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§1. Introduction.

A large class of wave propagation phenomena of classical physics and
quantum mechanics are governed by “symmetric systems” of partial differ-
ential equations of the form

L) 12— Ma(P(D)+ 5 a0)Q, D

Here x=R", t€R, D=—10/0x, u(x,t) is a C™-valued function, P(D)+
Eq{(x)QD) is a self-adjoint differential operator in [L,(R")]™, and M(x)
is an m X m Hermitian matrix with

(1.2) ClElP=(M(x), H)=C'é[*,  x, E€RT

for some positive constant C.

In this paper we study the asymptotic behavior as t—oo of the solution
of the system (1.1} with initial value having finite energy. In doing so, we
compare the system (1.1} with the unperturbed system

1 ou
(1.3) T—ar_P(D)u ,

assuming that for some s>1 and C>0
K

(1.4) |M(x) =11+ 2 1g{(x)| =CA+[x]*)*,  xER".
=

Here I is the unit matrix, and |A| denotes the norm of an m Xm matrix
A A== Ag 1DV

Let H, and H be Hilbert spaces with inner products
(15) (f, On=\  f0ZDdx,  f, gSlLRHI"

and

(16) (f, @u=|, MO f0gDdx,  f, gLRYI™,
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respectively. By virtue of these spaces are equal as vector spaces and
have equivalent norms. Let J be the identification operator from H, to H
defined by (Jf)(x)=f(x). Let H be a self-adjoint realization in H of the
formal differential operator appearing on the right side of and H, be the
natural self-adjoint realization in H, of the differential operator P(D). The
wave operators W. are defined by

(1.7) W,.=s-lim e "8 J'tHoE, .,

t—too

where E, .. denotes the projection of H, onto the subspace of absolute con-
tinuity for H, (c.f. [7]). Assuming we shall show that the wave oper-
ators exist, and are partially isometric with initial set E, ;.H,. (Thus W, are
unitary operators from E, ,.H, onto the ranges R(W.) of W..) Furthermore,
“we shall give an estimation of the rate of convergence of the limit

We see easily that the local energy of the solution e'*#¢ with o= R(W.)
decays as t— #oco. The main purpose of this paper is to investigate the rate
of decay of such solution. We shall show, roughly speaking, that the local
energy of e¢'*¥¢ decays as t— +co so fast as (Wi'e)(x) decays when |x|
approaches to infinity. The algebraic decay will be dealt under the assumption
and the exponential decay will be dealt under the assumption

(18) [ M)—11+ 3} L0 Cee#,  xeRr,

where a and C are positive constants.

But what are the ranges R(W.)? Since W, are partially isometric, R(W.)
are contained in the subspace of absolute continuity for the operator H. We
could not show, in general, that R(W.) are equal to it. (If they are, W, are

said to be complete.) But in many cases of practical importance it can be
shown that

(L.9) R(W,)=R(W_)=(H")",

where (H?)* is the orthogonal complement of the closed subspace spanned by
eigenfunctions of the operator H. We shall show, for example, that
holds for systems of constant deficit.

The symmetric hyperbolic system

(1.10) 10— MePDI=M) F 4,0,

is called a system of constant deficit if the rank of the matrix P(£) is constant
for all £+0 (see [19]). If it satisfies the additional condition that every root
of the equation det(4/ —P(£))=0 has constant multiplicity, then it is called a
uniformly propagative system (see [23]). Systems of constant deficit include



Wave operators 453

Maxwell’s equations in crystals, the equations of acoustics, and the equation
of elasticity. Later we shall give a detailed discussion on these systems in
order to illustrate the scope of the main theorems.
So far as scalar partial differential equations are concerned, spectral and
scattering theory has been developed to a satisfactory extent (see [8, 10]).
 As for systems of partial differential equations, however, it seems that some
important problems are left open. Wilcox introduced the notion of
uniformly propagative system, and proved the existence of the wave operators
for the system under [1.4). The completeness for the system was proved by
Suzuki and Yajima [24] Ikebe introduced the notion of system of
constant deficit, and proved the existence of the wave operators for the system,
roughly speaking, under the condition with s>n/24+2. In [5], the com-
pleteness has been proved by himself under the additional condition that all
roots of det(4/—P(£))=0 are smooth. The completeness for the system was
also proved by Schulenberger under the condition with s>n (see
also [1T]). In this paper the existence and completeness of the wave operators
for the system will be proved for s>1. Avilla treated the system
without assuming that the rank of P(§) is constant for all §+0, and showed
the existence of the wave operators for the system assuming for
s>n/2+2. In this paper that for the system ((l.1), which includes the one
treated in [1], will be proved for s>1. But the problem of completeness is
still open for the systems such that the rank of P(§) is not constant for all
£€+0, which include, for example, the equation of magnetgasdynamics (see
[1]). It should be remarked that the existence and completeness of the wave
operators for the symmetric hyperbolic systems including Dirac’s equation
with compact potential has been shown by Lax-Phillips [12]. For Dirac’s
equation with potential decreasing as | x| '"¢, that was proved by Yamada
[25]. In this paper his result will be extended to more general systems.
The rate of decay of the local energy of solutions of initial value prob-
lems has been studied by many mathematicians (see [12], [17], [21], and
references there). Using the abstract theory developed in [12], Lax and
Phillips gave sufficient conditions under which the solutions of some hyperbolic
equations in an odd dimensional Euclidean space decay exponentially. Vain-
berg treated the strongly hyperbolic systems which are homogeneous
hyperbolic systems with constant coefficients in the exterior of a compact set,
and gave the rate of decay of the solution with initial value having compact
support, assuming that each bicharacteristic curve of the system tends to
infinity. In [I7], the author has treated in the special case that H is a
self-adjoint scalar elliptic partial differential operator with coefficients satis-
fying [1.4). Assuming that there exist no “generalized” eigenvalues of [H,
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he has investigated the algebraic decay of the operator norm
(L.11) I x |22 E o (14| x |32 aezycanys

where 0<60=<1, s>1, E,. is the projection of H onto the subspace of absolute
continuity for H, and B(L,(R™)) is the set of all bounded linear operators in
L,(R™. It was shown there, for example, that the operator norm [1.1I) decays
as t~ /29 when s=(n-+1)/2 and H is the Schrédinger operator in R™ (n=3)
with potential decreasing like (1+|x|%)~**Y/2 In this paper we shall investi-
gate the rate of decay of the solution of without such assumption that
there exist no generalized eigenvalues of H and that each bicharacteristic
curve tends to infinity. Instead of studying we shall investigate the
algebraic or exponential decay of the operator norm

| A% HW. (1= AN scay m> »

where 0=<60<1, 7 is a positive constant, —4=Dj}+---+D?, and A is a mutipli-
cation operator (1+|x|?)~%2 or exp(—alx|).

The remainder of this paper is organized as follows. §2 is a preparatory
section. There we shall give a spectral representation of the operator H,, an
algebraic lemma concerning the critical values of the root 1,(§) of the equation
det(AI —P(&))=0, interpolation theorems for some functionspaces, and the
characterization of the Fourier image of a function decreasing exponentially
at infinity. Propositions and 2.5 concerning the characterization
of such function may be of independent interest. We note that the similar
results have already been given in [16]. In §3 we shall show the existence
of the wave operators. In §4 we shall study the rate of decay of the solution
of [1.1) There the rate of convergence of the limit will also be dis-
cussed. In §5 we shall study the completeness of the wave operators and
the spectral properties of the operator H. In Appendix we shall show an
interpolation theorem for weighted Sobolev spaces.

