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The purpose of this paper is to give an introduction to the homological
theory of comodules over coalgebras and Hopf algebras. Section 1 is a self-
contained exposition of basic concepts such as cotensor product, injective
comodules and change of coalgebras. Some results analogous to the results
(Cline-Parshall-Scott [2], Hochschild [5]) on rational modules over affine algebraic
groups are proved. Section 2 deals with the representation theory of co-Fro-
benius coalgebras and coseparable coalgebras. We reproduce in this section
some of Lin’s results and Larson’s results [6], partly with simplified proof.
Section 3 deals with the cohomology theory of coalgebras.

Throughout this paper, the field % is fixed. Vector spaces over % are called
k-spaces, and linear maps between k-spaces are called k-maps. We freely use
the terminology and results of Sweedler [9].

§1. Coalgebras and comodules.

A coalgebra over k is a k-space C together with k-maps 4: C—C&C and
¢: C—k such that UIQNHA=(ARXN4 and (IRe)d=(eRNA=I. If C is a coal-
gebra, a left C-comodule is a k-space M together with a k-map py: M—CQRM
such that (IQex)pu=URQNpy and (eRNpy=I. If M and N are left C-comod-
ules, a comodule map from M to N is a k-map f: M—N such that UQf)ox=
onf. The k-space of all comodule maps from M to N is denoted by Com (M, N)
and the category of left C-comodules is denoted by °M. Similarly, we define
MC¢, the category of right C-comodules.

1.1. Cotensor products and injective comodules.

If M is a right C-comodule and N is a left C-comodule, the cotensor product
M[¢ N is the kernel of the k-map

oxQRI—IQRpy : MON—MRCRN .

Given comodule maps f: M—M’ and g: N—N’, the k-map fQRg: MIN—M QQN’
induces a k-map
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fleg: M[Je N=M' [ N'.

It is clear that —[];,— is an additive covariant bifunctor from M¢X°M to M,,
the category of k-spaces, and is left exact. The mapping m&c—e(c)m and
c@n—e(c)n yield natural isomorphism M[ . C=M and C[ o N=N. We shall
usually identify these isomorphic k-spaces.

Let C and D be two coalgebras. Suppose that M in addition to being a
left C-comodule with structure map p~: M—CQ®M, is also a right D-comodule
with structure map p*: M—MD and that (IQp*)p~=(p~"XRI)p*. We then say
that M is a (C, D)-bicomodule. If N is a left D-comodule then the map

p~®I : MON—CRQMN

gives a left C-comodule structure to MQN and M [, N is a C-subcomodule of
MEN. Similarly if L is a right C-comodule then L[, M becomes a right
D-comodule. With the structure described above we have the associativity of
cotensor product :

L M) N=L e (MTIp N).

If N is a left C-comodule which is finite dimensional as a k-space then the
dual space N* is a right C-comodule with structure map

N*—=Hom(N, O)=N*QC, n*—{IRn*)py .
If M is a right C-comodule we have canonically
M (e N=Comg(N*, M).

Since every comodule is the union of its finite dimensional subcomodules, this
implies that the functor M [J;— from °M to M, is exact if and only if so is
the functor Comg(—, M) from MC¢ to M, (cf. Takeuchi [11]). A right C-co-
module M is called injective (or C-injective) if the functor Coms(—, M) is exact,
and is called projective (or C-projective) if the functor Coms(M, —) is exact.

By the flatness of injective comodules and the associativity of cotensor
products we have:

PROPOSITION 1. Let L be a right C-comodule and M be a (C, D)-bicomodule.
If L is C-injective and M is D-injective then L[ ¢ M is D-injective.

We use the opposite coalgebra C°? to convert a left (or right) C-comodule
V into a right (or left) C°?-comodule. Every (C, D)-bicomodule M becomes a
left CQD°?-comodule. Similarly M may be regarded as a left P°p®C-comodule,
a right C°?®D-comodule and a right DC°?-comodule.

Let C, D and E be coalgebras. For a (D°?, C)-bicomodule L, a (C, E)-bico-
module M and a (E, D°?)-bicomodule N, we have a natural isomorphism

(LT e M) TpeeN=L [Ceep(M [z N).
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PrOPOSITION 2. (1) Let L be a (D°?, C)-bicomodule. If L is injective as a
right CQD-comodule then it is injective as a right D-comodule.

(2) Let L be a right D-comodule and M be a right E-comodule. If L is
D-injective and M is E-injective then M@N 1is injective as a right DQE-comodule.

PrROOF. (1) Setting M=C and E=F in the above isomorphism, yields the
isomorphism for every left D-comodule N,

LTp N=L[Toep(CRN).

This shows that the functor L[ Jp,— is exact.
(2) Setting C=F, yields the isomorphism for every left D& E-comodule N,

(LQM) [pee N=L [ 1p(M[Jg N).

