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§0. Introduction.

E. Lorenz studied the following system of differential equations in connec-
tion with problerhs in hydrodynamics [9];

J X=—0x+o0y
y=rx—y-—xz

(L)
2=—bz+xy

where (g, 7, b)=(10, 28, 8/3). J. Guckenheimer introduced in [4] a geometric
description of a flow which seems to have the qualitative dynamics of the solu-
tions of the Lorenz equation (L). This geometric Lorenz flow has a complicated
attractor. R. F. Williams described in this attractor, which is called the
geometric Lorenz attractor, as the inverse limit of a semi-flow on a 2-dimensional
branched manifold.

The aim of this paper is to study the condition under which the geometric
Lorenz attractors have the pseudo-orbit tracing property (abbr. P.O.T.P.). P.O.T.P.
plays important roles in several places in dynamics ([8], and [13]). Suppose
that ¢ is a continuous flow on a state space of a system. The pseudo-orbit of
¢ is viewed as the orbit realized in numerical calculation by computer, or in
physical experiments. Then P.O.T.P. is interpreted as that, while a computer
may not calculate the orbit which you hope for, what it does find is nonetheless
an approximation to some true orbit of the system (P. 251 of [6]).

Let (K s, ¢7) be a geometric Lorenz attractor with the return map f from
the interval [0, 1] to itself (see §2 for definition). Then our main theorem is
stated as below.

THEOREM 1. The geometric Lorenz attractor (K ¢, @5) has the finite P.O.T.P.
iff the return map f satisfies that f(0)=0 and f(1)=1.

This theorem implies that the geometric Lorenz attractors do not have P.O.T.P.
except a special case of f(0)=0and f(1)=1. If we suppose the geometric Lorenz
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flows represent completely the dynamics of solutions of the Lorenz equation (L),
the condition of f(0)=0 and f(1)=1 corresponds to the case of r=r,~24.06
under (o, b)=(10, 8/3) (P. 48 of [11]).

Combining above and Guckenheimer-Williams-Robinson’s theorem
([5], [15)), we can conclude the following;

THEOREM 3. Let M be a 3-dimensional compact manifold and X*(M) the
space of all vector fields on M with C*-topology. Then the set of vector fields
with the strong P.O.T.P. is not dense in X*(M).

A. Morimoto proposes in a problem whether the set of diffeomorphisms
with P.O.T.P. is residual in the space of all diffeomorphisms of a compact
manifold. The answer of this problem is unknown yet. However, in the case
of flows, gives us a negative answer for this problem.

We give in §1 the definitions of the strong, weak and finite P.O.T.P. In
§ 2 we study P.O.T.P. of the inverse limit system of a semi-flow on a compact
metric space. The definition of the geometric Lorenz attractor is given in § 3.
Also we prepare in §3 a notation used in the proof of We prove
in §4 and Theorems 2 and 3 in §5.

Throughout this paper the symbols R, Z and NN denote the set of all real
numbers, the set of all integers and the set of all positive integers respectively.

§1. Definition of P.O.T.P.
Let (X, d) be a compact metric space with a distance function d. We denote
d(Y,, Yo)=inf{d(y,, y2) : y:€Y,; =1, 2)}
for any subsets V,, Y,CX. A flow ¢={¢’},cr on X is a continuous map
¢ XXR—X;  (x, 8) — ¢(x, )=¢"(x)

such that ¢***=¢'-¢° holds for every s, t€R and ¢° is the identity map (clearly
¢" is a homeomorphism on X for each t=R). This is often denoted by (X, ¢).
For each x&€X and teR we denote x-t=¢'(x). Also for any subsets YCX and
JCR we denote

Y- J={x-t: x€Y, te]}.

A subset YC X is said to be ¢-invariant if Y=Y -t for all tR. The restriction
of ¢ to a ¢-invariant closed subset Y X is denoted by (Y, ¢y). The nonwander-
ing set of ¢ is a ¢-invariant closed subset of X defined by

Q={xeX : for any open neighborhood U of x and any T >0,
UNWU-[T, o))+ @}.



Lorenz attractors 491

DEFINITION 1. Given 0, T>0, a collection {x4, Xa+1, ***, X5, ta, tass, =, L}
(x;€X, t;=0, a<i<b; a=—co, b=oo are permitted) is called a (J, T)-chain of
¢ if

d{x;-t;, x;41)=0 and #,=T for every a<:i<bh—1.

A finite (0, T)-chain {x;; #;}% (—oo<a=<b< o) is naturally extended to an infinite
(5, T)'Chain {xi; tt} icz-. Put

e
|

1

t; (@>0)

0

Sf—“J 0 @=0)

(

<,
H

{ —5t (<0,
j=t

Let x,#¢t denote a point on a (4, T)-chain ¢ units time from x,. More precisely,
for each t€R we define

Xoxl=x;-(t—S,) if S;Zt<Siy1, 1€Z.
DEFINITION 2. Let ¢>0 be given. Define
Rep={g:R—R : g is a monotone increasing homeomorphism with g(0)=0}
and

‘ g(s)—gl®) |
s—t

Rep(s):{geRep : < for every s, teR}».

Each element of Rep is called a reparametrization.

DEFINITION 3. A (9, T)-chain {x;; #;}:cz of ¢ is said to be weakly e-traced
(resp. strongly e-traced) by a point x=X if there is a reparametrization g<
Rep (resp. g=Rep(e)) such that

d(xoxt, x-gt))<e for every t=R.

DEFINITION 4. A flow (X, ¢) has the weak P.O.T.P. (resp. the strong
P.O.T.P.) if for any ¢>0 there exist 6, T>0 such that every (d, T)-chain of ¢
can be weakly e-traced (resp. strongly e-traced) by some point of X. A flow
(X, ¢) has the finite P.O.T.P. if for any >0 there exist §, 7' >0 such that every
finite (0, T)-chain {x;; #;}§ (0=k<oo) of ¢ can be weakly e-traced by some point
x of X; ie. there is g=Rep with

d(xext, x-gt)=Ze for 0=t<S;::.

REMARK 1. The restriction of an Axiom A flow to its nonwandering set
has the strong P.O.T.P. This fact can be proved from the Bowen’s approxima-
tion theorem (Theorem 2.2 in [1]). The weak and finite P.O.T.P. have been
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used in [3], and to study stability properties of flows. In general the
following relation holds;

the strong P.O.T.P. =— the weak P.O.T.P. = the finite P.O.T.P.

§2. Inverse limit systems.

In this section we study the finite P.O.T.P. of the inverse limit of a semi-
flow.