§2. Preliminaries.

In this section we present interpolation theorems and lemmas concerning
the spectral representation of the operator H,.

Throughout this paper the following notations will be used. For a Banach
space X and an open set £ in R*, Cy(£2; X) denotes the space of all X-valued
infinitely differentiable functions on R™ with compact support contained in
Q. 9'(2; X) denotes the space of X-valued distributions on 2. S(R"; X)
denotes the space of X-valued rapidly decreasing functions on R", and
S’(R™; X) denotes the space of X-valued tempered distributions. For a
Hilbert space-valued tempered distribution f, the Fourier transform of f will
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be denoted by f or f, and F-!f will be denoted by /. For c=R, we put
Ho(RM)={feS(R"; C™); || fllgo@ny=(1—2D)?"*f | L,can; cmy <0} .

For a Banach space X and an open set QCR", O(R"xif2; X) denotes the
space of all X-valued holomorphic functions on R"Xif2. We shall sometimes

write R"Xif2=T, For ¢=R and an open convex bounded set 2 with 02,
we put ‘

H(To)={fe0(To; C™); | fllas axp=11—4)**f(E+in)| Lyrnxe <o} .

We observe that 4?(Ty) is a Banach space since ¢ is an elliptic system. For
Banach spaces X and Y, B(X, Y) denotes the space of all bounded linear
operators from X to Y. X’ denotes the dual space of X. For a densely
defined closed linear operator T from X to Y, T* denotes the adjoint operator
of T. IXT), R(T), 0,(T), and p(T) denote the domain, range, point spectrum,
and resolvent set of T, respectively. For {=po(T), R{; Th=(T—-{)* For
0<f<1 and 1=g=co, (X, Y), and [X, Y]y denote the mean interpolation
space and the complex one, respectively (see [2]).

Now we state some spectral properties of the operator H,. For the mXm
Hermitian matrix P(§), we put p(4, §)=det(AI—P(§)). Decompose it into irre-
ducible factors R; (j=1, -, ): p=R{ .- RP (R;#R; if i#j). By requiring
that the coefficient of highest power of 1 in each R, be 1, we can determine
the factors R; (j=1, ---, [) uniqeely apart from their order. Put

2.1 R=R,X---XR;.

We denote the discriminant of R(4, &) by S(§), which is not identically zero.

We ennumerate the roots of the equation p(4, £)=0 which are not identically
constants as

H(E)==4(8),

where 2,52, if i#j. The remaining roots 2,§) (j=r+1, ---, k) are identically
constants: 4,(§)=a;, j=r+1, ---, k. It is easily seen that

(2.2) for any j=r+1, ---, k there exists j/ such that R; (4, §)=4—a;;

(2.3) 24&) is locally Holder continuous on R™ and real analytic in {{€R";

S@)=+0};
(2.4) if i#j, 2(§)#2,() for any &= {S(§)+0}.
We put

(25) A, ={2€R; det(AI—P(£)=S(£)=0 for some é€ R"}\U{a;; j=r+1, -, k}.

The set A,, which is called the set of all exceptional values of P(§), will be
used in §5. Set
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1
(2.6) F&)={ 2=

0, g {S(6)=0},
where 7;(6)={A=C; H—Z,-(E)l:rgli}llzi(é)—xj(f)l/Z}. Then we see that

55| JPO-DTL, S IS@#0)

(2.7) Ff&) is a bounded measurable matrix-valued function, and real analytic
in {S(&)+#0};

(2.8) for each £< {S(§)=+0}, Zi) Fi=I, FiFj&)=0,F,(&) and F}(&)=F&);
(2.9) PEF(E)=2,E)F8).

Hence the spectral measure E, associated with H, is represented by
k
(2.10) E{By=2"1( 3 (05(B); HF /)7

for any Borel set B in R, where X(4;(B); &) is the characteristic function of
the set 4;(B)CR". As for the projection E, .. of H, onto the subspace of
absolute continuity for H, we have

ProPOSITION 2.1. E(,,,IC:EF'I(Z]1 F ,~(€)>9‘

For the proof we prepare a lemma. Set

(211) TO=1@xx£&), 16=5 (55 1, 9).

Then we have
LEMMA 2.2. T(&) is a polynomial which is not identically zero. Furthermore,

(2.12) };1 {ER"; S(€)=#0, grad 4(§)#0t ={f=R"; S(E)+#0, T(&)=0} .

Proor. We have for any &< {S(§)+0}

04;
0&;
This implies (2.12). Since 4;(§) (=1, --+, ») are not identically constants, it
follows from [2.I1) and [2.13) that T(€)s£0. We see that T can be extended
to {{eC™; S()+0} as a holomorphic function, which is continuous up to the
boundary {S({)=0} and has polynomial growth at infinity. This concludes
that T is a polynomial. g.e.d.
PROOF OF PROPOSITION 2.1. We set

.13 ©O=—25040, 8/ 5500, 0.

P=g( 3 F(0)7, P=a(3 FO)=
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It follows easily from (2.7)~(2.9) that P,H, and P,H, are closed subspaces, are
orthogonal complements to each other, and reduce the operator H,. Since
P,H, is spanned by eigenfunctions of H,, it is included in (E, ..H,)* (see [7]).
Thus the proposition follows if we show the inclusion

PIHOCEO, acHo .

Hence we have only to show that E(B)P,=0 for any Borel set B in R whose
measure is zero. We have by that 2; (=1, ---, r) are smooth and
grad 2,(§)#0 outside the set {{=R"; S(§)T(§)=0}, of which measure is zero.
Thus the measure of A;!(B) is zero. On the other hand, we obtain by

IEBPule= 3|, | IF©2©]d.

Hence if the measure of B is zero, then E (B)P,=0. qg.e.d.

Next we shall show the following lemma concerning the finiteness of the
critical values of the function 4;| s <n-
LEMMA 2.3. The set A, defined by

2.14) A= u {2,8); S(&)#0, grad 2,(§)=0}

1S a finite set.
For the proof we review some facts about real algebraic varieties and

elementary symmetric polynomials. The i-th elementary symmetric polynomial
of r-variables will be denoted by o;.

LEMMA 2.4 ([22, Theorems 1 and 4]). Let VCR" be a real algebraic
variety, and V' be a subvariety of V. Then there exist finite number of con-
nected manifolds M?® such that

Wv'=uU M»,
4

LEMMA’25 ([14, Lemma 1, p. 1117]). Let f; (j=1, -, ) be continuous
functions on a connected topological space E. If o(fi(x), -+, f{(x))#0 on E
and o (fi(x), -+, f{(x)=0 on E for i>1, then for any j

f{x)#0 on E or f{x)=0 on E.
ProoF oF LEMMA 2.3. Set

Ti:gi(fh Ty fr):

where f; is the function defined by [(2.11). We obtain in the same way as in
the proof of that T; is a polynomial which is not identically zero.
Decompose the set V={,cR"; S(&)+0, T(§)=0} as follows:

V=V UV, Vi={eR"; T )="=Tr1-6)=0, SOT,- ()0} .
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Then we have by that there exist finite number of connected
manifolds MY such that V,=\U M?. Lemma 25 implies that for each MY
and j ’

grad 2;6)+0 on MY or grad 1,(5)=0 on M?.

Since MY is a connected manifold and 4,(§) is smooth on My}, 4,(§) must be
identically constant on MY if grad 2(§)=0 on MY%. This proves the lemma.

