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Introduction

0.1. We call, after M. Sato, a pair (G, V) of a finite dimensional complex
vector space V and ar. algebraic subgroup G in GL(V) a prehomogeneous
vector space when there exists a G-orbit in V of the same dimension as V.
M. Sato constructed a systematic theory of prehomogeneous vector spaces,
and as an application of his results, attached certain “distribution valued
zeta-functions ” to prehomogeneous vector spaces satisfying several additional
conditions.” It was also pointed out by Sato that there would exist certain
Dirichlet series with functional equations which are intimately related to
them, when G is defined over an algebraic number field. In the present paper
we give an example of such Dirichlet series whose coefficients have arith-
metical significance.

0.2. To state the main result in an explicit form, let L denote the lattice
of integral binary cubic forms:

L = {F(u, v) = x,u®+ x,u* v+ xuv?+x,0% ; (xy, X3, X3, X) € Z*} .
The lattice L becomes an SL(2, Z)-module if we put
r-F(u, v)=F((u,v)y) (rSLE 2), Fel).

We call two elements x, ¥y of L equivalent if there exists a y € SL(2, Z) such
that x=y-y. For every integer m + 0, we denote by L, the set of integral
binary cubic forms whose discriminants are m. It is known that there exist
only finitely many equivalence classes in L,,. We denote by A(m) the number
of equivalence classes in L,. We put

L={Fu, v) =xu*+xuv+xuv®+xv* € L; x,, x,3Z}.

Then L is an SL(2, Z)-submodule of L. We denote by ﬁ(m) the number of
equivalence classes in L, which are contained in L. Now we define four
Dirichlet series as follows:

1) A Survey of “the theory of prehomogeneous vector spaces” is given in [§].
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In the second chapter of this paper we prove the following:
THEOREM. (i) The above four Dirichlet series converge absolutely for

Re s> 1. They can be continued analytically to functions holomorphic in the
whole plane except for simple poles at 1 and 5/6. Furthermore, they satisfy the

following functional equation:
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(ii) Their residues at s=1 and at s=- 2 are given in the following table.

Table of Residues
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0.3. To make the present paper self-contained, we briefly describe some
of Sato’s results with his permission. The author wishes to express his most
sincere gratitude to Professor M. Sato who gave Lectures entitled “ The
theory of prehomogeneous vector spaces and zeta functions” in 1969 at the
University of Tokyo and generously permitted the author to use his results
still unpublished in European language. The author also wishes to thank
heartily to Professor K. Aomoto who read the manuscript and made many
useful suggestions. A short summary of the present paper was given in [9].
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Notation

We denote by Z, Q, R and C the ring of integers, the rational number
field, the real number field and the complex number field. We use det, Sup.
and Supp. as abbreviation of determinant, supremum and support, respectively.

We denote by I'(2), {(2), the usual Gamma function and the Riemann zeta
function.

For a C*-manifold X, C(X) (resp. C*(X)) denotes the space of all complex
valued continuous (resp. C=-) functions on X, and Cy(X) (resp. C{3(X)) the
space of all functions in C(X) (resp. C=(X)) with compact support. When X
has a (prescribed) measure we denote by L,(X) the space of integrable func-
tions on X.

Chapter 1. An introduction to the theory of prehomogeneous
vector spaces

§1. Fundamental properties of prehomogeneous vector spaces

In this chapter, we describe a Sato’s theory which is necessary for our
later applications.”

Let V be a complex vector space of dimension n and G be a complex
algebraic subgroup of GL(V, C). We write the action of G on V as follows:
g-x (geG, xeV). For any x&V, we denote by G, the isotropy subgroup
of x in G, i.e, G,={gesG; g-x=x}. We call the pair (G, V) a prehomo-
geneous vector space when there exists an x &V such that

a.n dimG—dim G, =n.

We call x &V a singular point of V when the equality does not hold. We
denote by S the set of all singular points of V, S={xeV; dim G—dim G, < n}.
It is easy to see that S is a G-invariant proper algebraic subset of V and
that (V—S) is a single G-orbit. For every g= G and a rational function
R on V, we denote by R, the rational function on V defined as follows:
R, (x)=R(g-x) (x€V). We call a non-zero rational function R a relative-
invariant on V when there exists a rational character g of G such that
R,=p(g)R (Vg G). We say that R is a relative-invariant on V corresponding
to a rational character p.