DEFINITION 5. Let (X, d) be a compact metric space with a distance func-
tion d. A semi-flow ¢=1{¢'}:zo On X is a continuous map

@ 1 XX[0, 0) — X;  (x, ) —> o(x, h=¢"(x)

such that ¢° is the identity map, ¢°: X—X is surjective and ¢'**=¢’.¢° holds
for every f, s=0. By (X, ¢) we denote a semi-flow ¢ on X. Put X=X for
each s<0. We define

X={Z=(x")sz0E sl;IOXs : xt:gp“s(xs), sZi<0}

and
(@*x%)ss0  for 1=0
~t x):
(xs+t)sso for <0.

The distance function on X is defined by
4, »={"etd, yoar

for each %, 376)?. Then ()?, d) is a compact metric space and ¢={¢"}1cr 1S a
flow on X. The flow (X, ¢) is called the inverse limit of a semi-flow (X, ©).
We denote this by

(X, §)=lim(X, ¢).

DEFINITION 6. For a semi-flow (X, ¢), we denote x-t=¢*(x) for every x& X
and {=0. Given 0, T>0, a collection {x;; t;}% (x;€X, t,=T, 0<k <o) is called
a finite (0, T)-chain of ¢ if

d(x;-ty 200 and ;=T for every 0=:<pk-—1.
For each ¢t=0 we define
xoxt=x;-t—S;) if §;=<t<S;;; for some 0=;<¢p
where S,=0 and S;=Xzit; (0<i=Zk+1).

DEFINITION 7. A semi-flow (X, ¢) has the finite P.O.T.P. if for every ¢>0
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there exist 4, T>0 such that for every finite (9, T)-chain {x;; t;}} of ¢, there
exist x€X and ge=Rep with

d(xext, x-g(t))<e for every 0=t<Sj;.;.

DEFINITION 8. A semi-flow (X, ¢) satisfies the condition (P) if for every
e¢>0 there exist N=0, 6>0 and T >0 such that the following holds; for every
finite (9, T)-chain {x;; t;}% of ¢ with

d{x;-(t;+S), Xi41-5)=0 for every 0<s<N and 0Z/<k,
there exist x&X and g=Rep such that
d((xext) N, x-(g)+N))=Ze¢ for every 0=t<S;..

It is clear that the finite P.O.T.P. for semi-flows implies the condition (P).
Indeed, we can take N=0 as the number N=0 in the condition (P).

PROPOSITION 2.1. Let ()?, @) be the inverse limit of a semi-flow (X, ¢). Then
()?, @) has the finite P.O.T.P. iff (X, ¢) safisfies the condition (P).

PrOOF. At first we shall prove the “if” part. Suppose (X, ¢) satisfies the
condition (P). Let ¢>0 be given. There is M >0 such that .

Dg“’e-tdzge/z
) _

where D=diam(X). Take ¢’>0 such that d(x, y)<e¢’ (x, ye X) implies d(x-t, y-1)
<e/2 for every t=[0, M]. There are numbers N>0, 6’>0 and T >0 corre-
sponding to ¢’ as in the condition (P). Take 0>0 such that d(x, y)<eX*¥+i§
implies d(x-t, y-1)<dé’ for every te[0, M+N-+1]. Let {%;; t;}% be a finite
(0, T)-chain of ()?, é). We express ¥; by (x§);zo. Then we have

. . MAN+1
0=d(%;-t,, xi+1>ig
M+N

e td(xz7t -t x7iNd?
ge—(M+N+1)d(x;(M+N+0),ti, x;_éllll-'rlv-&ﬁ.‘)
for some #<[0, 1]. By the choice of 6 we have
5/zd(x;(M+N+t9),(ti+t)’ xaf]l‘1+N+0).t)
=d(xiMEN+O g, L M+ N+0)) for every te[0, M+N-+67,
so that
d(x7%t;, x7i)=0’ for every 1[0, M+N].
Thus {x7¥*"; 1.}t is a finite (6, T)-chain of ¢ satisfying

d(x7 MVt +s), a7 ¥V .6)<d”  for every se[0, NJ.
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By the condition (P) there exist y=X and g=Rep such that
dl(x7™*¥x)-N, y-(gt)+N))<e’  for every 0=t<Sj+
where S,..=2¢t;, By the choice of ¢’ we have
d((xi5t)-s, (3-N)-g(0)+s)
=d((xg MV xt)-(N+s), (y-g(t)-(N+s))<e/2

for every s€[0, M] and t€[0, Sis). Take a point ¥=(x%),.,€X with x ‘=
y-(M+N—t) for every t<=[0, M]. Let 0=t¢<S;:; be given and suppose that
S;=<t<S;4; for some 0=/=<k. Since

27 (= SY= (67" - (M—$))- (t—S) =(x57#)- (M—s)
for every s=[0, M1, we have
M %
d(x-g), a%o*t)éSo e=Sd(x %o g(t), x7°-(t—Sy))ds +DSMe-Sds
=[" e (- 4 N=s)- g0 (55 (M—s)ds e/
=| e (oM g @)+ (M—9), (x55t)-(M—s))ds+e/2
§(8/2)S:le‘sds—|-s/2§_s.

This completes the proof of the “if” part.

Next we shall prove the “only if” part. Suppose ()?, @) has the finite
P.O.T.P. Let e>0 be given. There is an ¢’>0 such that d(x, y)<ee’ (x, yeX)
implies d(x-t, y-t)=<e for every t=[0, 1]. By our assumption there are 4, T >0

such that every finite (0, 7)-chain of ()?, @) is weakly e¢’-traced by some point
in X. Take N=1 with

DSZe“%té&/Z

where D=diam(X). Let I'={x;; t;}{ be a finite (6/2, T)-chain of (X, ¢) with
d(x;(t;+8), x541°8)=0/2 for every s<[0, N].
Take 7,=(y)szo= X with
y;‘zxi-(N—t) for every t=[0, N].

Then we obtain that
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J(jttu ii+1)
=[emtd(Geit) (N=9), xona-(N=5)ds +D{ e=2ds
=0/2)| eds+3/25
for every 0=<;<k—1. Thus I'= {7:; t:}& is a finite (0, T)-chain of ()Z', @). There
exist 7=(y%);s0 X and geRep by which I' is weakly ¢’-traced. Let 0=<{<S;.,
be given and suppose that S;<¢<S;;, for some 0=/=<k. Then we have
1
2d(5-g(0), Fo) 2| e A g, y7*-(—S)ds
=| e dy g+ N=9), xi-(t—=Si+N—9)ds

=Ze'd(y Y- (g)+N—8), x;-(t—S;+N—0))
for some 6<[0, 1]. Therefore, by the choice of ¢’ we have
dy Y- (g)+N), (xext)-N)=<e for every 0=1<S;,;.