Finally we state some interpolation theorems and a characterization of
the Fourier image of a function decreasing exponentially at infinity. For a
Banach space X, reR, 1<p, g<co, and a positive measurable function p on
a measure space (M, dp), Ly%M, dp; X) denotes the Banach space of all
X-valued strongly measurable functions with

o q/p1l/g
g =] 2 (], o sizan)"] " <oo,

where M;={xeM; 27<p(x)<2/*'}. We note here that when p=g¢ it is equal
to the usual weighted L,-space. Furthermore, it is an intermediate space of
the weighted L,-spaces.

ProOPOSITION 2.6 ([17, Proposition 3.170). For any r,<r,, 0<8<1, and 1=

pr q, o q1§00
(LM, dpe; X), Lpp(M, dpps X))o =L= 2 o(M, dpe; X).

p:90 p.q1

When dx is the usual Lebesgue measure on R" and p(x)=1+]x[%)"?
we write Lpo(R™, dx; X)=L, (R"; X). We write L, (R"; X)=LyR"; X).
Denoting by B} (R™; X) the Besov space of X-valued distributions on R"
(see and [15]), we have

ProrosITION 2.7 ([17, Proposition 3.2]). Let X be a Hilbert space, c= R,
1=p=2, p'=p(p—1)"*, and 1=g=<co. Then the Fourier transform is a bounded
linear operator from Bg (R"; X) to L (R"™; X). Furthermore, it is an
isomorphism when p=p'=2.

For o, s€ R, and a positive measurable function p on R", we put

(2.15)  Hi,={f€9'(R"; C™); | fluz,=1p(x)(b—AD)"*f | ,an;em> <oo} ,

where b is a positive constant. Consider the following two cases:
1/2
D po=+1x1975 @ p=+1x17(] erdn)”,

where R and £ is a bounded open convex set in R™ which contains the
origin. Then the space HZ, does not depend on & if =1 in the first case,
and b=sup{|n|*+1; n=&} in the second case. In these cases we have
PROPOSITION 2.8. (Ly(R™; C™), HZp)e ,=H,, o, s=0, 0<O<1.
In Appendix, we shall give a proof of this proposition in the first case.
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In order to treat the second case, we have only to use the following propo-
sition instead of Proposition 2.7,

PROPOSITION 2.9. Let o€ R and ag,z(x):(gge“’?dvyylz. Then one has for
any feL,(R"™)

”ag.z(x)(1+|x|2)“’2f||L2(nn>=||f||5fd (R xiQ) -

We shall show below a precise version of this proposition. For a Banach
space X, 1=p, g=<oo, and ¢>0, we put

B3.Te; X)={fe0(Tqe; X); Hf“.@g,q(rg; X):”f“Bg,’q(Rnx.Q; x <o} .
For ¢=0,
F5.dTa; X)={1-A'*g; ge 357 (To; XD}, 04+2k>0.

Note that JH°(To)=@5,Tg; C™). For 1=p=oco, we put ag, (x)=[e""||r, -
Now we can state the precise version of [Proposition 2.9

PROPOSITION 2.10. Let 1=p=2, p'=p(p—1)"%, 1=<g=c0, 6=R, and X be a
Hilbert space. Then there exists a constant C such that

(2.16) lae. p(x)f(leL;r,q(Rﬂ; xéCllfllgg,,qu; X)) fe35.{Ta; X).
Furthermore, for p=p’=2 '
(2.17) }lfl|$gqcrg; X)§C1]ag.zfl|qu<xn; X FeLi(R"; X).

Before proceeding to the proof we give a comment on the function
ag o(x). We see

ag,(x)=exp(sup x7).
7R
Since £ is an open convex bounded set, geometric consideration yields
(2.18) C(1+|x|?)™*Pexp(sup xn)< ag, ,(x)
nef2

<C'(1+|x|%??exp(sup x7), xER*,1=p<oo,
neR

where C is a positive constant. In general, this is the best possible estimate
(consider the case that £=(—1, 1)"). But when 0£ is smooth and its Gaussian
curvature never vanishes, we can get a more precise estimate. That is, we
obtain by the method of stationary phase

(2.19) ag, ,(x)=C eXp(Sug x| x|~ mPE(140(x|7Y)  as |x[—o0,
ne
where C is a positive constant.

For the proof of [Proposition 2.10] we prepare some lemmas. Since the
functions treated in the remainder of this section are all X-valued ones, we




460 M. MuURrRATA

shall abbreviate, for example, 85 ,(To; X) to 85,Tp). For a non-negative
integer 2 and 1=<p=co, we put

WHT)={f€0(Ta); I fllwtap=I/flwimnxe <o},

where WE(R"Xx {2) is the usual Sobolev space of functions on R"X£. We
write WYTo)=L,(Tg). The following lemma can be shown in the same

way as in the proof of the interpolation theorem for the usual Besov space
(see [2, p. 258]).
LEMMA 2.11. For 1=p, g=co and 0<o <k,

-C'B‘Z’qu(T9>:(=—fp(T.Q) ’ q’l/g(TQ))a/k,q .

As with the L,-space, the space L ,(Tg) (1<p<2) ts an intermediate space of
Ly(Tgo) and L(Tp).

LEMMA 2.12. For 1<p<2, L (Ta)=(LATg2), L:(T2))2ip-1. p-

PrOOF. We see that the interpolation space considered is a closed sub-
space of £ ,(Tp). But the Fourier transform of the space Cy(R") is included
in it and dense in £,(Ty). This proves the lemma.

Cauchy’s theorem yields

LEMMA 2.13. For 6€R, 1=p, =<0, a non-negative integer k, and a com-
pact set K in L2, there exists a constant C such that

gg}gllf( +i)lwkan =Cl fllag gy -

Now we can give a proof of [Proposition 2.10
PROOF OF PROPOSITION 2.10. Parseval’s equality shows that for any
FELA(Tp)

(2:20) [iretinide={17wezax.

Here we used the fact that f(-+in)eL,(R") for each y»<$, which is a con-
clusion of Integrating with respect to 7, we obtain

(2.21) lag, o) () ycens =1 S| £yer g »
Similarly,
(2.22) lag \() () zcany SCll fll £y -

Combining [2.21) and [(2.22), we obtain by and Lemma B.2 in
(ag,2)*? (aq, 1)2/p_1f”1:1,, wn=Cl fllepryp, 1=p=2.
On the other hand,

ag, ()=l e™|¥ 2o, lle™ ¥R =(ag,«(x))" P (ag,(x))*?~*.
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Hence
lae. pf”Lp, (Rn)§c||f||.£p(1'g> .

Since F-Y((1—4)*f)=(1+|x|%*f(x) for any non-negative integer k, this implies
lag o)L+ %1257l 2, cams SCI Flsptbrg -

IProposition 2.6 and Lemma 2.1l now show the inequality (2.16) for ¢ >0, from
which that for ¢ =<0 follows easily. The inequality is now obvious.
g.e.d.
The following proposition is a precise version of which
describes the rate of divergence at the boundary 02 of a function fe 83 (Tp).
PROPOSITION 2.14. For any o<k there exists a constant C such that

@2 {E @ I lwsanopf =ClIflsg ap, 155, 4=o0,

where Q;={neR"; 27 <dist(y, 02)<2/*}}.
ProoF. For any fe £,(Tg), we obtain by Cauchy’s theorem

ID%f Nz panx0p =C@) ' fllpnxco;-100,00,41) -
Denoting p(y)=dist(y, 052), we have

1) D%l yan s SCI L2 ycr g -

On the other hand,
[D*f 2 pernxoy =Cll fllaplicrgs -

Thus application of Proposition 2.6 and gives

| D*flgt-opcan sy <Cl Fllag g, 0<a<al.