This shows that the functor (LQQM) [ Ipez— is exact. Q.E.D.
Let W be a right C-comodule. For every k-space X, XQW is a right
C-comodule with structure map

IQow: XQW—XQWEC,

which we denote (X)QW. (X)Q®W is a direct sum of copies of W. The next
well-known result is fundamental.
PROPOSITION 3. Let V be a right C-comodule and X be a k-space. Then
the map
¢ : Comq(V, (X)RC)—Hom(V, X)

gwen by ¢(F)=UKe)F for each FeComy(V, (X)XC) is a k-isomorphism. The
inverse ¢ of ¢ is given by ¢(f)=(fQ)py for each feHom(V, X).

PROOF. Straightforward.

A right C-comodule M is called free if there exists a k-space X such that
M=(X)QC as right C-comodules.

COROLLARY 1. FEvery free comodule is injective.

Note that an injective comodule need not be free. For example, take C=
C.PC,, the direct sum of coalgebras C, and C,. Then C, is clearly not free,
but is injective as a C-comodule. In [11], Takeuchi showed that if C is cocom-
mutative and irreducible then every injective comodule is free.

COROLLARY 2. Every comodule can be embedded in a free comodule.

Proor. For every right C-comodule J/, its structure map p, is a C-comod-
ule map from M to (M)XC. Since (IQe)py=I, py is a monomorphism.

Q.E.D.

We note that a C-comodule V is injective if and only if it is a direct
summand of a free C-comodule.

If C is a coalgebra, then C*=Hom(C, k) is an algebra, with multiplication
defined by af=(a®Qp)4d: C—Fk, where a, fC* If V is a right C-comodule,
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then defining c*—=v=UQc*)py(v) for c*C* veV, makes V into a left C*-
module. In a similar fashion, left C-comodules have a right C*-module structure.
For right C-comodules M, N we have

Com¢(M, N)=Mod¢«(M, N).

Thus M® may be regarded as a full subcategory of the category of left C*-
modules. It follows that if a right C-comodule M is injective (resp. projective)
as a left C*-module then it is injective (resp. projective) as a right C-comodule.

PROPOSITION 4. Let M be a finite dimensional right C-comodule. Then M
1s tnjective (resp. projective) as a left C*-module if and only if it is injective
(resp. projective) as a right C-comodule.

ProOF. We need to show the “if ” part. Suppose that M is C-injective.
Then the map

00— M —PL) (MYKRQC=CPH - PC (finite times)

splits as right C-comodules, and so as left C*-modules. Taking the dual, the
map

C*P - BC* —> M* —> 0

splits as right C*-modules. This means that M* is projective as a right C*-
module. Therefore M=M** is injective as a left C*-module.
Next we show that if M is C-projective then it is projective as a left

C*-module. Since M* is injective as a left C-comodule, it follows from the
above that M* is injective as a right C*-module. Therefore M=M** is pro-

jective as a right C*-module. This completes the proof.

1.2. Change of coalgebras.

We shall consider two coalgebras C and D, and a coalgebra map = : C—D.
Every right C-comodule V may be treated as a right D-comodule with struc-
ture map

(zQ@Dp: V—VRC — VKD,

which we denote V.. .Similarly for left comodules. In particular C itself may
be regarded as a left or a right D-comodule. Regarding C as a (D, C)-bicomod-
ule, we form the right C-comodule

Wr=W {1, C, where W is a right D-comodule,

which we call the induced comodule for W.

PROPOSITION 5. The following ave equivalent:
(i) The functor —[1pC from MP to MC is exact.
(ii) C is injective as a left D-comodule.
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(iii) Ewvery injective left C-comodule is injective as a left D-comodule.

PrOOF. The equivalence of (i) and (ii) has already been proved in 1.1. (ii)
implies (iii) by [Proposition 1|, and (iii) implies (ii) since C is an injective left
C-comodule. Q.E.D.

The next result is a generalization of

PROPOSITION 6. Let V be a right C-comodule and W be a right D-comodule.
Then the map
¢: Comg(V, W*) — Comp(V ., W)

giwen by ¢(F)={ [ xn)F, for each FeCom(V, W7), is a k-isomorphism. The
inverse ¢ of ¢ is given by H(f)=(fQI)py for each f€Comp(V,, W).
PrOOF. For FeCom(V, W), the following diagram is commutative :

o

v F - WO,C T _wo,D = W
e

FRI
VRC ® > WO,CRC 14 o
i]@m J'mngm

FQI 102Q1
VD > WO,CQD ——~ <" > WO,DQD = WRD.

This implies that ¢(F)eComp(V,, W).
Next we show that ¢(f)€Comg(V, W) for f&€Comp(V,, W). We have

(owQDP()=(pw fRD pr=(fRODURT) py &) py
=(/RIRXDURLrRDUIR ) py
=IQxDA(fRD py=UA(x@DD(f) .

This concludes that the image of the map ¢(f) is contained in W[, C. So
¢(f) is clearly a C-comodule map from V into W=. It is easily checked that
¢¢=I and ¢g¢p=1I. Q.E.D.

COROLLARY. If a right D-comodule W is injective then W7 is injective as
a right C-comodule.

A right C-comodule V is said to be zm-injective if for every exact sequence
of C-comodules

0 M M M 0

which splits as D-comodules, the sequence

0 — Comy(M”, V) — Comy(M, V) —> Coms(M’, V) —>0
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is also exact. [Proposition 6| shows that W~* is =-injective for every right
D-comodule W. Let V=V, PV,, where V, and V, are subcomodules of V. Then
V is zm-injective if and only if V, and V, are z-injective.