This completes the proof of the “only if” part.

§3. Lorenz attractors.

In this section we give the definition of geometric Lorenz attractors and
prepare a notation used in the proof of of the next section.

DEFINITION 9. Let K be a 2-dimensional compact branched manifold (called
a Lorenz branched manifold) illustrated as in Figure 1. The set of branch points
of K is the line segment b’c’. The point b (resp. ¢) is an intersection of the
boundary of K and an extension of the line ¢’b” (resp. b’c’). We permit the case
of b=b" or ¢=c¢’. The branched manifold K is embedded in R? as a subset.
We denote by d a distance function on K which is a usual distance function
on R:

We suppose that a C'-semi-flow ¢ on K is defined as illustrated by some
arrows in Figure 1. The point ¢ is a unique singular point of ¢. Near the
point ¢, the linearized equation has the form

x:ﬂlx

. (O<ﬂ2<ﬂ1) .
y=—y

There is a unique point a<b’c’ such that ¢'(a) does not return to the line

segment bc but converges to the point e as t—co. The inverse limit of such a

semi-flow (K, ¢);
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(R, ¢)=lim(K, ¢)

is called the geometric Lovenz attractor.

Figure 1.

We identify the line segment bc¢ with the interval I=[0, 1] by b=0 and c=1.
By the same symbol a we denote a point in [ corresponding to the point a=bc.
We denote

t=(a, 11, I7=[0, a) and I,=ItUly.

Let f: I,—I be the return map of ¢. More precisely, for each x<I, f(x) is
defined by

fx)=¢T(x) where T=inf{s>0: x-sel}.

Under ¢ the point aeI=bc does not return to I=bc by the definition of the
point a. Thus the value f(a) is not defined. However, to simplify we extend
fto f:I-I by f(a)=0. Then f is a piecewise C'-map with a unique discon-
tinuity a. The return map f satisfies the following (see §2 in [5]);

(R. 1) fla")=0,  fla7)=1;

(R.i1") />4 for some A>=1;

(R. iii) fO<a<f(1);

(R.iv) f/(x)—>co as x—a”.
Here, as a simplifying assumption, we assume

(R. ii) f’>v/2  (.e. 2=4/2 in (R.ii").
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Under this assumption, f becomes locally eventually onto; i.e. for any open set
UclI there is an n>0 such that f"(U)=I (Proposition 1 of [14]).

Conversely, if we have a piecewise C*-map f: I—I with a unique discon-
tinuity a satisfying the above conditions (R. i)~(R.iv), then a Lorenz branched
manifold K and a C'-semi-flow ¢ on K which has the return map f are uniquely
determined up to the topological equivalence. Here a semi-flow (X,, ¢,) is
topologically equivalent to a semi-flow (X,, ¢,) if there exist a homeomorphism
h: X,— X, and a continuous map ¢ : X, X [0, o0)—[0, co) such that

o(x, ) : [0, co) —> [0, oo) is a surjective homeomorphism with ¢(x, 0)=0
and

©o(h(x), a(x, 1)=h(pi(x, 1)) for every x= X, and t<[0, co).

Therefore by (K, ¢,) we denote a semi-flow on a Lorenz branched manifold
determined by the return map f with (R.i)~(R.iv). We call (K, ¢,) the
geometric Lorenz semi-flow defined by the return map f. The inverse limit

&;, ¢)=lim(K;, ;)

is called the geometric Lorenz attractor defined by the return map f.

Let (K, ;) and (K;, 3,) be a geometric Lorenz semi-flow and an attractor
respectively defined by a return map f: I—I satisfying (R. i))~(R. iv). Without
loss of generality we may assume that the length of ae is equal to 1/2 and the
lengths of the arcs 27), EZ, bb’ and cc’ are larger than one.

DEFINITION 10. We define
x't:{ @5(x) (t=0)
{yeK,: o7' ()=t (<0
for each x€ K, and t=R. We denote
Y Jj={x-t: xeY, te]}
for subsets YC K, and JCR.
DEFINITION 11. Define a map T : [,—(0, c0) by
T(x)=inf{s>0 : x-s<l}.
That is, T(x) is the first return time of x<I, to I under ¢;. Denote
C(x)=x-[0, T(x)) for each xel,.

Define a map L : [,—(0, ) such that for each x&I,

L(x) is the length of C(x).
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As in Figure 2, we set
K¢={x-t : t€[0, T(x)), xI3} (6=+, —), and
K,=K{UKj3.

DEFINITION 12. For each u= K, there exists a unique point x,=l, with
ueC(x,). Thus a map n: K;—I is well defined by

1w (uEK,)
m(u)=
a (uEK,y).
Define a map ¢: K,—[0, oo) such that for each u€K,
t(u) is the minimal time from z(u) to u under ¢;.
Define a map X : K,—[0, co) such that for each ue K,
A(u) is the length of =(u)-[0, t(u)].
Li={(x, ) eR? : £€[0, L(x)), x1I3} (6=-+, =),

We set

Ts={(x, H)eR? : t[0, T(x)), x<1If} (e=+, —),
L.=L{UL% and Ty=T}UTx.
The distance function on Ly and T is defined by
d((x, s), (x/, s")=max{d(x, x’), |s—s’]|}.
For each (x, §)€ L, there exists a unique point u, .= K, such that

X(ug )= and Uz esC(x).
Define

B:Lyi— K, by Bx, §)=u.. for all (x, &)L,
0 :Ty— K, by 8(x, )==x-t for all (x, )eTy.

and

DEFINITION 13. Let go=inf{T(x) : x=Il,} >0. Define
C:I-[—qo/4, g/41—>1 by {(x-t)=x

for each x&l and t€[—q./4, go/4]. Given >0 and £,>0, we define the fol-
lowing (see Figure 2);

Kko)=K;—1-(—k,, 0),
Alp={(x, )Ly : d(x, a)=7},
Li={(x, §) e Ly : 0=£=1/2},
Ko=B(L%),
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D(n)=Cl{B(x, § : (x, E Aly), |§—1/2|=n},

P()=Cl{B(x, §) : (x, HE Ay, 0=6=1/2—1},

Qe (n)=Cl{B(x, & : (x, e APNLS, 1/2+9=(<L(x)} (o=+, —),
Q)=Q*(mUQ(n),

Q’(n, k)=Q°(n)NK(k,) (¢=+4, —) and

Q(n, £)=0Q*(n, £)\IQ (9, Ko)

where CI(Y) denotes the closure of ¥ in K;. For a subset Y CK; we denote the
y-neighborhood of Y by

BY, p)={ucsK; : du, Y)=7}.

b b’ a ¢ ¢
p T + N
(7) §§
N K
NN K (ko)
N (4 (&
N -
e
b
Figure 2.