This proves the inequality (2.23) for ¢>0. The one for ¢=<0 can be shown
in the same way as above. q.e.d.
The inequality opposite (2.23) does not hold for all 1< p<co. For example,
|(p—1)(d/dz)log(z—1)| =1, but log(z—i)& L(RXi(—1, 1)). For p=2, however,
the reverse one is valid because of and the following proposition. In
order to state it we introduce a function space. For 1=p, ¢<co and s=R,
35, (Tg) denotes the Banach space of all holomorphic functions f on To with

oo . 1/g
1712y e ={ @1 lepaaneapltf <o,

where 2,={peR"; 2/<dist(y, 02)<2/*"}.
PROPOSITION 2.15. Let 1=p=2, p'=p(p—1)7", 1=g=oco, and o<2k. Then
there exists a constant C such that for any feO(Tg) with 1—A)tfe £%,°(Ty)

lae, pf”Lg,,q(xn)écn(l“A)kf”ﬂp’f;"(TQ) .
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PROOF. Since
-E%,Q(TQ):(—Cp(TQ): -E-{?(TQ))S/]»q: O<S<.7: lép, q_S_OO ’

we have only to show the inequality
(2.24) llag, ,(x)1+] x| 2)_j12f(x)HLp, am=C flejrp, 1=p=2.
First we claim that there exists a constant C such that
(2.25) 1+ x| 2)‘f/ZSQe”’7d77 gcgge”’(dist(v, 80 dy .
Choosing d>0 so small as {|7|=d} 2, we put

m=[min{0%(|n|*+6*~V*; n=o}]*.

We see that {(1—m|x| )y ; =2} C{yp; dist(y, 92)>|x[~"} for any sufficiently
large x. Thus

Sge“”(dist(n, 02)Ydn=1x|"7|e™ |l L caistcp. 82>t 21 -1

é | X I _j“exv”Ll((l—mlm—Dr;; 775!2))26" X | "fggexﬂdﬁ .
This proves [(2.25). Using it we obtain
(2.26) lag, ()14 21227 1 cans

=Cll| e=r(dist(y, 82)dnf(0)lzany ZCIL fl.sfcry -

Similarly,

(2.27) lag, o x)L+1 212772 (2] yeans ZCIl fll iz -

Since LT )=(LUT2), LYT0))sp-1.p for each pe(l, 2), (2.26) and [(2.27) imply
(2.24).

g.e.d.

§3. Existence of the wave operators.

In this section we shall prove the existence of the wave operators defined

by [(1.7). We assume throughout the present paper that the differential
operator

(3.1 ME(PD)+ 2 44)Q/D)

satisfies the following conditions (A.I) and (A.II). The condition (A.Il), which

is essential in our argument, means that the perturbation is a short range
one.
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(A) (i) M(x) is an mXm Hermitian matrix-valued measurable function
such that for some positive constant C

CISM()=C7I, x€R";

(ii) P() is a polynomial of degree N with m Xm matrix coefficients, and is
Hermitian symmetric for each &é=R™; (iii) XX,¢{(x)Q;(D) is a differrential
operator with bounded measurable m X m matrix coefficients, and its restric-
tion to S(R™; C™) is symmetric in the Hilbert space H,.

(A.Il) There exists a constant s>1 such that

(32) (IME)=T 1+ 3 [a,(0) )1+ x9S LR

Furthermore we assume the existence of a self-adjoint realization of the
operator (3.1), which follows from (A.I) under such additional condition that
all ¢; are identically zero or [3.1) is elliptic. That is, we assume

(AIIl) There exists a self-adjoint extension in H of the restriction L of
the differential operator to S(R™; C™).

Under the assumptions (A.l), (A.Il), and (A.Ill), we have

THEOREM 3.1. For any self-adjoint extension H of the operator L, the wave
operators

(3.3) Wi:s-tlim e UH JoltHo

—too

exist and arve isometric on E, o.H,:
(3.4) [Weula=llula,  uUEE, H,.

REMARK 3.2. It follows from the proof below that the conclusion of the
theorem is valid even if ¢,(x) has singularity. Precisely, (A.ll) can be weakened
to the following condition: There exists a constant s>1 such that

(M) —I1+ ; lg; () DA+ 2] € Lo(R™) + Lo(R™) .

For the proof of we prepare a lemma. Put 2={f=R";

S(é)T(€)+0}, where S is the discriminant and T is the polynomial defined by
(2.11). Then we have

LEMMA 3.3 For any o=S(R"™; C™) with ¢=C;(2) and s>0, there exists
a constant C such that '

3.5) I+ x |25 2 0 Eg, 4ol 1 pcany SC(L+[E])7%, 2= p=co, tER.

PROOF. We obtain by [Proposition 2.1|

eUHE, acSD(x): jél (zn)—n/zgeit1;(5)eizEFj(§)¢(§)dE .
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Since 4; and F; are smooth and grad 2;(§)+0 in £, we can reduce the proof
by partition of unity to the estimate of the function

f(t, x):Sem(E)e”Esb(f)dE,

where ¢=Cy(R™) and A(§) is a C>-function such that 04/0%,#0 in a neigh-
borhood of Supp¢. Choose a positive integer £ such that s<k. Using

., 04 \"1 0 7* . . .
|(it55) "5 | exptita@=exntita@),
we obtain by integration by parts
f=tHetrdent 3 g @,
=
where ¢;=C7(R"). Since there exists a constant C such that

Ile“l(f)gbj(g")“Lq(Rn)éc’ 1=¢<2, teR,
it follows that

[+ 1x ] * 20, Ol,=Ct"*, 2=p=oco,teR.

On the other hand, | f(, -)| L, is bounded on R. Thus we obtain by Proposi-
tion 2.6

I+ x 15721, )2, =C0,

which proves the lemma.
Proor or THEOREM 3.1. Let ¢ be a rapidly decreasing function with
¢eCy(2). We have

(3.6) e M JeRHE, (p=]E,, acso—iS:e"'y”(Hf—fHo)e””“(pdy .
We obtain by and (A.II)
(3.7 I(HJ —JHy)e¥Hopl|| g < | (M(x)—1)e* v o P(D)¢| &

+1M(x) 35 /(0 oQ,(D)pla=C(L+] y1).

Since s>1, (3.6) and imply the existence of the limit

lim e "H JoiHoF, ..

t—-+oo

Since Cy(82) is dense in L,(R™), Banach-Steinhaus’ theorem shows the ex-
istence of the wave operators.

In order to show (3.4) we introduce the unitary operator J, from H, onto
H defined by (J,/)(x)=M(x)"*f(x). We obtain in the same way as above
that for any ¢ with ¢=C7(2)
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Il(]l_./)e“HOEO, acgpnliéc(l‘l_ lt')—s .
Thus

s-lim e‘””]e””OEo,ac:s-lim e HH] gitHo .

t—otoo ¢

Since J, is unitary, this implies (see [6, Theorem 6.2]).

§4. Rate of decay of local energy.

In this section we shall study the rate of decay of local energy of the
solution of the equation In particular, we shall treat systems of con-
stant deficit thoroughly in order to show applicability of the general criteria
Theorems and 4.2

For =0 and a positive measurable function p(x) on R", we put
Xo=L,(R"; C™), X,=H,; Xo=(Xo, X1)p,2, 0<O<L1.

(See (2.15).) Note that Xp,=H}%, when p(x)=(14|x|?)%? or ag (x). When we
discuss the exponential decay of the solution, we shall need the following
condition (A.IlY), which is a generalization of (A.Il) (see §3).

