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Class numbers of cubic cyclic fields
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Let $n$ be any given positive integer. It is known that there exist real
(imaginary) quadratic fields whose class numbers are divisible by $n$ . This is
classical for imaginary case and the real case was proved by Y. Yamamoto
[2]. One may conjecture that the same is true for (abelian) fields with any
fixed degree, though it is difficult to obtain examples for higher degrees.
We now show that it is true for cubic cyclic fields. To obtain this result,
we deal with Eisenstein type polynomials

$f(X)=X^{3}+pX^{2}+2pX+p$

for (not necessarily prime) integers $p$ . In the case $p=163,$ $f(X)=0$ defines
a cubic cyclic field which was the first example with even class number [1].

1. In this section we discuss general properties of $f(X)$ and a field
defined by $f(X)=0$ . Our interest is in the cyclic case, so we impose a
condition on $p$ . Let $Q$ and $Z$ be the rational number field and the ring of
the rational integers, respectively. Let $n$ be a positive integer which is fixed
in the argument below. We note that $f(X)=X^{3}+p(X+1)^{2}$ .

LEMMA 1. $f(X)$ is irreducible for any integer $p\neq 0$ or 8.
PROOF. It suffices to show that $f(m)\neq 0$ for any $m\in Z$. If $m+1\neq\pm 1$ ,

$f(m)=m^{3}+p(m+1)^{2}\not\equiv 0(mod m+1)$ .
If $m+1=1$ and $f(m)=0,$ $p$ must be $0$ . If $m+1=-1$ and $f(m)=0,$ $p$ must
be 8.

From now on we assume that

$p=(a^{2n}+27)/4$

for some integer $a$ relatively prime to 6. We put

$P=bc^{3}$

for a cube free integer $b$ and for some integer $c$ . Let $K$ be a field defined
by an equation $f(X)=0$ .

LEMMA 2. $K$ is a cubic cyclic field. The prime factors of the discriminant
of $K$ are equal to those of $b$ .
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PROOF. $f(X)$ is irreducible by Lemma 1. The discriminant of $f(X)=0$

is equal to $p^{2}(4p-27)=(pa^{n})^{2}$ . Hence $K$ is a cubic cyclic field. We can
factorize $f(X)$ mod $a$ as follows:

(1) $f(X)\equiv(X+3)^{2}(X+p-6)(mod a)$ .
This shows any prime factor of $a$ cannot be completely ramified because
$P-6\equiv 3/4\not\equiv 3(mod q)$ for any prime factor $q$ of $a$ . As $K$ is cyclic, this shows
any prime $f$ actor of $a$ is unramified and the discriminant of $K$ is a divisor
of $p^{2}$ . If we put

$g(X)=X^{3}+bc^{2}X^{2}+2bcX+b$ ,

$\pi/c$ is a root of $g(X)=0$ for any $\pi$ such that $f(\pi)=0$ . Hence the discriminant
\langle )$fg(X)=0$ is equal to $(ba^{n})^{2}$ . This shows the discriminant of $K$ is a divisor
of $b^{2}$ . Let $l$ be any prime factor of $b$ , and let $Q_{l}$ be the completion of $Q$ by

l-adic valuation. It is clear that $g(X)$ has no zero point on $Q_{l},$ $i$ . $e.,$ $g(X)$ is
irreducible over $Q_{l}$ . Then 1 must be ramified in $K$ as $b$ is cube free, and this
shows any prime factor of $b$ is in the discriminant of $K$.

REMARK. Above lemma shows $b\neq 1$ because the discriminant of $K$ is
not 1.

Let $\pi$ be the largest root of $f(X)=0$ . Of course $\pi$ is negative. Let $\sigma$

be an automorphism of $K$ such that
$\pi>\pi^{\sigma}>\pi^{\sigma^{2}}$

If we Put $\epsilon=\pi+1$ , it holds
$\epsilon>0>\epsilon^{\sigma}>\epsilon^{\sigma^{2}}$

They are units because they are the roots of

$h(X)=X^{3}+(p-3)X^{2}+3X-1=0$ .
Now we define a unit $\eta$ and an integer $\alpha$ as

$\eta=\pi^{\sigma}/\pi$ and $\alpha=(\pi-\pi^{\sigma})/\pi$ .
The fact that $\eta$ is a unit is proved as follows:

(2) $\eta^{3}=\pi^{3\sigma}/\pi^{3}=\{-p(\pi^{\sigma}+1)^{2}\}/\{-p(\pi+1)^{2}\}=(\epsilon^{\sigma}/\epsilon)^{2}$

Then $\alpha$ is clearly an integer.
LEMMA 3. Every prime factor $q$ of a splits in K. There exists only one

Prime divisor $q$ of $q$ such that

$\pi^{\sim}\equiv\pi^{\sigma}$ (mod q).