LEMMA 3.1. Let >0 and £,>0 be given.
(1) The following maps are uniformly continuous,

| K(ko) @ Kleo) —> I,  X|K(x,) : Klk,) —> [0, c0),
t| K(ko) : K(gy) —> [0, 00), C:1-[—qo/4, qo/4] —> 1 and
L :I,— (0, ).
(2) The following maps are uniformly continuous injections:
BIL% : Ly — K, (o=+, —),
BILyx: Li—> K, and  B7'|K(ko) : Kxo) —> L.

(8) The map T is continuous. The restriction of 0 to {(x, )ETy : t#0} is
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a homeomorphism onto its image.
@ PINQy, k)=0 and  Q*MNQ-(n=2.
(6) For any usD(y) and s>0, if
u-s€D(y) and  u-[0, sSIN[=0Q,

then u-[0, s]CD(y).
PROOF. These statements are easily verified from each definition.

§4. Proof of Theorem 1.

Let f be a piecewise C-map of I=[0, 1] with a unique discontinuity ¢ (0, 1)
satisfying (R. i)~(R. iv) in Let (K;, ¢y) be the geometric Lorenz
semi-flow defined by f. We recall I{=(a, 1], I7=[0, a¢) and [,=I}Ul;. For

xel, we denote
' I3 0=x<a)
I(x)= _
I (a<x=1).

DEFINITION 14. A sequence {x;}% (0=<k<oo) of points in I is a finite O-
pseudo-orbit of f in I, if d(fxi, x:41)<0 and x;€I, for each 0<i<k—1. (I, f)
has the finite P.O.T.P. if for every &>0 there is a 0>0 with the following
property ; for every finite d-pseudo-orbit {x;}% of f in I,, there exists x I, such
that

d(fix, x)<e and fixel(x;) for every 0=:<k.

Now our main theorem is stated as below ;

THEOREM 1. The following are equivalent to each other.

(A) The geometric Lorenz attractor (IN{ 7, ¢7) has the finite P.O.T.P.

(B) The geometric Lorenz semi-flow (K, ¢;) satisfies the condition (P).

(C) The geometric Lorenz semi-flow (Ky, ¢f) has the finite P.O.T.P.

(D) The return map (I, f) has the finite P.O.T.P.

(E) The return map (I, f) satisfies f(0)=0 and f(1)=1.

In [Proposition 2.1 we have proved that (A) and (B) are equivalent. By the
remark below (C) implies (B). We shall prove the remaining state-
ments by a series of propositions.

ProproOSITION 4.1. If f(0)=0 and f(1)=1, then (I, f) has the finite P.O.T.P.
PROOF. Assume that f(0)=0 and f(1)=1. Define

C:,Qo f@)u{0, 1} and J=I—C.

Since C is countable, J is dense in I. By the assumption, we have
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fiunip=J  (e=+, —).
Put A=inf{f’(x) : x€l}=+/2. Let 0<e<min{a, 1—a} be given. For any
x, y€J, if d(fx, y)<e, then there is y’eI(x)NJ with
d(x, y)<e/ and flyh=y.

Take 0>0 with 6/(1—2")<e. Let a finite d-pseudo-orbit {x;}% of f in I, be
given. Since J is dense in I,, without loss of generality we may assume that
x:€] (0=i=<k). Put y,=x,. Since d(fx,.1, y2)=0, there is y,,I(x,-0)NJ
such that

d(xg-1, yk-1)§52‘1 and Fe-)=y.
Since

d(ka—2) yk—l)§d<ka—2y xk—1)+d(xk—17 yk—l)§5(1+2_1)<8 ’
there is y;_,=I(x,-,)"\J such that
d(xp-s, yk-2)§5(2’1+l‘2) and fOr-2)=Yr-1.
Repeating this process we get y; (0=i=<k) such that
vicl(x)N ], d(xi, y)SOQA 2724 - 275 <e
and
FYd)=yi41.

Put x=y, Since fix=y,;, we have

d(fix, x)<e and [fixel(x;) for every 0=i=<k.

This completes the proof of Proposition 4.1

PROPOSITION 4.2. If (K;, ¢;) satisfies the condition (P), then f(0)=0 and
f(H=L

PROOF. Assume that (K, ¢,) satisfies the condition (P) and f(0)#0. We
shall derive a contradiction. Notice that we identified the line segment bc in
K; and the unit interval I=[0; 1] in R by b=0 and ¢=1. We denote

Arc(e, b)=the arc in the boundary of K, from e to b,

Arc(e, c)=the arc in the boundary of K, from e to ¢,

[a, e)=a-[0, o) (i.e. the positive half orbit of ¢) and

C=U5=0f(a).
Since f is locally eventually onto, for any open set UC/I there is an n>0 such
that f*(U)=I. From this, it follows that C is dense in J. Let ¢>0 be given.
Without loss of generality we may assume that ¢< f(0)/2 and B(b, e)N\b-[T(b)/2,
T®b)]=¢@. There are numbers N>0, >0 and T >0 as in the condition (P).

First we consider the case of b=C. Take x,=Arc(e, b) and {,=zmax{T, N}
such that
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xo-N=b, x,t,<[a, e) and
Xo-{to+S)E Ble, 6/2) for every 0=s<N

where Ble, 6/2)={ucsK; : dle, u)<9/2}. Take x,=Arc(e, ¢) and t,=max{T, N}

such that
x-(t;+N)=c and

x,-SEBle, 0/2) for every 0=<s<N.
Then {x;; t;}} is a finite (0, T')-chain of ¢, with
d(xy-(to+S), x1-8)=0 for every 0=<s=<N.
There are x=K; and g<Rep such that

d(xo+-(s+N), x-(g(s)+N))=e  for every 0=s=t,
and

(%) d(x,-(s+N), x-(glty+s)+N))<e  for every 0=s=t,.