(A.Il'’) There exists a positive measurable function a(x) such that a(x)?!
eL.(R™) and

(IM@—11+ £ lgDatne LR,

For simplicity of notation we shall sometimes write P(D)=Q(D).

We begin with the following theorem.

THEOREM 4.1. Assume (AD~(AID) and (AIl"). Assume further that there
exist constants R=0, € R, r=0, C>0, and a positive measurable function p(x)
on R™ such that

K (oo .
(4.1) Z}) S: [a(x)'QAD)e* VHoE, o(1—=d) 72 0(x) | pwpd y=Ce ™ ®t 7,  t>1.
Then for 0Z0=<1 and any self-adjoint extension H of the operator L
(4.2) le* " HW.—]Je* " oE, ac”B(Xg,H)éce—Rmt_ag , t>1.

PROOF. Since the left hand side of for =1 is equal to

”gjei(“‘y)H(Hf——]Ho)einOEO, wed ¥

B(X1,H)
s

we obtain by (4.1) and (A.Il") the inequality [(4.2) for #=1. Since the inequality

for 6=0 is obviously valid, the interpolation theorem shows the one for

0<o<1. g.e.d.
Using we can obtain the following theorem.
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THEOREM 4.2. Assume (AD~(AII) and (AIl'). Assume further that there
exist constants R=0, o€ R, r=0, C>0, and a positive measurable function p(x)
on R™ such that the estimate

4.3) la(x)e** oEy, ae(1—A)"2p(x) l pap =Ce *7%,  1>1

and (4.1) hold. Then for 0=0=1 and any self-adjoint extension H of the oper-
ator L

4.9 la(x)e* Wl pcxp m=Ce ™42,  1>1.

The assumptions (4.1) and are verifiable in many cases of practical
importance. First we give an elementary example.
ExAaMPLE 4.3. Put Hy=—4 in R". Then for any ¢>0 and 0=s=<n/2

QAL B ororee= o1 4| x| D)2 gy anyy =CE°,  E>1.

Next consider the unperturbed system of constant deficit

1 ou 2

7 Ta‘t—'——P(D)u: jgl Aiju y
where A; is an Hermitian matrix, and the rank of P(§) is constant for all
§+0. Let H, be the natural self-adjoint realization in H, of the differential

operator P(D). Using the same notation as in §2, we see that
(4.5) r=2p for some positive integer p ;

4.6) 2(—8)="2op-5+:(&), F(—E)=Fop-;1:(8), j=1, -+, p;

(A7) HE)==2(5)<0<2pi(E) == 2,,(8) for each §+0;

(4.8) 2; and F; are positively homogeneous functions of order one and zero,
respectively.

Note that 4; and F; may not be smooth in R™\ {0} without the assumption that
A; has constant multiplicity for all £ R™\{0} (c.f. [23] and [24]). For j=
p+1, -+, 2p, we put S;={£=R"; 1;(6)=1}, which is a compact hypersurface.
Introduce the generalized polar coordinates

$/8)=(248), §/2,E)NER*XS;; ¢7' (4, w)=Aw, IER*, w<=S;.

Then it is easily seen that there exists a positive measure do; on S; such
that

dE=2"d2da,, Ss 1do;<oo.

J
Using these facts we obtain
PROPOSITION 4.4. There exists a constant C such that
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(4.9) IA+]x B2 2= 0By o1+ 2]l sawp =Ct™*,  t>1,

where s=0 when the space dimension n is odd, and 0<s<n when n is even.
Furthermore,

(410) (AP P(D)e L, oo (=) (L | %) | pap <Ct*,  t>1,

where s=0 wh'en n is odd, and 0<s<n+1 when n is even.
ProOOF. We have for any p=S(R")

GHIOE, o= i\l (277:)—n/zgeixseuzj($>Fj(,§)¢(§)d§ .
-

Changing the variable £ to —§ after using (4.6), we obtain for each j=p+1,
ey, 2p

{explirgtitdop- i@ Fap-sn©pE)dE

={exp(—ixg—itd(E)F ©p(—8)ds
Thus
@11) @R, acgp:j“(zn)-n/zglgsje“we”iFj(w)ga(zw) 12| dAda, .
We obtain by integration by parts that the integral appearing in the right

hand side of (4.11) is equal to

A -n -n / n a ~ 1dzw,tt 2
a]SD(O)t +t la+52|+r=n dﬁTx g—“gSje ¢
X F{w)(D?$)Aw)2 7| 2| "0 *PdAda;,

where Y}/ denotes the sum over «a, 8, 1 except for y>n—1, a; is a non-zero
constant when n is even and a;=0 otherwise, and Cis is a constant. Hence

412) OB, oo(X)=agO "+ Y T Cigxe

Jj=1 la+Bi+r=n
X F e DPGA;T(E/ | 2,6)])*+F1(x),
where a=a,.;+--++a,,. Furthermore, when 7 is odd, we can obtain for any

k=n

(#13) By ap(x)=t 8 S Chuxt@ L IR DBNTE MO ).

+BI+7

Using (4.12) we shall show the inequality for even n. We denote by



468 M. MuRraAaTA

X the characteristic function of the set {|§]<1}. Using Hausdorff-Young’s
inequality, Hélder’s inequlity, and the imbedding theorem, we can obtain that
for a, B, v with |a+8|+r=n and r<n—1

(4.14) lxeg=*[e**iF; DP@AA77(€/ 1 2,E) )* ()| 57 can> =CU @ rrn camy »

where L;"(R") is the weighted L,-space (see §2). For example, consider the
case that |a|>n/2. Then

(the left hand side of (4.14))<C|DP¢XA;7||.,

=CIDP¢ | I1XA57) 1, =Cll @l zrncrns -
We have

(4.15) 1DP6(A—0)2;71 £, =Cll @l uncany , | GO) =Cl@| s crns -

Since [@llanwn, =@l L7 @ny, (4.12), (4.14), and imply the inequality
for s=n. Since that for s=0 is obviously valid, we obtain by [Proposition 2.6
the inequality for 0<s<n.

To prove the inequality in the case that n is odd, we have only to
use (4.13) instead of (4.12). For the proof of (4.10), use the following identity
in place of (4.11):

(4.16) P(D)e oEq, o (1—4)"" ¢

= B eoymel” | ereeet i Fo)po) 1+ 2wl A dad .
J=p+1 ~0J8

J

g.e.d.
In order to state the exponential decay of ¢**¥o, we put for any R>0
(4.17) ag(x)=exp(sup (—x7)),
7elp

where 2y is the convex hull of the set {{=R"; min(1,4+,(8), 2p+:(—&)<R} .
Note that U {pw; weS;, —R<pu<R}C8£25 Let b be a positive number such
1sjs2p

that b>R*+2+sup{|7|*; n=2&. We have
PROPOSITION 4.5. Let n be an odd number. Then for any R>0, ac R, and
>0, there exists a constant C such that for all t>1

. Ce R« a=0
(4.18) | Ae**HoE, o Allpay =
Ce Bip—2a | a<0,

where A=ag(x) (14| x|?)~**/2 Furthermore,
Ce Bit==, a=0

titH — A\-1/2
(419 |AP(D)e*Ey olb—1) Anmé{ S
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For the proof we prepare two lemmas.
LEMMA 4.6. Let —R<p<R and 1<j=<2p. Then there exists a constant C
such that for any f& 4 D2(R* X i2z)