Let $a=q_{1}^{e_{1}}\cdots q_{r}^{e_{r}}$ for different prime numbers $q_{i}$ . We put

$\mathfrak{a}=q_{1}^{e_{1}}\cdots q_{r}^{e_{r}}$ ,
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where $q_{i}$ is a prime divisor of $q_{i}$ such as above. Then

$(\alpha)=\mathfrak{a}^{n}$

PROOF. The formula (1) shows that $q$ splits in $K$. And also this shows
there exists a prime divisor such that

(3) $\pi\equiv\pi^{\sigma}\equiv-3$ (mod q), $\pi^{\sigma^{2}}\equiv-P+6$ (mod q).

Then

(4) $\pi^{\sigma}\equiv\pi^{\sigma^{2}}\equiv-3$ (mod $q^{\sigma}$ ) , $\pi\equiv-p+6$ (mod $q^{\sigma}$ )

and

(5) $\pi\equiv\pi^{\sigma^{2}}\equiv-3$ (mod $q^{\sigma^{2}}$), $\pi^{\sigma}\equiv-P+6$ (mod $q^{\sigma^{2}}$ )

hold. As $-3\not\equiv-P+6(mod q)$ , only $q$ satisfies the condition in the lemma.
Therefore $q^{\sigma}$ and $q^{\sigma^{2}}$ are not divisors of $(\pi-\pi^{\sigma})$ . It holds

$N_{K}(\pi-\pi^{\sigma})=-a^{n}p$

because $N_{K}(\pi-\pi^{\sigma})^{2}$ is equal to the discriminant of $f(X)=0$ , where $N_{K}$ means
the norm from $K$ to $Q$ . As $N_{K}\pi=-p$ , it holds

$N_{K}\alpha=a^{n}$

Then the above argument shows it must be $(\alpha)=\mathfrak{a}^{n}$ .
LEMMA 4. Let $E$ be the group of the units of K. Let $E_{1}$ be a subgroup

generated by $\epsilon,$

$\epsilon^{\sigma}$ and $-1$ . Let $E_{2}$ be a subgroup generated by $E_{1}$ and $\eta$ . Then
the index $(E:E_{1})$ is finite and odd. As $(E_{2} : E_{1})=3,$ $(E:E_{1})$ is divisible by 3.
A totally Positive unit is a square of some unit.

PROOF. As $\epsilon$ and $\epsilon^{\sigma}$ are independent, $(E:E_{1})$ is finite. As

$\pm 1$ , $\pm\epsilon$ , $\pm\epsilon^{\sigma}$ , $\pm\epsilon^{\sigma^{2}}$

represent the cosets of $E_{1}/E_{1}^{2}$ and as none of them except 1 is totally positive,
they are the representatives of the cosets of $E/E^{2}$ . Hence $(E:E_{1})$ is odd,
and also any totally positive unit is a square in $E$ . The formula (2) shows
that $(E_{2} : E_{1})$ is a divisor of 3. As $(p, a)=1,$ $(\pi)$ and $(\alpha)$ are relatively prime.
Hence

$\alpha=1-\eta\not\equiv 0(mod \pi)$ ,

$i$ . $e.$ , $\eta\not\equiv 1(mod \pi)$ . As $\epsilon\equiv\epsilon^{\sigma}\equiv 1(mod \pi)$ and as $\eta^{3}=(\epsilon^{\sigma}/\epsilon)^{2}\equiv 1(mod \pi)$ , it
follows $\eta\not\in E_{1}$ and $(E_{2} : E_{1})=3$ .

2. We now prove our main result, imposing some conditions on prime
factors of $a$ . Let $q$ be any prime factor of $a$ , and let $q$ be a prime divisor
of $q$ satisfying the condition of Lemma 3. Then congruences (3), (4) and (5)

hold. Therefore it follows that
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(6) $\alpha\equiv(-p+9)/(-p+6)\equiv(4p-36)/(4P-24)\equiv-3$ (mod $q^{\sigma}$)

and

(7) $\alpha\equiv(P-9)/(-3)\equiv 3/4$ (mod $q^{\sigma^{2}}$).

It should be noted that these congruence relations do not depend on the choice
of $q$ .