Since d(b, x-N)=d(x, N, x-N)=<¢g, the point x-N must be e-near and in the left
hand side of the point b with respect to the positive direction of the semi-flow
¢y (see Figure 1.) Similarly the point (x-N)-g(s) must be e-near and in the left
hand side of the point b-s=x,-(s+N) for every s=[0, {,], thus we conclude that

x-(glt)+N)eCl(KT).
Since d(x;-N, x-(g(ty)+N))<e, we have
x-(g(ty)+N)eB(x,-N, e)N\CIKT).
Since x,-N=CI(K7) and x,-(t,+N)=c, there is t=[0, #,] such that
x-(gte+)+N)eClKT)—B(CIKY), &) or
Xy (t+N)eCUKT)— B(CUKT), ).

This contradicts ().
Next we consider the case of b&£C. Take x,eArc(e, b) and t,=max{T, N}

such that
xo'N:b aIld xO‘t()EI.

Since C is dense in I, there are x,=C and ¢;,=max{7T, N} such that
x,< X0 1, (with respect to the usual order of ICR),
d{xe-(ty+S$), x,-5)=<0 for every 0=<s=<N,
x-hela, e) and

x.-(t,+s)e Ble, 6/2) for every 0<s<N.
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Take x,=Arc(e, ¢) and t,=max{T, N} such that

Xo+({;+N)=c and x,-s=B(e, 6/2) for every 0<s<N.
Then {x,; t;}§ is a finite (9, T)-chain of ¢, with

d(xi-(t;+S), Xi1-8)=0 for every 0<s<N and /=0, 1.
There are x€ K; and g=Rep such that
(%) d{(xex8)*N, x-(g(s)+N))=e for every 0=s<t,+¢,+¢,.

Since d(b, x-N)=d(x,N, x-N)<e<f(0)/2, the point x-N must be e-near and
in the left hand side of the point b with respect to the positive direction of the
semi-flow ¢y (see Figure 1). And, since x,<x,-f,, the point x-(g(t,)+N) must
be also in the left hand side of x;. Moreover the point x-(g(s)+N) must be
e-near and in the left hand side of the point (x.+s)-N for every s<[0, t,+1,],
thus we conclude that

x-(glty+1t)+N)eCIKT).
Since d(x;-N, x-(gto+t)+N))=d((xo*{t,+1))-N, x-(glto+t)+N))<e, we have
x-(glto+t)+N)es B(x, N, e)NCUKT).
Since x,-N=CI(K7) and x,-(t,+N)=c¢, there is 1[0, ¢,] such that
x-(glto+t,+1)+N)eCUKH)—BCUKY), &)  or
Xo-(t+N)=(xo%{o+t,+1))- NeCl(K7)—BCUKT), €).

This contradicts (xx).

Similarly, assuming the condition (P) and f(1)#1, we can derive a contradic-
tion. This completes the proof of [Proposition 4.2

The following Proposition completes the proof of [Theorem 1l

PROPOSITION 4.3. If (I, f) has the finite P.O.T.P., then (K;, ¢;) has the
finite P.O.T.P.

Proor. To simplify the notation, we denote (K, ¢)=(K}, ¢,). Assume that
(I, f) has the finite P.O.T.P. We shall prove that (K, ¢) has the finite P.O.T.P.

Let ¢>0 be given. By [Lemma 3.1(2), there is an ¢,>0 with ¢,<e/2 such
that

d((x, &), (x’, §)=2¢, implies d(B(x, &), Bx’, §))=e/4

for every (x, &), (x’, &Ye L% (6=+4, —) or L. Since L :[,—(0, o) is uniformly
continuous [Lemma 3.11(1)), we can take an ¢,>0 with &;<e,/4 such that

d(x, y)<e, implies |L(x)—L(y)[=¢,/4
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for every x, y=l,. By our assumption, there is a d,>0 with 0,<e; as in the
definition of the finite P.O.T.P. of f corresponding to &;. Take a x,>0 with
£0<qo/12 such that d(u, u-1)=<e/3 holds for every t=[—9%,, 9%,] and ucK.
There is a §,>0 with d,<0,/3 such that d(u, v)<d, implies

d(z(u), z))=0,/3 and  d(B7'(w), B (W)=e,/12
for every u, ve K(k,). We choose 6>0 and >0 with 5<e,/12 which satisfy
the following ;
C. 1 B(D(%), 6)c D(2y), diamD(29) <9,
D2n)NI [ =3k, 3x,]=D ;

(C.2)0  B(P(), HNBQW, k), H=@, BQ*(, k), HNK;=0,
B(Q*(y, k), HNBQ (7, ), 8)=0, |
B(P(n), 0)NK(k)C Ky ;

(C.3)  BU-[—Jjke, jkol, O)CI-[—(+Dro, G+Dro] (=1, 2);

(C.4) d(u, v)=d implies d(l(u), {)=d,
for every u, vel-[—3k, 3k,].

Take T,>0 such that
(C.5) if ue K—(Dxn)UP(y), then (u-0, TN+,
(C. 6) if ueK—Dn)UQ(n)), then (u-(—T, ODNI+D.

Put T=T,+6k,.

Let a finite (9, T)-chain {u;; t;}% of ¢ be given. We define #;=u;-t; for
0=/<k. Without loss of generality we may assume that u;= K, for each 0=;
<Pk, because K, is dense in K. We must show that {u;; #;}¥ is weakly e-
traced by some point in K. This process is divided into three steps.

Step 1 (Normalization of chain). We construct a new chain I'={v;; s;}&
from {u;; t;}% Put v,=u, and #;=t,. Recursively define v;€ K, and s;=0 as
below. If

u, I1-[—2k,, 2r,] (notice then #@;..€1-[—3k,, 3k,]),
or
u,I-([—3k,, 31— [—2K0, 2k,]) and i eI-[—2k, 2k,],

then define
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vi={(uq),
ti=t;—75% where ;€[ —3k,, 3x,] with {(u,)=u; 7},
Sic1=ti1+ti where #;_,€[—3k,, 3k,] with @y )=0-1-%-4.

Otherwise, define
Vi=Uq, ti=t; and Si-1=1i-1.

Finally define s,=t,.

Using (C.3) and (C.4), we can verify that the above construction of
{vi; ss}% implies
d(;-si, Vi+1) =0, and 5;=2T—6k,=T,

for every 0=/<k. Thus {v;; s;}§ is a (0,, To)-chain of ¢ with v,;e K, (0</<k).
This is called the normalized chain of {u;; t;}k

LEMMA 4.4. Let {v;; s;}t be a normalized chain and denote 0,=v;-s;. Then
the following holds.

(1) vy, 0, €D0(K—1-(—2Kq, 260)) Kk ;

(ii) viel iff 0;.,€1;

(i) v, &I implies D&l and dDi-y, v:)=0;

(iv) 0,1 implies vy &I and d©y, viy)=0.

PROOF. These are immediately obtained from the above construction of
normalized chain.