For every right C-comodule V, the structure map p may be regarded as a
C-comodule map from V into (V. )*=V [ JpC. The composition

0 I =
V—VI1,C

VIilp D=V

is the identity, which shows that V map be treated as a direct summand of
(V[pC). as a D-comodule, since I []z is a D-comodule map. This observation
leads us to the following result.

PROPOSITION 7. The following statements concerning a right C-comodule V
are equivalent:

(1) V is m-injective.
(ii) Every exact sequence of C-comodules

0 14 M N-—0

which splits as D-comodules, also splits as C-comodules.
(iii) There exists a C-comodule map g: (V,)*—V such that pg=I, that is, V is
a direct summand of (V.)® as a C-comodule.

PROPOSITION 8. Let V be a right C-comodule. If V is m-injective and
D-injective, then it is C-injective.

Proor. By [Corollary| of [Proposition 6, V[ ], C is C-injective. Since V is

r-injective, V is a direct summand of V[, C as a C-comodule. Therefore V
is C-injective. Q.E.D.

1.3. Comodules over Hopf algebras.

A Hopf algebra over k is a k-space H together with k-maps 4: H—HQH,
e: H—k, m: HOH—H, u: k—H and S: H—H such that (H, 4, ¢) is a coalgebra
over k, (H, m, u) is an algebra over %k, m and u are coalgebra maps and
m(IQS)d=ue=m(SQI)4. The map S is called the antipode of the Hopf algebra.
Let V; (1=1, 2) be right H-comodules with the structure map p;: Vi—=V.QH
(1=1, 2). Then the composition

p:([®[®m)([®t®l)(P1®Pz) : ViQV—V,.QV.QH

gives V&V, the structure of a right H-comodule, where ¢ denotes the twist
map, which we call the fensor product comodule of V, and V,.

Now we shall consider two Hopf algebras H and L, and a Hopf algebra
map «: H—L (i.e. = is both a coalgebra map and algebra map, and z#S,=Syx).
Using the fact that the antipode is an anti-coalgebra map and an anti-algebra
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map, we have the next result.

PROPOSITION 9. Let V be a right H-comodule and W be a right L-comodule.
Then the map

¢: VROW =(V.QW)"

given by ZvQRQuRh)=ZvQ@uw®vwh (we write py(v)=2v0QVw) is an
isomorphism of H-comodules. The inverse ¢ of ¢ is given by J(ZvQwRh)=
20 0Q@w&S(vuy)h.

Taking L=Fk, n=eyz and W=Fk, we have:

COROLLARY 1. Let V be a right H-comodule. Then there exists an 1iso-
morphism

VRH=(V)RXH
as H-comodules.

COROLLARY 2. Let V be a right H-comodule and W be an injective right
H-comodule. Then the tensor product comodule VRW is H-injective.

PrROOF. Since W is injective, W is a direct summand of (W.)=(W)RH.
Hence VW is a direct summand of V(W.,:. By the above Proposition,
VRW.)>=(V.QW.), and this implies that VQW is H-injective. Q.E.D.

An algebra map w: L—H is called a (right) cross-section of =: H—L if it
is a right L-comodule map, that is, (JQn)dzo=(w®I)4;. Assume that there

exists a cross-section. Then, defining h—I=hw(l) for heH, =L, H makes into
a right L-module. We compute

(IRm)A(h—D=IQm)A(h)-(IQm) (1))
=(Zho@r(hw) (Ewlla)R o))
=2 ha—l@r(hw)le .

This shows that H is a Hopf module. So we can apply the structure Theorem
of Hopf modules (Sweedler [9], p. 84) to obtain an isomorphism of H to (H)QL
as L-comodules, where H'={hes H|(IQr)4(h)=h®1}. Thus we have proved:

PROPOSITION 10. Let nw: H—L be a Hopf algebra map. If there exists a
right cross-section of w, then H is free as a right L-comodule.

§2. A bilinear form for coalgebras.
2.1. Co-Frobenius coalgebras.

We shall consider a coalgebra C and a bilinear form b;: CXC—%. Then b
induces two k-maps 7:CQRC—Fk and 0:C—C* by setting 7(cQRd)=b(c, d) and
0(d)(c)=0b(c, d), for ¢, d=C. The next Lemma is clear.

LEMMA 1. In the above situation, the following are equivalent:
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(i) Zewblew, d)=2b(c, dwy)dw, for all ¢, d=C.
(ii) blc—c*, d)=blc, c*—d), for all ¢, d=C, c*=C*,
(iii) (IR)NAKQN=(zQI)IR4J).
(iv) 6: C—C* is a left C*-module map.

A bilinear form b: CXC—Fk is called C-balanced if the above conditions
hold.

LEMMA 2. Let b: CXC—k be a C-balanced bilinear form and X be a sub-
space of C. Then we have:

1) If X is a left coideal (i.e. A X)CTCRX), then X*={d=C|b(x, d)=0
for all x X} 1s a right coideal.