Il S +1pE /1 2,E) Dl Locans SCH Fll aen+vr2can x iz -

PrRooF. We have

1fE+i)lz op SCUfE+i ) an+vizcy .
Thus

Hf(EJripE/lZ(E)l)]]%zmm_S_SRnllf($+i-)ll%m<gR>d$

éclﬁl;(nzrn/zgnngmzl Dﬁf(E-i-iY]) l 2d§d77 '

This proves the lemma.
Putting

_ 2297\ __exp(—px§/12,8)1) .
bee)=({,, emdn) ", d x, ="TP EEIISS, 12552,

we have
LEMMA 4.7. There exists a constant C such that for any feL,(R")

|[, e esx, ©7@a], <ClFl,.
Proor. We have by
(4.20)  exp{sup (—px&/|4,(E)])} =exp{sup (—xy)} S(L+]x]%)"*b(x).
Sern 7EX R

On the other hand, for each multi-index pJ there exists a constant C such
that | DPbr(x)| =Cbg(x). Thus

1Déd (x, Oy (rr)=C,
where C is a constant independent of £&. Hence, putting
K€, ©=0) ™, d (x, 9o dx,

we obtain
| K (&, &) =C(L+|&|H)-+viz,

Using this we have for any f, geS(R")

‘gmgO‘)(S ¢'*¥d (x, $>f(5)d§)dx‘

RT

=|{re([rre—e, ©a—1ae")ag]
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=cl{1 @10+ =1 ol (=€) dEde’ <Cl Fl ) gLz,

This proves the lemma.
PROOF OF PROPOSITION 4.5. For the sake of simplicity of notation we

shall treat only the operator ¢**#o (t>1). First we show the inequality [(4.18)
for «a=0. Cauchy’s theorem gives that for any ¢=Cy(R"™) and 0=pu<S

oo

4.21) eitHoEo,M;o:jjzj’;ﬂ(zn)—nﬂg mgsjexp(ilxw—pxw-l—il‘l—l‘,u)
X Fa)p((A+imo)A+ig - dada,
o=t B @y expling—uxt/|2,O) +iEFLO)
X @E+1u&/ | 4, DA +1p/2E))"1dE .

Denoting by X the characteristic function of the set {|£| <1}, we have
4.22) 12&)@(E+1p&/ | A, A+ /2{EN™ Ml 1ycrn>y SCI @ || am+1can x> -
Combining (4.20), Lemmas (.6 and L7, we obtain

(4.23) NDs(x) (141 x| 2)‘"Sexp(ix5 —ux&/ | A +HitA(E)NFLE)

X PE+ipé /12,8 DIXNE) +A—xENIA+ip/2,E)" dE .,
=] ¢“ﬂ€"+1(nnxgs) .

It follows from [(4.21), [4.23), and [Proposition 2.9 that

“ B—le“HDEo, ac@”ltzéce—&” Bgﬁlle ’

where B=bg(x)(1++]x|%)". Thus the interpolation theorem shows that for
0=0=<1

(424> HB'ae“HOEo, ac90HL2§C€—S0t“ BBSD”LZ .

Using the homogenity of the function min(4,+:(€), 2,+:(—&)), we obtain that
for each 8= (0, 1) there exists a constant C such that

Cage(x)=(as(x))=C'assx),
where ag(x) is the function defined by Thus (2.18) implies
(4.25) C(l4|x |85 < B Jage(x)SC (14| x| B)nt1?

For any ¢>0, choose S so large as 5nR/S<e. Then [4.25) and the inequality
obtained by substituting R/S for 6 :in imply the inequality for

a=A0.
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For the proof of the inequality for a>0 we have only to use
with s=a/(1-6).

Next we show for a<0. We have for any 0=u<R
(4.26) [Ae* o Ey o Allpap e "#|lar(x) a (x)(1+] x5~} .
But
lar(x) " ara-1/6() A+ x| 2742 =Ci 2.
Hence substitution of R(1—1/¢) for g in [4.26) gives [4.18) for a<0.
The inequality (4.19) can be shown in the same way as above. q.e.d.

Finally we give some corollaries of Theorems (4.1 and 4.2 and Propositions
44 and 4.5. Consider the system of constant deficit

%%———M(x)P(D)uEM(x) é A,Du.

Let H be the self-adjoint operator in H defined by

Hu=M(x)P(D)u, ucsD(H)=]JD(H,).

Combining Theorems and and [Proposition 4.4, we have
THEOREM 4.8. Assume that

| M(x)—11(1+4 ] x|*)**€ Lo(R™)

for some s such that 1<s=<n-+1 when n is even, and s>1 when n is odd. Then
there exists a constant C such that for any 0<0=1 and t>1

(4.27)  |[(e* " HW.—Je* " HoE, 4. )(1—A) 0% (14| x|2)7*"2| peay, m SCt= D0
and
(4.28) (14| x |2~ 2=t H W, (1—A)-0 %1+ | 2|2~ *"%| pemrg, my =Ct~ =17,

In order to give a theorem concerning the exponential decay we assume

(AIl'YY with a(x) being equal to agx(x)(1+|x|2)%? for some R>0 and a€R.
That is, we assume

(4.29) | M(x)—1|ar(x)1+41x]|?)*"*€ L(R").
Put
(4.30) o=inf{r—s; 0<s<r, ar(x){bp(x)1+|x|®7% ! and

ba(x)(1+ | x|%¥2/ax(x) belong to L.(R™}.

Then we have by that 0<6<(n—1)/4. In particular, 6=0 when 02 is
smooth and its Gaussian curvature never vanishes.

The following theorem is a corollary of [Proposition 4.5, Theorems .1
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and 4.2.

THEOREM 4.9. Assume (4.29). Let n be odd. Let A be the multiplication
operator ar(x) '(1+|x|%)@*/2 where ¢>0. Then there exists a constant C
such that for any t>1 and 0=6=<1
(4.31) le* " W, —Je*  HoE, o Yb—dA) 7 A’A+|x|%) %" pcary. >

éce—Rﬂtt—[a+min(0,a)]0

and
(4.32) [IA”ei“HWi(b—A)"’/ZA"(H— l x | 2)-50/2”“”0,”)gce—Rott—[a+min(o.a)w .

PrROOF. We shall show only for a=0. We have by [Theorem 4.1
and [Proposition 4.5

(4'-33> Hei”HWi“]ei“HOEO,acHB(Xg,H)gce—Rat ’ t>l

where Xo=(L,(R™), H} ,)s,» With p(x)=agr(x)(1+]|x|%°. Choose » and s such
that r—s—e<0 and

(4.34) CA+ x| ar(x)=br(x)=C 11+ | x| ") *ar(x) .

Proposition 2.8 and the first inequality of imply
[l =Cllba(x)?(14| x| D T+22012(b— )12 f | 1, .
Thus the second inequality of gives

(4.35) [ fllxy =CIA+ ] x|2)C 0720 p(x)(b— )% |, -
Combining [4.33) and [(4.35), we obtain for a=0. g.e.d.

§5. Completeness of the wave operators.

In this section we shall study spectral properties of the operator H and
the completeness of the wave operators along the line given by [3], [§], [10],
and [24].

To this end we add the following assumptions (A.III") and (A.IV).

(Al (@) 1Q,E(PE)—) LR, j=1, -, K;

(ii) The operator H defined by

Hu=M(x)(P(D)+ jﬁ 0 ()Q(D)u,  ueD(H)=]D(H,)

is self-adjoint in H. (The spectral measure associated with H will be denoted
by E.)