LEMMA 4.5. If the normalized chain {v;; s;} is weakly e/2-traced by some
point ve K, then the original chain {u;; t;}§is weakly e-traced by the same point v.

PrOOF. Put S;=R,=0, S;=>{"s; and R;=Xi%; for 0<i<k+1. We
‘define h(S;)=R; (0=/=k-+1) and extend & linearly between these points. Then
h belongs to Rep. Let g=Rep be a reparametrization under which {v;; s;}% is
weakly e/2-traced by v. Put g’=g-h. Then g’ belongs to Rep.

For each 0=:/=k-+1, take o;=[—3k,, 3x,] with v;=u;-0;. For every te=
[R;, Ris1], since h(t)—S;=0{—R;)si/t;, we have

loit+i—Ri—h®)+Si| = o]+ |ti—si| =9,
By the choice of &, it follows that
d(uext, v- g’ =d(u;-(t—Ry), ui-(g;+h@t)—S5)
+d;- (R(1)—Sy), v-g(h®)=e

for every t<[0, S;4:]. This completes the proof of
It remains only to prove that the normalized chain {v;; s;}% is weakly ¢/2-
traced by some v=K and g&Rep.
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Step 2 (Signs). For the normalized (9, To)-chain ['={v;; s;}f, we denote
7:=0;-[0, s;]. Define
1 if 0, s, NI+ QD
sgn(y)=1 —1 if (v;-(0, s;)N\I=@ and v;, 0,€ B(D(y), 0)
0 otherwise.

Without loss of generality we may assume that sgn(y,)=sgn(y;)=1 and v,, 9,<
I, (prolong 7, for negative direction and 7, for positive direction if necessary).

LEMMA 4.6. For each 0=i=<k the following holds.
(i) If sgn(r)#1 and sgn(y;+)#1, then s, v € B(D(y), 0).
(ii) If sgn(y;-y)=-—1, sgn(y,)=0 and sgn(y;+1)=1, then

Dy Vit €EKF or 04 Vi1 €EKT.

(i) If sgnri)=1, sgn(r)=0 and sgn(yis)=—1, then v;_, vi<Ki.

PrOOF. Put D=D(y), P=P(y) and Q=0Q(», k). At first we shall prove
(i). Since Wi41-0, ToDINIC(W341+(0, s IN=Q, we have v,,, D\UP by (C.5).
Since ;- (—T,, 0NIC ;- 0, s;)NI=@, we have

0. €(DVQMNK—I-(—2k0, 2k:))CDUQ
by (C. 6) and Lemma 4.4(i). Also Lemma 4.4(iv) implies that
d(D;, vig) =0.
Using the first condition of (C. 2), we obtain that
0, €(DVQN(B(D, 0)\UB(P, 0))=DU(QNB(D, 0))CB(D, d).

Similarly we can prove that v;.,= B(D, 0),

Next we shall prove (ii). Since sgn(y;-;)#1 and sgn(y;)+1, the above (i)
implies that v;=B(D, 9). Since sgn(y;)#—1, 9,&B(D, d). From this and the
fact that (0;-(—T,, 0))NIC(v;-(0, s;))NI=@, using (C. 6), we have

v,€(DUQ)—B(D, 0)CQ.
Since d{@;, v;4+1) =0, it follows that
ﬁi) Ui+leB(Q+(n) ,CO); 5) or ‘Di; Ui.*.]_EB(Q_(??, ,‘:O)y 6)

By the second condition of (C. 2), we obtain (ii).

Finally we shall prove (iii). Since sgn(y;)#1 and sgn(y::,)#1, the above (i)
implies that 9, B(D, d). Since sgn(y;)+—1, we have v;& B(D, §). From this
and the fact that (v;-(0, T, )NIC ;- (0, s;DNI=, using (C.5), we have

v,eP—B(D, 3).
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Since d(D4-q, v:)=0, 0,_,B(P, 6)—D. From the last condition of (C. 2) and the
fact that 9;_,, v;€ K(x,), we obtain (iii). The proof of is completed.

LEMMA 4.7. Take y; with sgn(y;)=1 and put C={sgn(yq)} &% for m=1. If
c=1{1, e, —1, —1, -+, —1, ', 1} (g, ¢'=0 or —1), then

d(@®:), TWism))=0;.
PROOF. Since d®;, v:+1)<=0, and d®;1m-1, Vi+m) =0, Wwe have
d(z@:), 7(ir1))=0,/3  and  d@Dism-1), TWViam))=0:/3.
By Lemma 4.61(i) we obtain that
Di+1, Virm-1€ B(D(y), 0).
Using (C. 1), we have d(®i41, Vism-1)=0,, SO that
d(xDi41), TWirm-1)=01/3.

Since n(vi+q)=nr(D;44) for a=1 and m—1, we get the conclusion by the triangle
inequality. The proof of [Lemma 4.7 is completed.

To construct a d,-pseudo-orbit of f, we set x?=n(v;) for each y; which
satisfies sgn(y;)=1. Take an orbit of x} under f;

{x$, x3, -, 259}

where
xfP=f(xd=x{-T(x) for 0=7=<k@)—1
and
k(3) . k@) +1 )
E)T(x%)ési+t(vi)< E} T(x%).

For {7y, --+, in}=1{i: 0=/<k, sgn(y,)=1}, we define
G={x?, xi, -, a¥74, x2,, -, xim}
where k,=k(@,), -+, bm=Fk@Gn). By we have
d(fxi™t, x5, )=d(x @), vy, )=é  for 0=j=m—1.

Thus G is a finite 0,-pseudo-orbit of f in I,. For simplicity we denote G=
{ve, ¥1, -+, ¥2}. By the choice of 9, there is y=I, such that

d(fty, vi)=<e;, and [‘(y)l(y;) for every 0<:<n.
Put S,;.=2%s;. We separete [0, S;.,] into
0:7’0<7’1< A <rn:Sk+l

such that vex(r;—0)=fy;., where vox{r;—0)=lim;4,;vo*t.
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Step 3 (Reparametrization).

LEMMA 4.8. For each 0<i<n—1, there exists a continuous map g;:[0, 71
—ri]—R such that

(i) gi«0)=0 and gi(s)=g:(t) for every s=i,

(1) (fry)-gilrin—ro=f"1y,

(i) dwex(rs+1), (fCy)-git)=e/2 for every t&[0, riy1—r:l.