(2) If X is a right coideal of C, then *X={ceC|blc, x)=0 for all x X}
1s a left coideal.

PrROOF. Let X be a left coideal. Note that A X)CCRX and X—C*C X are
equivalent. Now we have

b(X, C*—=X1)=bX-C*, X" )Cb(X, X*+)=0.

Hence C*—X*C X", and so X*is a right coideal. This completes the proof of
(1). In the similar way we have the proof of (2). Q.E.D.

A bilinear form b: CXC—Fk is called left non-degenerated if C+={0}, equiv-
alently §: C—C* is injective. A coalgebra C is called left co-Frobenius if there
exists a bilinear form b:CXC—Fk which is left non-degenerated and C-balanced,
i.e. if there exists a left C*-monomorphism from C to C*. We note that if a
coalgebra C is co-semi-simple then it is left (and right) co-Frobenius. For we
let C=@;C;, where C; are simple subcoalgebras of C. Since A;=C¥f is a
simple algebra, we have A;=A¥ as left A;-modules. Hence we have C;=C¥
as left C¥-modules, and so as left C*-modules. Thus we have

C=P.Cr=P.Cr — TLL,CF=C*

as left C*-modules.
THEOREM 1 (I-p. Lin). Let C be a left co-Frobenius coalgebra. Then we have :
(1) An injective cover of every finite dimensional right C-comodule is finite
dimensional.
(2) Every injective right C-comodule is C-projective.
PrRoOOF. (1) Let M be a finite dimensional right C-comodule and let o(M)

= 6n9 S: be the socle of M (i.e. the sum of all simple right C-subcomodules of
i=1
M). For the notion of socles and injective covers, we refer to Green [4]. It
is easy to see that an injective cover J(M) of M is isomorphic to é J(Sy),
i=1

where J(S;) denotes an injective cover of S,. Therefore in order to prove (1)
it suffices to prove that J(S) is finite dimensional for each simple right C-sub-
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comodules S of M. We may assume that S is a minimal right coideal of C and
J(S)CC. Let x be a non-zero element in S. Then we have S=C*—x. Since
C is left co-Frobenius, there exists an element ¢ in C such that b(c, x)#0. We
claim that (¢c—C*)*\S={0}. Suppose that there exists a non-zero element y in
S such that y lies in (¢—C*)*. Since S=C*—x=C*—y there exists an element
c¢* in C* such that ¢*—=y=x. Then

blc—c*, y)=blc, c*—=v)=b(c, x)#0.

But ye(c—C*)* implies b(c—c*, y)=0. This is a contradiction.

Since ¢—C* is a left coideal, (c~—~C*)* is a right coideal, by Lemma 2. It
follows that (¢c—C*)*\J(S)=1{0}. In generally, if X is a finite dimensional sub-
space of C, X* is cofinite dimensional since X* is the kernel of the map C—X*
defined by ¢—6(c)|X. Thus we have that (¢—C*)* is cofinite dimensional. It
follows that J(S) is finite dimensional. Thus (1) is proved.

(2) Let V be an injective right C-comodule and let o(V)=&5,;S; be the
socle of V. Then we have V=, /J(S,). Since J(S;) is finite dimensional it

follows from that /(S;) is an injective left C*-module. The
embedding

0
JSHEC — C*

yields that J(S;) is a direct summand of C* as a left C*-module. Therefore
J(S;) is a projective left C*-module, and so is V. Thus V is a projective right
C-comodule. This completes the proof.

COrROLLARY 1. If C is a left co-Frobenius coalgebra then C is projective as
a right C-comodule.

COROLLARY 2. Let C be a left co-Frobenius coalgebra. Then the category
of left C-comodules has enough projectives.

ProorF. We have to show that for each left C-comodule N there exists an
epimorphism P—N—(0 with P projective. Without loss of generality, we may
assume that N is finite dimensional. Then we consider a monomorphism of
finite dimensional right C-comodules 0—N*—J(N*). Taking the dual, we have
an epimorphism of left C-comodules J(N*)*—N—Q. Q.E.D.

2.2. Integrals.

An augmented coalgebra is a coalgebra C together with a coalgebra map
u: k—C. Clearly u(l) is a grouplike element of C. Using u: k—C we may
convert any k-space X into a left (or right) C-comodule ,X (or X,) by setting
p(x)=u)@x (or p(x)=x@u(l)). In particular % has a left (or right) C-comodule
structure. Every Hopf algebra H may be regarded as an augmented coalgebra
with unit map u: k—H.
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xEC* is called a left integral if x is a left C-comodule map from C to &,
i.e. Zeawydx, cayp=<x, cou(l) for all ceC. We note that x=C* is a left integral
if and only if ¢*-x=<c* u(l)px for all ¢c*C*. An augmented coalgebra need
not have a non-zero integral. However, if C is left co-Frobenius then C has a
non-zero left integral. In fact, it is easily checked that b(—, u(1))=60(u(1)) is a
non-zero left integral.

PROPOSITION 11. Let C be an augmented coalgebra. If C is finite dimen-
stonal and left co-Frobenius then the k-space of left integrals is one dimensional.