It is obvious that relative-invariants corresponding to the same rational
character coincide with each other up to constant factors. In the following,
we assume that (G, V) is a prehomogeneous vector space. Furthermore we
assume that the following two additional conditions are satisfied for the pair

2) Cf. [8].
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G, V.

1. G is a reductive algebraic group defined over the real number field and
V has an R-structure.

(In the following we denote by Gz (resp. Vjz) the set of R-rational points
of G (resp. V).

2. The set of singular points S in V is an irreducible hypersurface of V.

Then there exists a polynomial P which is C-irreducible and R-valued on
Vg such that

1.2) S={xeV; Px)=0}.

ProposITION 1.1. (i) Every relative-invariant on V is of the form cP™
(celC*, me ).

(ii) P is a homogeneous polynomial,

PrROOF. (i) For every g G, P, is an irreducible polynomial whose set
of zeros is g7 '-S=S. Since S is an irreducible hypersurface, P, coincides
with P up to a constant factor. Hence, there exists a rational character X
of G such that P,=X(g)P (Vg= (). Let R be any relative-invariant on V.
Then the set of zeros and poles of R is a proper algebraic subset of V which
is G-stable. Therefore it is contained in S. Consequently, any prime factor
of R must coincide with P. So, R is of the form c¢P™, for some c=C*, me Z,

(ii) For any t< C*, we denote by P® the polynomial on V defined as
follows: P(x) = P(t-x). Since P,=X(g)P for g&€ (G, we have PP=X(g)P®
(Vg G). Therefore, P coincides with P up to a constant factor. Hence,
P is homogeneous. q. e. d.

In the following, we denote by X the rational character of G such that

1.3 P(g-x)=%2(g)Px) Vgeag, xeV).
We also denote by d the degree of the homogeneous polynomial P. Let V*

be the dual space of V. Thus G acts on V*. We denote the action of G on
V* as follows: g*-y (g G, yV*). We have thus
{gx,g%y>=<Xxy) (gei, xeV,yeV*.

We put Vi={yeV*; {x,y>e R (VxeVy)}.

LEMMA 1.1. There exist a linear mapping = of V onto V* and an involution
¢ of G which satisfy the following conditions:

(i) =(Vp)=V§

(i) z(g-x)=(g)* =(x) (VgE(),

(i) X(g)=x"'(g).

PrROOF. Since G is a reductive algebraic group defined over R, we may
assume that® the matrix form of the group G with respect to a suitable

3) See [3].
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base {e,, -+, e,} of Vg has the following property: Every element g of G; can
be uniquely expressed as g==Fk-p, where k€GN O(n, R) and p=Ggr Si(n, R).
(O(n, R) is the group of real orthogonal matrices and S.(n, R) is the cone of
positive definite nXn symmetric matrices.) Then it is clear that ‘g™ € Gp
whenever geGg. Therefore if we put g¢-=‘g™* (g G), ¢ defines an involution
of G. Let {f,--,fs} be the base of V¥ dual to {e, :--,e,}. We define =

linear mapping = of V into V* as follows: r(éxiei)zé)lxif,-. Then it is

clear that 7(Vg)=V} and that 7(g-x)=(g9)*r(x). When Grog==Fkp (ke
GrN\O, R), p=GrN\Si(n, R)), we have X(g)=X(‘g ) =X(kp)=X(R)X(p7Y).
Since P is real valued on Vg, the equality [(1.3) implies that X is real valued
on Gg. Hence X(k)= =+1, and we have

X(g)=x(R) AP '=X(g)?* (Vgeip),
and
x(gH=xg)* (geoi). g.e.d.

We note that one can choose {e,, -+, e,} sothat P(e,)+ 0. In the following
we choose always such a base {e;}.