If holds, then the proof of [Proposition 4.3 is completed as follows.
Define a continuous map 3:R—R by

i-1 '
git)= ;gj(rjﬂ—rj)‘l‘gi(t—ri) for te[r;, riad, 0=i=n—1,

and g: R—R by
gh=g)+1@) (R

where 1>0 small enough. Then we have g&Rep such that {v;; s;}& is weakly
e/2-traced by y under g. Thus it remains only to prove Lemma 4.8

ProOF. Let 0<:/<n be given. For ve[r;—0, 7;4,], there are 0=<;<% and
m>0 such that

vo¥(ri=0)E7) V*¥7i41€7j4m and  vex[r;—0, 7i+ljcgj0rj+a-
Put C={sgn(y,)} 4. The following five cases are possible;
@ C={1}, (b) C={1, 1},
() C=1{1, g, 1}, (d) C={1, g, g, 1}.
e) C={,a, -1, —-1,-,—1,0,1}

where ¢, 6’=0 or —1.

Here we prove only the case of C={1, 0, —1, —1, -+, —1, 0, 1}(the other
cases are similarly proved). Put z=f%y. For every x<I, we define an increas-
ing homeomorphism a;: [0, L(x)]—-[0, T(x)] by a,(0)=0, a,(L(x))=T(x) and

Bx, §)=0(x, az(§))  for every &€[0, L(x)).

This homeomorphism e, is well-defined, because § is one-to-one by
(2), and @ is a homeomorphism from {(x, )T« : 0} to its image by Lemma

3.13). Put sj,,=inf{s€[0, s;.:]: v;si-s€D(n)}. We set the following notation.
1) wi=fyi, W=, ; We=Vji1, w2:Uj+1‘3$'+1;
Ws=W;=1, ; Wi=Vjrm-1, Wa=Djim-1;
Ws=Vjim, Ws=fYi.

2 zy=nm(w,) for each 1=:<5.
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3 Se=0; S;=t(y) ; S:==S;+58h;
Ro=S8,+(sj01+ - +510) 1=a=m—1) ;
Ss=Rm-2; Si=Ru-1; Ss=Ru +T)—t(ws).
@) &=Xwy (1=i=5); &=1w) 1=i=4 and &=L(z).

It is clear that &,=£,=&;, z;=fy,., and z;=y;. Put L,=0 and L,=3¥¢—¢))
(1=7/<5). Define H(0)=0, H(L,)=1/2 and H(L;)=L(z), and extend H linearly
between these points. Then we have an increasing homeomorphism H : [0, Ls]
—[0, L(z)]. We claim the following ; for each 1=</<4,

(1) (s, wi) =3, (i) 1&m—E&lZe/12,

(i) 1&—1/2=e0/12, (v) 16— Lil Zeo/d,

(v') |H(E)—E|=2¢/3  for every &[0, L],

i) d(z, z0=e/2,

(vil")  d(@, vj41-1) =0 for every t&[s}iy, Sjeid,

iil")  d(@g, Vjra 1)=0, for every (€[0, s;1.], 2=e=m—2.

Indeed, (i) is clear for /=1, 2 or 4, because {v;: s;}% is a (3,, Ty)-chain. If /=
3, we have s, w,=B(D(y), 8) by Lemma 46 (i). Since diamB(D(y), 0)<d,, we
get (i’) for z';S. By the choice of d,, we have

10— & Sd(2ess, &), (21, EN=A(B (Wisy), B7H(0Y)
éso/lz s

so that (ii’) holds. Using @,=p(z., ég)eD(n)f\Kg and 9=¢,/12, we get (iii’).
Since l€3—~§2|:0, it follows that

=Ll = 3 (&bl Seo/d,
so that (iv”) holds. To see (v'), let £[0, L.] be given. If £<[0, L,], then
|H(&)—&|=11/2—Ls| Ze0/6

by (ii") and (iii"). If é=[L, L1, then it follows that

|H(E)—¢1=11/2— Ly |+ L(2)—1/2— Ls+ L,| =(eo/3)+ | L(2)— L(z5)| £2¢4/3,
because d(z, z;)<e¢; holds. This proves (v’). To see (vi’) we notice that

d(ziy 2141)50,/3=¢e,/12  for each 1=i/=<4 (by (i)).

From d(z, z;)<e, and d(z;, z;)<8,, we obtain (vi). Using Lemma 4.6 (i) and
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Lemma 3.1(5), we have
Visr-[Sj+1, Sj411CD(27).

Since diamD(27)<d,, (vii’) is proved. Similarly we get (viii").
Now we define g;(t) for t=[0, S;] by

az(H<az—;(t"_Sa—1+t(wa))+La—-l_Ea))
gz(t): for tE[Sa—h Sa]; a=1, 2; 4, 5,
| @ (H(a(So— S+t (wa)+Li—&)  for t=[S,, Sal.

By the definitions of a, and H, the above g; satisfies (i). We shall show
that g; satisfies (ii) and (iii). Let 1[0, S;] be given.

If t€[Sa-1, Sa) (a=1, 2), put é=a; (t—Se_1+t(wa))+La1—Ea. By
4.6 (iii), we have z,-(t—S,_1+t(w,))=w.-t€ K{. Since £=[0, L,], we have
H(#)<[0, 1/2], so that z-a,(H()=p(z, H)= K. Since

d((za, §—=Lo-1+Ea), (2, HE)))=max{d(z,, 2), |HE) —E&|+|Le-1—Eal}

gED »
we get

dex(ri+1), z-g:(1)=d(2a+t—Sa-1+twa)), z-a,(H(E)))
=d(B(zay E—Lo-11E0), Blz, HE)))=e/4
by the uniform continuity of S.
If te[S,, S;1, then vex(r;+t) < B(D(y), 0). Since w.< D(y), we have
dWex(r;+t), W) <0,=¢,/4. Since g;{t)=g(S,), we get
dex(ri+1), z- g«) = dWek(ri-+1), Wy)+d(Ws, 2+ g4(Sy))
<e/2.

If te[Sa-1, Sa) (=4, 5), put E=a;}(t—S,-1+t(we)+Lo-y—&,. Using Lemma
4.6 (ii), we obtain z,=I(z;). By the definition of the finite P.O.T.P. of f, we
have z€1(z;). Thus two points (2q, §—Lo-1+€a)=F" (2 t—S,-1+t(w,))) and
(z, H(§)) belong to either L% or L. Since

d((za, §—La-1+60), (2, H§)=max{d(ze, 2), |[HE) =]+ La-1—E&al}

é 80 y
we have

dex(ri+1), z-gi))=d(B(za, §—La-11+E4), Bz, HE))=¢/4.
If ¢t=S;, then
gi(Ss)=a,(H(az;(T (z5))+ L1—&:)) =a,(H(L(25)+ L,—&;))
=a,(H(Ls)=a,(L(2)=T(z).
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Thus it follows that
z2-g:(Ss)=2z-T(@)=/f(z) and
dex(ri+Ss), 2:g2:(S))=d(fyi, Vi+1)F+d(Vitq, fz)=e/4.