PrROOF. We have that C=C* as right C-comodules. Therefore

Comg(C, R)=C* o k=Cl s k=k. Q.E.D.

LEMMA 3. Let H be a Hopf algebra. If ] is a non-zevo right ideal and a
right coideal, then J is equal to H.

PrROOF. If &(J)={0} then for all he ], h=3e(h)he =0 (since 4(J)CTJRH).
Hence we must have ¢(/)+# {0}. Thus there exists an element # in J such that
e(h)=1. Since 1=e(h)=2h,S(h«w) and J- HCJ, we have l</. Q.E.D.

THEOREM 2 (Lin-Larson-Sweedler-Sullivan). The following statements con-
cerning a Hopf algebra H are equivalent:

(i) H has a non-zero left integral.

(ii) H 1is left co-Frobenius.

(iii) H has a non-zero right integral.

(iv) H is right co-Frobenius.

PrROOF. (i)>(i). Let x be a non-zero left integral. We define a bilinear
form b: HXH—FE as follows;

ble, d)=<x, ¢S(d)), for all ¢, d=H.
Then we compute

2b(e, day)dm=2<x, cS(dw»dw
=2 cwyS(d @)%, cerSdwNdw

=2 cweldw)Xx, carS(dw>
=>cwlx, cSAN=2cwblcw, d).

This shows that b: HXH—Ek is C-balanced. Next we show that H*
(={d=H|blc, d)=0 for all ceH}) is zero. Let deH* and heH. For all
ce H, we have

blc, dh)=<x, ¢S(dh)>=<x, cS(h)S(d)>=b(cS(h), d)=0.

Hence dheH, so H* is a right ideal of H. Since x+0, H* is a proper right
ideal. Also H* is a right coideal, by Therefore we have H*={0},
by
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(ii)=>(iii). In the proof of [Theorem 1|, (1), we obtained that H contains a
proper right coideal of finite codimension. Therefore, by (2.14) in Sweedler [10],
H has a non-zero right integral.

(ili)2>(v). The proof is the same as (i)=>(ii).

(iv)=>(i). The proof is the same as (ii)=(iii).

2.3. Coseparable coalgebras.

Let C be a coalgebra. For every right C-comodule V, we have Com¢(V, C)
=V*, by [Proposition 3 If in addition V is a (C, C)-bicomodule then we have
an isomorphism

Comg, o(V, O)={re VIR e =0 p*},

T—> €T

I~ 7.

A coalgebra C is called coseparable if there exists a k-map 7: CQC—k such
that IR ARQD=(rRNIXJ) and td=¢. We have immediately from the above
isomorphism that C is coseparable if and only if there exists a (C, C)-bicomodule
map 7 : CRC—C such that #4=I. We note that 4 may be viewed as a (C, C)-
bicomodule map from C to CQRC. Thus we may conclude that C is coseparable
if and only if C is injective as a CRC°?-comodule.

Let C and D be coalgebras and let 7: CQC—E be a k-map such that
IRNARQN=(zR)IXJ). For any (C, D)-bicomodule M, N and for each fe
Compy(M, N), we define a k-map

fo: M—N

by setting fo=CQRDURQpn)IXR))ou.
LEMMA 4. In the above situation, fe is a (C, D)-bicomodule map.
ProoF. We can construct the following commutative diagram :

I )
lp [ @0 ‘s | @0 . lreree o
MOD 25 CRMEID — = CONGD — o CRCRNDD e NGD

This shows that f; is a right D-comodule map. We also have a commutative
diagram :

I
M—2 com I gy 1@ coooN —2L, N
lp 14@1 ld@[ lP
I IRI IRIR
C®M~&>C®C®M erer CRCQN —®—>pC®C®C®N@—@>IC®N .
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This shows that f; is a left C-comodule. Q.E.D.
LEMMA 5. Let L, M, N and P be (C, D)-bicomodules. For each ge&
Come, p(L, M), f€Comp(M, N) and heCome, p(N, P), we have (hfg)c=hfcg.

PROOF. (hfg)e=(tQRNUKpr)IRhfg)pL
=QRNURQIQNUIRQp¥f)IRg) ez
=h(zQ@DNUQowf)oug=hfcg. Q.E.D.

LEMMA 6. Let C be a coseparable coalgebra. Let M and N be (C, D)-
bicomodules. If f: M—N is a (C, D)-bicomodule map, then fe=Ff.

PROOF.  foe=(QNURQpx f)pou
=(Q@DURIRNIQ ) ou
=QDUKD px
=feQDpu=1. Q.E.D.

ProrosiTION 12. If C is a coseparable coalgebra and D is a co-semi-simple
coalgebra then CRD is a co-semi-simple coalgebra. :

Proor. It suffices to prove that every (C, D)-bicomodule M is completely
reducible. Let N be a (C, D)-subcomodule of M. Since D is co-semi-simple,
there exists a D-comodule map f: M—N such that fi=I, where i: N>M is the
inclusion. We then have fci=I, by Lemma 4 and 5. Since f is a (C, D)-
bicomodule map, it follows that N is a direct summand of M as a (C, D)-
bicomodule. Q.E.D.