It follows from that (G, V*) is also a prehomogeneous vector
space. In the following we choose a linear mapping = of V onto V* and an
involution ¢ of G which satisfy conditions of and fix them once
for all. We put Q(»)=P(z"'y) (y=V*). Then Q is a homogeneous polynomial
of degree d on V* which is real valued on V¥ and satisfies the following
equality:

Q(g*-N=%g)"'Q( (Vgei, yeV¥).

Therefore Q is a relative-invariant on V* which corresponds to the rational
character X~!. Hence, @ is, up to a real constant factor, independent of the

choice of =.
We denote by Q(F,) the differential operator with constant coefficients

on Vjp such that

QW He<= > =Q(ye<m¥>  (VyeV¥).
It is easy to see that there exists a polynomial b,(s) with real coefficients of
degree at most dv such that

1.9 QU )P (x) = b,(s)P**(x) =12 :-; s€C)?.
It is clear that b.(s) is, up to a non-zero real constant factor, independent of

the choice of ¢ and that b,(s) = b,(s)b,_,(s—1).
PROPOSITION 1.2. (i) The degree of by(s) is d, the degree of P.

4) This is an equality between two functions on the universal covering space of
V-S.
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(1) If we put X(g)=det(g), we have xg:x%"‘ (d is a divisor of 2n).

PROOF. (i) We can choose z and a base {e,---,e,} of Vi such that
{e;, tejp=20;; (4, j=1,---,n) and that P(e;))# 0. We identify V and V* with
C™ via the bases {e,, -+, ¢,} and {ze,, ---, 7e,} respectively. Then Vp and V%
are identified with R*. We also identify G with a subgroup of GL(n, C).
We put

n
P (B xe) =P, -, )= X afyaf i

T+ rip=dy

(@i, € R, (x5, , x,) C™. Then we have

Q(Zyewes) =P -+, )

QP =Zaun(-5)" ()"

Since P(e))#0, af}..#0. We put a=a$.,. Since a$l.,=¢*, it follows
b(v) = QW )’ P(x)’ = X (af.e,)’G) ! -+ () ! = @™ (d) !
Let the degree of b,(s) be d’. Then there exists a constant ¢>0 such that
1.0 = c|s|? for |s]=1. We get
D 2 |6:)by(v—1) - b | =W = a™@y)! (=12, ).
Hence we must have d’=d. It is obvious that d’<d. Hence we get d’'=d.

(i) We denote by b, the coefficient of s? in b,(s). Then b,# 0. Since
QW HP*=b(s)P*™*, we have

and

oP
d e = —
(1.5) by P41 = P( r T o
Now we define the map ¢ of V—-SC C" into V=C™" as follows:
(Ll 0P 1 9P
PO=NP ox, 0 P ox,

Then, it follows from that ¢ maps V—S into V—S. Furthermore it is
easily seen that ¢(g-x)="‘g™'-¢(x) for every g G. Since V—S is a single
G-orbit and the mapping g—‘g™! gives an automorphism of G, ¢ maps V—S
ontoc V—S. Hence the Jacobian matrix

0 1 0P 0 1 0P

ox, P 0x,” '’ ox, P 0x,
J()

0. 1 9P 9 1 0P

ox, P 0x,’ ' ox, P 0x,

is non-degenerate on a Zariski open subset of V—S. It is easy to see that
J(g-x)="gJ(x)g* (Vg G). So, det J(x) is a rational function on V which
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does not vanish identically on V and satisfies
det J(g-x)=%5%(g)det J(x) (VgeGi).

Thus, det J(x) is a relative-invariant on V. It follows from [Proposition 1.1
that we can find ¢ = C* and m = Z such that det J(x) =cP™x). If t=C*, we

have det J(¢-x)=1t"*" det J(x) and P™(¢-x)=1t"?P(x). Hence we get m = — —%?«_
Therefore d is a divisor of 2n and we have X%:X%. q.e.d.

We put (x, ) =<x,ty) (x,y=V). In the following, we identify V with
V* via the bilinear form (, ). We have

1.6) QW e =P(y)e=v  (VyeV),
@a.n (gxg0n=ky) (xyeV, ges).

d
Furthermore we put b,(s)=b,II (s—¢;) (b, € R*, ¢, C) and
1=1

1.8) r& = IG—ctD) .
Then we get

_p T —1.2 ...
1.9 b,(s) = b (5w =12 9.