It has been proved that g; satisfies (ii) and (iii). This completes the proof of
Therefore the proof of [Proposition 4.3 is completed.

§5. Non-denseness of vector fields with the strong P.O.T.P.
In this section we study the strong P.O.T.P. of flows.

DEFINITION 15. Let ¢={¢'},cr be a flow on a compact metric space (X, d).
(X, ¢) is topologically transitive if for every non-empty open subsets U, V of X
and every T=0, there is t=T such that U-t"\V+@. A ¢-invariant subset A
of the nonwandering set 2 of ¢ is said to be a basic set if /A is closed and open
in 2 and (4, ¢) is topologically transitive.

DEFINITION 16. Let M be a compact C'-manifold and ¥*(M) the space of
all C*-vector fields on M endowed with the C*-topology. A vector field é=X'(M)
has the strong P.O.T.P. if the flow ¢: on M defined by § has the strong P.O.T.P.

DEFINITION 17. Two flows (X, ¢,), (X,, ¢,) are isomorphic to each other if
there is a homeomorphism % : X;—X, such that

hQi(x)=¢i(h(x))  for every x€X, and teR.

THEOREM 2. Let ¢={{"}cr be a flow on a compact manifold M. If ¢ has
a basic set ACM such that (A, ¢) is isomorphic to a geometric Lorenz attractor
(I?f, é5) with f(0)#0 or f(1)#1, then (M, ¢) does not have the strong P.O.T.P.

PrROOF. By [Theorem 1, (K;, ¢,) with f(0)#0 or f(1)#1 does not have the
strong P.O.T.P., so that (4, ¢) does not have the strong P.O.T.P. Thus Theo-
rem 2 is immediately obtained from the next [Proposition 5.1l

PROPOSITION 5.1.  Let ¢={¢'}cr be a flow on a compact metric space (X, d)
and A a basic set of ¢. If (X, ¢) has the strong P.O.T.P., then so has (A, ¢).
To prove [Proposition 5.1, we prepare two lemmas.

LEMMA 5.2. Let ¢>0 and a sequence {g.}necn of elements of Rep(e) be given.
Then there exists an element g of Rep(e) such that for every N>O0 there is a
subsequence {m}C N such that

gnl[—N, N]—g|[—N, N] uniformly as m—»co,

PrOOF. The definition of Rep(e) implies that {g,|[—N, N1} .cn is uniformly
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bounded and equi-continuous for every N>0. Using the Ascoli-Arzela’s theorem,
we obtain

LEMMA 5.3. The following are equivalent.

(1) (X, ¢) has the strong P.O.T.P.

(2) For every €>0 there exist 8, T >0 such that, for every finite (0, T)-chain
{x:; ti}e 0=k<o0) of ¢, there are x&X and g<=Rep(e) with

d{xext, x-g@t))=¢ for every t<[0, Spii].

Proor. Clearly (1) implies (2). We prove that (2) implies (1). Given ¢>0,
let 6, T>0 be as in (2). Let I'={x;; t;}icz be a (3, T)-chain of ¢. For each
neN there are y,=X and g,<Rep(e) such that

d(xgxt, Yn-gnt)=e for every te[S_,, S.].

Let {y,} converge to a point yX. By a reparametrization g&

Rep(e) is determined from {g,}. Then we can easily verify that I" is strongly
e-traced by y and g.

PROOF OF PROPOSITION 5.1. Since A is closed and open in £, the distance
between 4 and £2-— A is positive; i.e.

50=d<A, Q_A)>0.

Let 0,/2>¢>0 be given. There are 0, T>0 as in Lemma 5.3(2). Without loss
of generality we may assume that 0<8,. Let a finite (0, T)-chain ['={x;; t;}%
of (4, ¢) be given. By topological transitivity of (4, ¢), there are x4, =4 and
tp+1=T such that

d(xp-tr, Xp+1)=0 and A(X pe1trss, X0)=0.
Define

Ri=Xi-n(k+1 and Si=ti-n(k+1n

for every n(k+1)=i<(n+1)(k+1), n€Z. Then {z;; s:}icz is a 0, T)-chain of
(4, ¢). Thus there are ze X and h=Rep(e) such that d(zet, z- h(t))<e for every
teR. Put p=2%*"%; and suppose a sequence {z-h(np)},zo of points in X.
If {z-h(np)}.zo is finite, then z is a periodic point, so that z£. Since
d(z, x,)=e<0,, we have z€ 4. Thus [’ is strongly e-traced by z under /.
Suppose {z-h(np)} 2o is infinite, then a subsequence converges to some point
yeX. It is easy to see that y belongs to A. Define g,=Rep(e) by

g.t)=h(np+t)—h(np) for teR.
By there are g<=Rep(e) and a subsequence {m}CN such that

z-h(mp)—y and
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gnl[0, p1—gl[0, p1  uniformly as m—oco.

Then, for every t<[0, 2%,]JC[0, p], we have
d(xoxt, y-g(®)=lim d(xex(mp+1), (z-h(mp))- gm(®))
= lim d(xpx(mp+1), z-h(mp-+t)=e.

Thus I' is strongly e-traced by y under g.
In any case I” is strongly e-traced by some point in 4. By
(4, ¢) has the strong P.O.T.P. This completes the proof of [Proposition 5.1}

THEOREM ([5], [15]). There is an open set U in the space of all C:-vector
fields on R® such that each €=U has a basic set isomorphic to a geometric Lovenz
attractor (K, ¢7) with f(0)#0 or f(1)+1.

Let M be a compact 3-manifold and suppose R:C M. Then the above
theorem implies that

there is an open set UC¥*(M) such that each £=U has a basic set
isomorphic to a geometric Lorenz attractor (ff 7, @) with f(0)#0 or
f(+1.

Combining this fact and we conclude the following.

THEOREM 3. Let M be a compact 3-manifold and X*(M) the space of all C*-
vector fields on M endowed with the C:-topology. Then there exists an open set
UCX*M) such that each §€U does not have the strong P.O.T.P.

- REMARK. A. Morimoto proposed in the next problem. “Is the set of
diffeomorphisms with P.O.T.P. residual in the set of all diffeomorphisms of a
compact manifold?” implies that the answer of this problem for
flow case is negative.
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