COROLLARY. If a coalgebra C is coseparable then it is co-semi-simple.

§3. Cohomology.

Since °M is an abelian category and has enough injectives, we can define
the functor ExtZ(M, N) as the n-th right derived functor of the functor
Comq(—, N). Explicitly, we take an injective resolution X of a left C-comodule N :

0 N X, X, X,
Then ExtZ(M, N) is defined as the n-th cohomology group of the complex
Comq (M, X).
3.1. Cohomology of coalgebras.

Let C be a coalgebra and N be a (C, C)-bicomodule. Let C*=CRC°? be the
enveloping coalgebra of C. Then we regard N as a left (or right) C®comodule.
In particular we regard C as a left C°comodule. Now we define the n-th
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cohomology group of C with coefficients in N as
H™(N, C)=Extg«(N, C).

Thus we have HYN, C)=H™*Com¢, (NN, X)), where X is an injective resolution
of C as a left Cé-comodule. On the other hand, consider the complex N[ J¢eX
and we define another n-th cohomology group as

Hoch™(N, C)=H"(N [¢e X) .

We note that if N is finite dimensional then H*(N, C)=Hoch™(N*, C).

Next we shall describe a construction of a standard complex. For each
integer n=—1, let S*(C) denote the (n+2)-fold tensor product of C. We con-
vert S™C) into a (C, C)-bicomodule by setting p~(ce@c:Q -+ Qcar1)=4(co)Qc:&Q
+ @cnr1 and p*(co®ei@ - Qcni1)=0@ -+ ®ca®d(cn+r). Clearly S™(C) is injec-
tive as a left C®-comodule. We now define for each n=0 a (C¢comodule map

d™: S™(C)—S™*Y(C)
by d™cs®@e® - @an):’;\f::(—l)ico@ o @A(E)R - Rcnsr. We define for each
n=1 a right C-comodule map

s SMC)—S* ()
by s™co®ciR  Rcns)=¢e(co)ciQ - Qcnsr. One verifies directly that

sttidrdr-ist=] (n=1).
This shows that
d° d?

4
C=S"Y0) N(®) SYO)

is an injective resolution of C as a left Cé-comodule. We observe that S%C)=
CRC coincides with C*=CQRC°? as a C(C°-comodule. More generally we have
S*C)=CoRC™ as a C*comodule, where C'™ is the n-fold tensor product of C
for each n>0, and CM"=k.

In computing the cohomology groups we use the identifications:
Comge(N, SMC))=ComgeN, C6QC")=Hom(N, C")
N Tee SMC)=N [ee(CERQCMN=NRQC™ .

Thus H¥N, C) are the cohomology groups of the complex {Hom(N, CI")},:,
with differentiation

6" : Hom(N, C™*)—Hom(N, Ct**11)
by M NN=UQRQNpr—URQIR - f+URAR ---)f
— o 2(UQ - RADfF(RDpY -
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And Hoch™(N, C) are the cohomology groups of the complex {NXQC'"},., with
differentiation
D™ : NQC™—NQCtr+1
by D*"(v@c:® - Qcn)=p*(1)Q:&Q -+ Qe
+ 3 (—DvRa® - QM) -+ Qe
H(=D"Zv0®0@ - @@y,
where we write p (v)=2v Qv ECYN. We obtain that
HY(N, CO)={re N*|(IQnp =G&Dp*} =Come, o(N, C)
and Hoch®(N, C)={neN|tp (n)=p*(n)}.

A k-map f: N—C from a (C, C)-bicomodule N into C with the property
Af=(IQNp~+(fRDp" is called a coderivation from N into C. The coderiva-
tion f is called an inner coderivation provided that there exists a y&N* such
that f=(IQnr)p —(RIDp*. Thus we have an exact sequence

0 — H(W, C) —> N* — Coder(N, C) — H'(N, C) — 0,

where Coder(V, C) denotes the k-space of all coderivations from N into C.
We now introduce a universal coderivation. Let L be the cokernel of
4:C—CRC. Then we have an exact sequence of (C, C)-bicomodules

4 1)
00— C—CRQC—>L—0.

We denote co¢’=w(cXc’) and we define a map
A L—C

by Alcec’)=ce(c”)—elc)c’. 1t is easily checked that 1 is a coderivation from L
into C. Moreover A is a universal coderivation in the following sense:
PrOPOSITION 13. For any (C, C)-bicomodule N, the map

Comyg, (N, L) — Coder(Q, C)

sending o to Ao, is a k-isomorphism.

ProoF. Let feCoder(iN, C). Then f®1)prCOmc, ¢(N, L). For any
ne N, we have

Ao(fRD) pk(n)=220( f(nw)Qn u»)
:Ef(n<o>)8(71<1))—26<f(71<o))>n<1> :f(n) ’

since ¢f=0 for any coderivation f. Hence we have Aw(f&RI)pi=/.
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Conversely, let 6 €Comg, ¢(N, L). Then we have w(20Q1)pi=w(AQI)pio=o0,
since w(AQI)pi=I. Thus the correspondence oc—2Ac gives a k-isomorphism, and
this completes the proof.

THEOREM 3. The following statements concerning a coalgebra C are equiva-
lent :

(i) C is coseparable.