LEMMA 5. If $a$ has a prime factor $q$ such that 2 or 3 is not a quadratic
residue mod $q,$ $(\alpha)$ is a square of no principal ideal.

PROOF. It is easily seen that $\alpha/\epsilon^{\sigma}$ is totally positive. If $(\alpha)=(\beta)^{2}$ for
some $\beta\in K,$ $\alpha/\epsilon^{\sigma}\beta^{2}$ is a totally positive unit which is a square by Lemma 4.
Hence $\alpha/\epsilon^{\sigma}$ is a square in $K$. It contradicts to the hypothesis on $q$ , because

$\alpha/\epsilon^{\sigma}\equiv 3/2$ (mod $q^{\sigma}$)
and

$\alpha/\epsilon^{\sigma}\equiv 3/4(-P+7)\equiv 3$ (mod $q^{\sigma^{2}}$).

LEMMA 6. Let $l$ be an odd prime number. We assume that $a$ has a prime
factor $q$ such that 2 is not an l-th p0wer residue mod $q$ . If $1\neq 3,$ $(E:E_{1})$ is
prime to $l$ . If $l=3,$ $(E:E_{2})$ is prime to $l$ .

PROOF. Let $q$ be a prime divisor of $q$ as in Lemma 3. First we consider
the case $l\neq 3$ . We assume that a unit $\delta$ and $c,$ $d\in Z$ satisfy

$\delta^{l}=\epsilon^{c}\epsilon^{d\sigma}$ $0\leqq c<l$ , $0\leqq d<l$ .
As

$\delta^{l}=\epsilon^{c}\epsilon^{d\sigma}\equiv(-2)^{c+a}$ (mod q)

and as 2 is not an l-th power residue $mod q$ , it must be

$c+d=0$ or 1.
If $c+d=I$,

$\delta^{l}=\epsilon^{c}\epsilon^{a\sigma}\equiv(-2)^{a-2C}\equiv(-2)^{l- 3C}$ (mod $q^{\sigma}$).

This is a contradiction as $(-2)^{l- 3C}$ is not an l-th power residue. Thus it must
be $c=d=0$ and $\delta=1$ . This shows $(E:E_{1})$ is prime to $l$ . Now let $1=3$ .
$E_{2}/E_{2}^{3}$ is generated by $\epsilon$ and $\eta$ . If there exist a unit $\delta$ and $c,$ $d\in Z$ such that

$\delta^{3}=\epsilon^{c}\eta^{d}$ , $0\leqq c<3$ , $0\leqq d<3$ ,

$\delta^{8}=\epsilon^{c}\eta^{d}\equiv(-2)^{c}$ (mod q).

Then it must be $c=0$ . Now

$\delta^{3}=\eta^{a}\equiv 4^{d}$ (mod $q^{\sigma}$)

shows $d=0$ . Hence $(E:E_{2})$ is prime to 3.
LEMMA 7. Let $l$ be an odd Prime number. We assume that $a$ has Prime

factors $q_{1},$ $q_{2}$ both of which satisfy the condition of Lemma 6. We also assume
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that 3 is an $l$-th power residue mod $q_{1}$ but is not an l-th Power residue mod $q_{2}$ .
Then $(\alpha)$ is an $l$-th power of no principal ideal.

PROOF. If $(\alpha)=(\beta)^{l}$ for some $\beta\in K$, it holds

$\alpha=\epsilon^{c}\epsilon^{d\sigma}\delta^{l}\beta^{l}$

for some unit $\delta$ and for some $c,$ $d\in Z$ if $1\neq 3$ . If $l=3$ , it holds

$\alpha=\epsilon^{c}\eta^{d}\delta^{l}\beta^{l}$

Let $q_{1}$ and $q_{2}$ be prime divisors of $q_{1}$ and $q_{2}$ as in Lemma 3. Then

$\alpha\equiv-3\equiv(-2)^{d- 2C}\delta^{l}\beta^{l}$ (mod $qf$) if $l\neq 3$ ,

$\equiv 4^{d- C}\delta^{l}\beta^{l}$ (mod $q_{\ell}^{\sigma}$ ) if $1=3$ ,

for $i=1$ and 2. By assumption on $q_{1}$ , it must be

$d-2c\equiv 0(mod 1)$ if $1\neq 3$

and
$d-c\equiv 0(mod 1)$ if $l=3$ .

But then $\alpha$ must be an l-th power residue mod qg which contradicts to the
assumption on $q_{2}$ .