(A.IV) (i) There is no root of the equation det(A]—P(£))=0 which is
identically non-zero constant, and the roots 2,(§) (j=1, ---, ¥) which are not
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identically zero satisfy
,1,152 |25&)| =00 ;

(i) lim |QE(PO—)1=0,  j=1, -, K.
REMARK 5.1. If (A.l'. i) is replaced by
GD) lim |Q,@)(P©—i)| =0,

then the operator XX,q;Q,(D)P(D)—i)"* is a compact operator in H,, and
consequently (A.III" ii) is satisfied (see [7]).
The assumptions (A.ll) and (A.IV) ensure that for each { with Im{=+0
the operator
I+ x| D*(H]—JH)(Hy,—{) ' (H,—1)™*

is a compact operator from H, to H. Thus in order to apply the results of
and we have only add the assumption which ensure the existence
of a “good” spectral representation of the operator H,. Here we shall give
two such conditions: the first one asserts that the set 4, of all exceptional
values of P(&) is discrete (for definition of 4., see (2.5)), and the second one
asserts that P(£) is homogeneous.

In order to state the first one we prepare some notations and a proposi-
tion. We put

(5.2) A=4,I4,,
where A4, is the set defined by (2.14). Note that A, is a finite set. Put
(5.3) R={2eR; det(A—P(£))=0 for some £ R"} .

Let I be an open interval contained in ®\A. For each j=1, -, r, put
Q,=1¢; 8elt, S;:=1; 28)=1, 2=l.

Fixing cel, we write S;=S;. Let do; be the surface element of S;, and
L(S;)=LxS;, do;; C™). Then we can obtain the following proposition, (c.f.
[10, II, Propositions 2.2 and 2.3]).

PROPOSITION 5.2. Assume (A.IV. i). Then, for each j there exist a homeo-
morphism ¢; from IXS; onto Q; and a positive measurable function p;on IXS;
satisfying the following properties: (i) for each A€I, ¢; maps {A} XS; on S; ;;
(ii) for any feL,(£2))

”Pj(l, CU)Fj(?Sj(Z, w))f(sﬁj(l, w))”Lg([; La(S )= ”Fj(E)f@)“chgj) .

Furthermore, for each A<I there exists a bounded linear operator I'j2) from
H*(R™) (s>1) to LyS;) satisfying the following properties: (iii) for any
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‘ fe H3(R™)

(5.4) (IS [ 0)=p 2, @)F(($,4, o)) [($,2, 0));

(iv) I' (A) depends locally Holder continuously on A in operator norm.

This proposition shows the existence of a good spectral representation of
H, restricted to E,(R\A4). Thus the completeness of the wave operators will
follow if we add the following assumption.

(AY) The set A, is discrete in R.

Under the assumptions (A.l), (A.Il), (A.Il"), (AIV), and (A.V) we obtain
the following three theorems. (The proof is omitted since they can be shown
along the line given in [3], [8], [10], and [24].)

THEOREM 5.3. (i) The spectrum of H in R\R consists of eigenvalues. The
set g ,(H)N(R\R) is bounded. (ii) o,(H) has no points of accumulation in
R\A. Each eigenvalue A€ A is of finite multiplicity. (iii) H restricted to
E(R\(o ,(H)\IANH s absolutely continuous.

THEOREM 54. Let I=R\(c,(H)JA). Then the function R()=(H—-C)* on
II*={<C; £tIm{>0} can be extended to II*\JI as a B(L§? Ly**-valued
locally Holder continuous function. In particular, for any A€l and feL§® the
limit R(liiO)zlsifgl R(A+1ie) f exists in Ly*%. R(A+x10)f satisfies (H—A)R(A+10)f

=f in the sense of distribution.

THEOREM 5.5. R(W,)=R(W_.)=E(R\(c,(H)\JA))H.

Next we treat the homogeneous case. That is, we assume

(A.VD) P(§) is a homogeneous polynomial of order N.

Then the assumption (A.IV. i) is equivalent to the condition
(5.5) the rank of the matrix P(§) is constant for all £= R™\ {0}.
Under the assumption (A.VI) and (5.5) we have

PROPOSITION 5.6. Let I=R* and ¢==1. Then the conclusion of Proposi-
tion 5.2 is valid.

ProoF. We shall treat only the case that /=R*, ¢==1, and S,=S;,. We
see that S; is a compact hypersurface without boundary which is smooth
except possibly on a real analytic set with codimension more than 1 in R".
Thus the surface element do; of S; is well-defined. Put

¢, @)=1"V0, (1, ®)eIXS;.

Then we see that (i) ¢; is a homeomorphism from /X S; onto {{=R™; 2,(§)>0} ;
(ii) for each A€l, ¢; maps {4} XS; on S, ;; and (iii) there exists a constant
a such that dé=a®A"¥-'dAdo;. Thus, setting

— n/2N-1/2
pj_az ’

we obtain the first half of the conclusion of [Proposition 5.2l It remains to
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show the latter half. Choose an open interval J such that jcI. Since
Fi2V¥ w)=Fw), we have

(04, @)F(A"Y w) (A Y w) =Clfllz1can> .

‘ 0
04
Hence the interpolation theorem shows

1,2, @)F 2" 0) A" ¥ )| 83¢s; Lospp SCI fllmsrzaany,  1<5<2.

La(J; LS

Applying the imbedding theorem, we obtain that the operator I';(1) defined
by belongs to B(H*(R™), Ly(S;)) for each 1], and it depends Holder
continuously on A in operator norm, the exponent being (s—1)/2. g.e.d.

Using this proposition we can obtain the following theorem.

THEOREM 5.7. Assume (A, (AID), (AIIl"), (AIV), and (A.VI). Then each
conclusion of Theorems 5.3, 5.4, and 5.5 holds with A being replaced by {0}.

In the special case that ¢;(x)=0 (j=1, ---, K) we can get more information
about the structure of o,(H). (As for the other case, we refer the reader to
[8]) That is, we have

THEOREM 5.8. Assume (A.D), (A, (AIV.i), (A.V]), and ¢;=0 (=1, -, K).
Then zero is not an accumulation point of o ,(H).

PrROOF. For the sake of simplicity we shall treat only the case that
N=1. We use the same notation as in the latter half of §4: (i) 4,(5)<---=
2p(6) <0< 2p41(6)= - S 2:(8), §#0; (iD) Fy§) (j=1, ---, 2p) and F,,.4(§) are the
orthogonal projection associated with 4,(§) (j=1, ---, 2p) and 0, respectively.

We first claim that for any ¢>0 there exists a constant R>0 such that
for each ueH and 1 (0<|4|<1) with Hu=Au

(5.6) Hul|Lz((|x1>Rn§5Hu”H-
Let us show for 0<A<1. Putting v(&)=F[(M(x)*—Du(x)](€), we have

(PE)—Dal)=4v(§).
Thus

(6.7) () —DFLE)=2F &),  j=1, -, 2p+1.
Since v H(R™) by (A.ID), implies
FJ(E)”(S)‘ 1](6):7.:0 ) J:P+1, Tty 217 .

Thus we obtain for j=p-+1, -+, 2p

Fi&v(é)

n 1 gy .
2,E)—2 =Fjw) ka SOE {(t(lj—2)+2)w}wk¢t )

Hence

(5.8) 1) =D F ) Lommy SCllvll s ans , — j=p+1, -+, 2p.
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Since H*"Y(R™)CL,(R"™) for some ¢>2, we obtain similarly

(5.9) 1A= Fi ) Lgans SCllvllgseny ,  j=p+1, -, 2p.

For any 6>0 and 1=<;=2p, we put fi&)=exp{—(1;(6)—)?/6%. Putting
Vi=A0O=D1Fw, U= 3 20@—"1—F)Fw,

we have by

(5.10) a(E)= jé V- U—Fyporo.