(ii) For every (C, C)-bicomodule N, we have H™(N, C)={0} for all n=1.

(iii) Every coderivation from any (C, C)-bicomodule into C is an inner
coderivation.

(iv) 4:L—C is an inner coderivation.

PROOF. (i)>(ii) is immediate from the fact that a coseparable coalgebra C
is injective as a Cécomodule. (ii)=(iii) and (iii)=>(iv) are obvious. Now we
prove (iv)>(i). Suppose that A is inner. Then there exists a y<L* such that
A=URnNp1—(R)pi. We define a (C, C)-bicomodule map &: L—CQC by &=
IRQrRIN(pz&RI)pi. Then we have

E=(QA+T@DpDANpt
=RDpi+GRIXNUIRM) pL
=ARN L+ 4G &®Dpt .
Hence we have wé=w(A®I)p;=I. This means that the exact sequence

4 ®
0 C CRC L 0,

splits as a (C, C)-bicomodule. Therefore we have that C is coseparable, and
the theorem is completely proved.

3.2. Extensions of coalgebras.

Let C be a coalgebra. An extension of C is any coalgebra D which contains
C as a subcoalgebra.

Now we consider an extension D of C with D=CAUC, i.e. 4(D)CDRCH+CKRD
(see Sweedler [9], p. 179). In this case we may regard the quotient space D=
D/C as a (C, C)-bicomodule by

4 PRI

pt:D ——s»  D®D DD

o :D ——A——> DRD _FQ;D_) DRD

where p: D—D denotes the natural projection, since we have Im p+CD_®C and
Im p‘CC@E.
Let ¢ be a k-map of D—C such that ¢|C=identity. We then have that the



46 Y. Do1

following diagrams are commutative :

p —2 o pep p—24 5 pep
R | ¥®¢ Vb y 991
D ——= DRC rp % o CRD .

Define a map f: D—CXC by setting

=) d—A4¢ .
Then f(C)=0 and thus f induces a k-map f: D—CRC with fp=F1.
LEMMA 6. f is a 2-cocycle in Hom(D, C™).
ProoOF. We compute
S N)p=UQ) o p—URDFp+URDFp—(FRDp*p
=(pQNA—UQD f+UIQDf—(fR¢)4
={(¢RPRP) I RN A—(p&QAP) A} — {(dp@p)d—(ARD) )}
+{(@pR4P)A—UT QD AP} — {(PQPR@PIAR ) A+ (AR p) 4}
=0.
Since p is surjective we have 0% f)=0. Q.E.D.
Let ¢, and ¢, be k-maps of D—C such that ¢;| C=¢,|C=identity. Construct
the maps f, and f, as above.
LEMMA 7. fl and fz are cohomologous.
PrROOF. Let g=¢,—¢, Since g(C)=0, g induces a k-maps §: D—C with
Zp=g. Then
0 (&) p=URZ)p p—A4zp+(ERDp*p

:(¢1®g)d—dg+<g®¢1>d .
This implies that

Jaop=(: Q) d— A¢p,
=((¢1—Q(pr—gNd— A, —g)
= {1 &P d—A¢} —{($:Rg)—Ag—(gQ¢n 4}
=f1p—0'(&)p-
Therefore f,=f,—0'(g), and this shows that 7, and f, are cohomologous.
Q.E.D.

Summarizing, we find that an extension D of C with D=CAC defines
uniquely an element [ f]=class of f, in H%D, C).
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THEOREM 4. Let D be an extension of a coalgebra C with D=CANC. Then
we have that [f1=0 in H¥XD, C) if and only if there exists a coalgebra map
¢: D—C such that ¢|C=I.

PROOF. Suppose that [ f]=0. Let ¢ be a k-map of D—C such that ¢|C=I.
f can be viewed as the 2-cocycle associated with ¢. Since [ 71=0 there exists
a geHom(D, C) such that f=6(g). Set ¢'=¢—zgp. Then ¢’ is a k-map of
D—C such that ¢/|C=I. Let /' be the 2-cocycle associated with ¢’. The proof
of then implies that

f=f-0"@)=F-F=0,

that is, ¢’ is a coalgebra map.
The “if ” part of the assertion is clear. Q.E.D.
REMARK. More generally we can show that the second cohomology group
H*M, C) for a (C, C)-bicomodule M is in one-to-one correspondence with the set
of equivalence classes of extensions over C with cokernel M

: p
C—D—M

(that is, D is a coalgebra, ¢ is an injective coalgebra map, ((C)A(C)=D, p is a

surjective k-map which induces D/i(C)=M as a (C, C)-bicomodule.). Two exten-
i b . 1 !

sions C—> D —> M and C — D' — M over C with cokernel M are equiva-

lent if there exists a coalgebra isomorphism f: D—D’ such that the diagram

Ly P2
S 7
1 D/ pl

is commutative.

THEOREM 5 (Sullivan [81). For C a coalgebra with coseparable coradical R,
there exists a coalgebra map ¢: C—R such that ¢|R=I.