LEMMA 8. There exist infinitely many prime numbers $q$ satisfying the
condition of Lemma 5. There also exist infinitely many prime numbers $q_{1}(q_{2})$

satisfying the condition of Lemma 7.
PROOF. It is easy for the case of Lemma 5. For example, 2 is not a

quadratic residue for every prime number $q$ such that $q\equiv\pm 3(mod 8)$ . In the
case of Lemma 7, we can follow [2, Lemma 3]. Let $F$ be the field of the
l-th roots of unity. Let $L=F(\sqrt[\iota]{2}, \sqrt[\iota]{3})$ . Let $q$ be a prime number which is
relatively prime to 61. Let $\mathfrak{Q}$ be a prime divisor of $q$ in $L$ . If the de-
composition field of $\mathfrak{Q}$ is equal to $F(\sqrt[l]{3}),$

$q$ satisPes the conditions on $q_{1}$ .
If the decomposition field is equal to $F(\sqrt[\iota]{6}),$

$q$ satisfies the conditions on $q_{2}$ .
There exist infinitely many prime numbers $q$ in both cases by the density
theorem.

THEOREM 1. Let $n$ be any posifive integer. There exist (infinitely many)
cubic cyclic fields whose class numbers are multiples of $n$ . In fact, let

$p=(a^{2n}+27)/4$

for some integer $a$ prime to 6. If $a$ has prime factors $q,$ $q_{1}$ and $q_{2}$ as in Lemmas
5 and 7 for the prime factors 1 of $n$ , the class number of the field defined by

$f(X)=X^{3}+pX^{2}+2pX+p=0$

is a multiple of $n$ .
PROOF. It is well known that the existence of such a field and the
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finiteness of the class number assure infiniteness of such fields. We can
choose $a$ as above by Lemma 8. Lemma 3 shows $(\alpha)=\mathfrak{a}^{n},$ $i$ . $e.$ , the order of
the ideal class of $\mathfrak{a}$ is a divisor of $n$ . If the order is smaller than $n$ , there
exists a prime factor 1 of $n$ such that $\mathfrak{a}^{n/l}=(\beta)$ is a Principal ideal. But this
contradicts to Lemma 5 or 7. Hence the class number of $K$ is a multiple
of $n$ .

3. In the case $n=2$ , an unramified quadratic extension of $K$ can be
obtained explicitly. We put

$\beta=\alpha\epsilon^{\sigma}$ .

It is easily seen that $\beta$ is totally positive.

THEOREM 2. $K(\sqrt{\beta})$ is an unramified quadratic extension of $K$ if $\beta$ is not
a square in K. This is the case if $a$ has a prime factor $q$ such that 2 or 3 is
not a quadratic residue mod $q$ .

PROOF. The latter half comes from Lemma 5. If $\beta$ is not a square in
$K,$ $K(\sqrt{\beta})$ is a totally real quadratic extension of $K$. As $(\beta)=(\alpha)=\mathfrak{a}^{2}$ , every
prime divisor of $K$ except (2) is unramified. As $f(X)$ is irreducible mod 2,
(2) does not split in $K$. Hence

$\pi^{\sigma}\equiv\pi^{2}$ or $\pi^{4}(mod 2)$

holds according as $\sigma$ is a Frobenius automorphism of (2) or not. It is easily
seen that $P\equiv 3(mod 4)$ in the case $n=2$ . As $\pi$ and $\pi^{\sigma}$ are roots of $f(X)=0$ ,

it follows
$\pi^{\sigma}\equiv\pi^{2}$ or $\pi^{4}(mod 4)$ .

Then
$\beta\equiv(1+\pi^{2})(\pi-\pi^{2})/\pi\equiv\pi(mod 4)$

or
$\beta\equiv(1+\pi^{4})(\pi-\pi^{4})/\pi\equiv 2\pi^{2}+\pi(mod 4)$

holds. Taking the norm we know that $\beta\equiv\pi(mod 4)$ because $N_{K}\beta=N_{K}\alpha=$

$a^{2}\equiv 1(mod 4)$ and $N_{K}(2\pi^{2}+\pi)=p(2p-1)\equiv-1(mod 4)$ . As

$\pi\equiv(\pi^{2}+\pi+1)^{2}(mod 4)$ ,

$(\pi^{2}+\pi+1+\sqrt{}\overline{\beta})/2$ is an integer which satisfies an equation

$X^{2}-(\pi^{2}+\pi+1)X+((\pi^{2}+\pi+1)^{2}-\beta)/4=0$ .
The discriminant of this equation is $\beta$ which is prime to (2), so (2) is also
unramified in this extension.
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