Choosing a sufficiently small number a, we obtain by and Heélder’s
inequality
2p

2| Vj“l,gcmj(s)—zKa)§€”U||Hsc1zn) .
J=p+1

Choose ¢ so small as sup{fi(&); |2,6)—2|=a}<e¢/p. Then implies

2

2 MWVillpar@-nza =elvlasan -

Hence

2p

(5.11) 2 Vil zyan =2el|vll gscan -
=+

Since |2(2,(8)—A)~!'|=1 for j=1, ---, p, we have by similar computations
v

(5-12) Z}l I Vj“chzzn)éZs”U”Hsmn) .

Choose a C=-function ¢ such that ¢=1 in a neighborhood of zero and Supp ¢

is contained in a sufficiently small ball. Since Fy,.;=C*(R™\{0}) by (5.5), we
obtain

(5-13) ]|§0sz+1U[|L2<Rn)§5”U”Hsctzn): I|(1_90>F2p+1UHHS(Rn)§CsHU“HS(Rn> ’

where C, is a constant depending only on . Choose d so large as |4,(§)—2a]™?
<e/4p for |£|=d and j=1, ---, 2p, and choose a C>-function ¢ such that
¢()=1 on {|é]=d} and Supp ¢C{|§|<d+1}. Then we have

(5.14) A= Ul yen> = €llvll mscans -
On the other hand,
pU=— 5| Ae D H1em e DI G(PQ) 2 (L Fypeudz,

where b=sup{|1;6)|+2; |§|=d+1, j=1, -+, 2p}. Thus we obtain
(5.15) |[90¢'U”chxmés”?)”mmn) ’ H(l—SD)SbU”HS(Rn)éca”UHHs(nn) .
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Combining (5.10)~(5.15), we have
) Lyarziom <(Te+2C. R||v] gscany S C(e+C R )| el x .

This shows for 0<A<1. The inequality for —1<2<0 is shown
similarly.

Suppose that there exist infinite eigenvalues of H such that 0<|4;|<1
and lim 4,=0. Let u; be the normalized eigenfunctions associated with A4,

Jooo

Since u; is orthogonal to each eigenfunctions associated with zero and

luil e+ Hujla=2,

it follows from Theorem 2.1 in that {u;}5-, is precompact in L, . (R").
But implies that for any e>0 there exists R>0 such that for all
j=1, 2, -

lusllLyazsm=e.

Hence {u;}$-, is precompact in H. Since it is an orthonormal system, this
leads to a contradiction. g.e.d.

Appendix.

In this appendix we shall show a precise version of [Proposition 2.8 in the
case p(x)=(1+]|x|*"2 That is, we shall show
PROPOSITION. For g,=0;, s¢=<s,;, and 0<0<1, one has

— — (1-0+0,9
(H?, Ho3)y o =[H?, H3ly=Horo-0 %o

$0C1-0)+8,0 °

Here we abbreviated H?, to H?Z. The proof is decomposed into the follow-
ing four lemmas. Throughout the appendix we use the notations:

p(X)=QA+1x[D)V2, U=p(x):, V=>1-4"2
LEMMA 1. For each o, 7z, 7, SSR the operator V°* is an isomorphism

from HY to HI=°. Furthermore, there exists a constant C depending only on s
such that

(1) [V et fllar-e<Cp(z) "'l fll a7 .
PROOF. Since || o7l sany<Cp(z)* for a non-negative integer k, we have
1Volsap=IU" sz =Cp(z)*.
Hence
(2) NVt flar-e=IVVf 1s=Cp(=)"*'| f |l a7 .
Since (Vott))-1=y -+ (2 implies the lemma.

Lemma 2. [HY, H:f]f’:H:ooc(ll:g;I:fg for 0,=0,, so=s,;, and 0<O<]1.
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Proor. For simplicity of notations we shall treat only the case that
0o=5,=0. (The proof below can be applied also to the general case.) Put
6=0, s=s;, T={zcC; 0<Rez<1}, and T={zeC; 0=<Rez=1}. Let A be
the Banach space of all L,-valued continuous functions F on T such that F
is holomorphic in 7, bounded in T, and

| Flla=max(supll FGo)l o,y supl FL+ie)] ug)<oo .

Then we have by the definition of the complex interpolation space that

CL,, H7]p is equal to the set of those f€L, such that f=F(f) for some Fe 4,
and

1/ lezy mpry=inf{| Flla; FeA, f=F@)} .

First we show the inclusion HYC[L,, H?),. For each fe HY and z<T,
set

F(Z):e(z—(?)z‘[/—azU—szg’ g:UsﬁI/UOf.

It suffices to show that F belongs to the space .4 and there exists a constant
C independent of f such that

(3) [Flla=Cll fllmeg -
We obtain by (1)
IFt+ei)l ag=lle+=i= DUtV -osiy -+¢+D g|| . <Ce " p(a7)*"* || g, =Cl fll ugf -
This proves (3) and the boundedness of F in 7. We have
F'(2)=e%“ 9"V -9:[2(2—0)— 0o log(1— 4)"*— s log p(x)]U " **g.

This implies that for any ¢>0
sup | F'(2)] 2, =Cll flluef
est=s1

from which it follows the holomorphy of F(z) in T. The continuity is an
easy corollary of Lebesgue’s dominated convergence theorem.

Next we show the opposite inclusion. For each fe[L,, H7]y and ¢>0,
there exists Fe 4 such that F(#)=f and

(4) HFluélifH[Lz,HgJﬁ—s.
Set
G(z)=e=O*UsVI2F(z).

Then G(z) is, an S’-valued function, holomorphic in T and continuous on T.

Moreover there exists for any ¢&S a constant C such that |[(G(t-+i7), ¢)]
<Ce~"". Hence we have in S’
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1 (= G(l+i7) 1 (= G(iz)
sV 060 f— — —
(5) Utvelf=6O)= 27 S-oo 1+ic—6 dr 27 S—oo it—0 de.

On the other hand

(6) 1GED) 1, 1 GA+1D)l| £, =Ce™ /(| FG)|| Ly + I FA 412 £9) -
Combining (4), (5) and (6) we get

I N agf SCUf Nezs w1, 1) -

This implies that || flagf=Cl fliz, ne1,- g.e.d.
LEMMA 3. For s,t, o, reR, the operator U®**t is an isomorphism from
H? to He,.
PrROOF. For a non-negative integer k, we have

[0 F e = p (51— A)* p(2)** |, SCI F e

r—$

This and imply
(7) 1U* fllge_,<Cl fluz, 0=0.

r—8$—

Since (Us+tH)-1=[-¢+t_ (7)) proves the lemma in the case ¢=0. If ¢<0, we
have only to use the facts: H?=(H=%)’ and Us**=(U*"%)*, q.e.d.

LEMMA 4. (L,, Hg,.=[L,, H? ]y for ¢=0, s=0, and 0<6<1.
PrROOF. Let B be the operator in L, defined by

B=U2VeU**, D(B)=H?.

Then we obtain by Lemmas 1 and 3 that B-! is a bounded operator in L.,.
Thus B is a positive self-adjoint operator. Hence we have D(B%=(L,, D(B))g.»
=[L,, D(B)]s (c.f. [9] and [13]). This proves the lemma.

Finally we remark that Lemmas 1 and 3 imply the following proposition.

PROPOSITION 5. (i) For o, s€R, there exist positive constants C and C’
such that

(8) Cl M asSIA=Do A+ x| f |, =C' N fllwg,  fEH?.
(ii) F(H)=H?, for o, s€R.
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