ProOOF. C has a filtration by subcoalgebras R=C,CC,C .- where C;= AR
(1=0, 1, 2, --). Thus it is enough to construct a sequence ¢, ¢;, --- such that
¢: is a coalgebra map of C;—R and ¢:|Ci-;=¢;-,, for all i=l. For since
C=\UC,; there is a unique coalgebra map ¢: C—R which extends all the ¢;. It
is clear ¢| R=1I, therefore all is good.

To construct the sequence, assume inductively that we have ¢, ¢, -+, ¢n
for some fixed n=1. Let J, denote the kernel of ¢,. C,:://,» can be viewed
as an extension coalgebra of C,//,.. Then it is easily checked that C,,,/J/,=
Cu/JaACy/]y and C,/J,=R. It follows from and that
there exists a coalgebra map f:C,:i/Jn—Cr/J. with f|(C,/J.)=I. Now we
define a coalgebra map ¢,.,: Cr;—R by the composite
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proj.
[ E D Cn+1/]n —_— Cn/fn =R.
Then we have ¢n.:/Co=¢,, and this completes the proof.
REMARK. Given two coalgebra maps ¢ and ¢’ with ¢| R=¢’| R=identity,
we can find a relation between ¢ and ¢’. In fact, C becomes a (R, R)-bico-
module by

4 QI
0™ : C—> CRC — RQC

4 Q¢
p*: C—> CQC C

XR.

Since R is a (R, R)-subcomodule of C, C/R is an (R, R)-bicomodule. Since ¢|R
=¢'|R, ¢—¢’: C—R induces a k-map ¢—¢’: C/R—R. Then it is easy to show
that ¢—¢’ is a coderivation from a (R, R)-bicomcdule C/R into R. It follows

from that there exists an element 7 in (C/R)* such that §°()=¢—¢'.
Rewriting this equation, we have

(G p)A—(r pQPNA=p—¢’

where p: C—C/R denotes the natural projection. Set d*=e—7p (in C*). Then
we obtain

d(d*—c)=¢'(c—d*) for all ceC.

3.3. Cohomology of augmented coalgebras.

Let (C, u) be an augmented coalgebra (see 2.2). Then £ has a left

C-comodule structure, and cohomology groups ExtZ(N, k) are defined for every
left C-comodule N.

THEOREM 6. For every left C-comodule N, we have
Ext3(N, k)=H™(N,, C).
PrROOF. We apply to obtain that for every (C, C)-bicomodule V,
Com¢(N, Ve P)=Comg, o(N,, V).

Therefore it suffices to show that the complex {X™[ ¢ k} is an injective resolu-
tion of k2 as a left C-comodule, for each injective resolution of C as a
C¢-comodule ;

da’ dl dz
C X° X! X?

Taking V=X" in the above isomorphism, we obtain that X" [, £ is injective
as a left C-comodule. Now let Z*=Ker d"=Im d"*"! (n=1). Then we have the
exact sequences of (C, C)-bicomodules ;
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0—>C—>X'—> 2" —>0
0—> 2" —> X* —> Z"1 —> 0 (nZ1).

Since C and X° are injective as a left C-comodule, so is clearly Z'. It follows
‘by induction that Z* (n=1) is injective as a left C-comodule, since from Prop-
osition 2, (1) X™ (n=0) is injective as a left C-comodule. Therefore we have the
exact sequences ; - ‘

0—>Z"[Jo b —> X" [o b —> Z™*1 g b —> 0.

This shows that the complex {X" [ £} is an injective resolution of £ as a
left C-comodule, and completes the proof. ‘ -

REMARK. Similarly, we can show for every right C-comodule M that
Hoch®(,M, C) coincides with the n-th cohomology group H*(M [ s X), where X
is an injective resolution' of %k as a left C-comodule, since we have that for
every (C, C)-bicomodule V, ’

M6V e kB)y=uM eV .

Now consider the particular case when C is a Hopf algebra. We define a
k-map
V:.Ce=CRRXC? — C

by setting V(c®d°?)=cS(d), where S is the antipode of C. It is easily verified
that V is a coalgebra map. Given a (C, C)-bicomodule N we shall denote by
yN (or N,) the k-space N regarded as a left (or right) C-comodule by means of
the map V. In particular (C%, is a (C¢% C)-bicomodule. Assume that C is
involutory, i.e. S*=identity. Then the map

a: (€O, —> CRC

defined by setting a{c®d°?)=>c1,RcwS(d) is a right C-comodule isomorphism,

I®4
where CRC regarded as a right C-comodule by p: C&QC CRCRC. The

inverse of a is given by xQy—2xuQ(S(¥)x)°?. Therefore (C%, is free as
a right C-comodule. It follows that for each injective resolution of % as a left
C-comodule, k—X°—-X'— ... we have an exact sequence

(Cpllc b —> (C)pl e X —> - (%)

Moreover (C9,[J; X™ (n=1) is injective as a left C°-comodule, by of
Since (C%),[l¢ k=C, it follows that the sequence (*) is an injec-
tive resolution of C as a left C®-comodule. Thus we have:

THEOREM 7. Let C be an involutory Hopf algebra. For every (C, C)-

bicomodule N, we have
Ext3(,N, k)=H"(N, C).
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