : KQJ—-W be a quotient map. Since w decomposes as K& ]ﬂK@WO—a»W,
o is surjective, hence bijective by (3.1.2). It follows that W=K&(J/a) for
some k-subspace aC /. Since W is K-bimodule quotient and B is bijective, we
have (kQa)-(KQJ)CKXa. Hence a is a right ideal of J. Similarly, since W
is K-coring quotient, a is a coideal of J, so that a is a right bi-ideal of J.
Q.E.D.

3.2. Let J be a k-bialgebra. We call division k-algebras KDOF a J-Galois
extension, if K is a right J-comodule k-algebra, if K,=F and if
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B: KQK— K®J, Blx ® ) = (x@px(»)
is bijective.

3.2.1. THEOREM. Let J be a cocommutative Hopf k-algebra and suppose that
a division k-algebra K is a J-Galois extension over k.

(1) There is a 1-1 correspondence between the right bi-ideals aCJ and the
J-comodule division k-subalgebras ECK. The correspondence is given by

a— {xeK|px(x) = x®1 mod. KRa}.

(2) Suppose that a—E in (1).
(@) The B-map

(3.2.2) B: KQK =, KQJ, Bpx®y)=xQ@p(y)

induces the isomorphism
K%) K _~, KQ(J/a).

Hence, if a is a bi-ideal of ], then K/E is viewed naturally as a J/a-Galois ex-
tension.
(b) E/k is viewed naturally as a J,-Galois extension, where [,={x=]| A(x)

=x®1 mod. JRQa}.

PROOF. Since J has the bijective antipode, it follows from the same
argument as in [2, Proposition 1.2] that the B-map is bijective if and
only if
3.2.3) B KQK— KQJ, p'(xQ®y) = p(x)(y&Q1)
is bijective.

(1) Since J is cocommutative, the B-map is an isomorphism of J-
comodules and K-corings with respect to the structures described in (1.2), (3.1.1.a),
(3.1.3) and We know from (3.1.1) and (3.1.5) that there is a 1-1 corre-
spondence between the two sets. The correspondence is realized as described
above, since, if the isomorphism KQzK=K(J/a) is induced from S, it should
hold that

E=Ker(K == K@ K) = Ker (K == KQ(J/a)).
TP I®1 E TP Il

(2) Suppose a—E. We have proved (a) in the proof of (1). Since
is an isomorphism of J/a-comodules with respect to the structures

K®tw K®K®proj

KQK 225 KQJQK KQKQ]J KQKR(J/a),
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K®A K®J®proj

KQJ — KQJRJ KQJR(J/a),

we get EQK=KQ/, through B’ by taking invariants. Noting that the struc-
ture K—KQ(J/a) is left E-linear, we know that the previous isomorphism pre-
serves the coaction of J/a induced from the factor K in each side. By taking
invariants we get EQE=E®], through f’. Since J, is a Hopf subalgebra of
J by [5, Corollary 3.4], it follows from the beginning remark that EQE=EQRJ,
through B. Hence E/k is Ji-Galois. Q.E.D.

Let K/k be a strongly G-graded extension (1.1.3) of fields with G <(K*/k*)ior-
Then K/k is k[G]-Galois with the structure K -—> K®K"_:1K®k[G]. Hence

Tzl '/

Theorem (3.2.1) is a generalization of (1.1.5).

3.2.5. REMARK. The following fact, proved in [10], justifies the assumption
in (3.2.1) that J is not a bialgebra but a Hopf algebra: Let J be a cocommuta-
tive k-bialgebra. Suppose that there exists such a J-comodule k-algebra R whose

B-map
B: RQR — RRJ, BxRy)=(xQ@Lop()

1s bijective and which satisfies the condition that R*=R™ for any n, me N implies
n=m, where R"™ means the direct sum of n copies of the left (or right) R-module
R. Then Jis a Hopf algebra.
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