§2. Fourier transforms of the complex powers of relative-invariants

1. Let the connected components of (V—S), be Vy,---, V. Then (V—S),
=V, U--UV,and V, 1<1=Z1) is a single (Gg),-orbit. ((Gg), is the connected
component of the neutral element of the Lie group Gg.) Since P is real
valued on Vi and does not vanish on (V—S)g the signature of P on V,; does
not change. We put
(1.10) e; = sgn P(x) =1, --,D.

IEVi
We denote by S(Vg) the space of rapidly decreasing functions on V. The

space S(Vg) becomes a Gr-module if we put (g-f)(x)=f(g !-x). We define
the Fourier transform f of f= 8(Vg) as follows:

(.10 fo={, feTerdy.
We have, by Proposition 1.2,
(112) Fr=11D) (g F=1x2(g)(g)-f (Vg=GCy).

For any f= S(Vg) and s= C, we put

(1.13) Fis )= [, 1PIfGodx.
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Clearly, when Re s> 0, F,(s, f) is well-defined and is a holomorphic functiou
of s.

PROPOSITION 1.3. (i) Fy(s, f) can be continued analytically as an entire
function of s.

(ii) Fis, QU )f) = (—1%e; b§ Fi(s—v, f).

(i) Fis, g-)=2""4(2)F s, 1) (Vg = G-

(iv) The mapping f— F(s, f) defines a tempered distribution on Vg.

PrROOF. From (1.4) and (1.10) we get

QW | PI*=efb(s)| P|*™.

Hence, when Re s is sufficiently large, we get the following equality by partial
integration (cf. (1.9)).

_l)du
Fi ’ Vx F)= _(" -

=(=D%e;bf F(s—v, f).

e2b,(s) | Pl

Therefore we have
Fi(s, /) =(—=D)%eby” Fi(s+v, QU )*f(x) (=127,

when Re s is sufficiently large.

By this equality, we can continue analytically F,(s, /) as an entire function
of s. Thus, (i) and (ii) are proved. Since V; is a single (Gg),-orbit, we have,
by Proposition 1.2,

Fis g =i f IP@IGE Ddx
= 2(g)>X(&)F (s, 1)

— 0@ IF(s, f)  (Vge (G

when Re s> 0. Hence we get (iii).

d
Take a positive constant C, >0 such that |P(x)|<C,(1+|x]®)2 (VxeVp),
(l 1? is a fixed positive definite quadratic form on Vz). When Res>0, we
have, for a positive constant C,,

1 s
[Fis DI= -2y, 1 POIR 1@ dx

o Sup QD™ @ [ Ay e

17| zevg
2 Re s+ 2T

) sup A+ I T )

<-

Il

When —m<Res<—m+1 (m=1, 2, ---), we get
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| Fi(s, N =1bo] ™| Fi(s+m, QW )")]

Gyl by| TMCRe# 2

< O ] Sup- (IR Q@ s

Hence, it is obvious that the mapping f— F(s, f) defines a tempered distri-
bution on V. q.e.d.

COROLLARY. Let || ||* be a positive definite quadratic form on Vg Then
there exist positive numbers C, and C, such that the following inequalities
hold: when m—1<Res<m (m=1, 2, --.),

s, DI oy 15 supt @i ™ ™ 101y

and when —m=<Res<—m+1 (m=1,2, ---),

cr+v . d(1+y;+n+1 -
P DS Co ooy Sap- (Il QU™ £}

(”:Oy 1’ 2’ "')°
We state three lemmas which are necessary for the proof of Theorem 1.
LEMMA 1.2. Let T be a distribution on V; such that
T(g-N=X" ¢ T(f) (feCrVY)
for every g =(Ggr),- Then there exists a c< C such that

T(f)=cf | Plf@dx.

PROOF. Put =|P|™ ¢T. Then 7 is a distribution on V; such that
T(g-f)=T(f) (Vg=(Gr)y). On the other hand, it follows from Proposition 1.2

that V, is a homogeneous space of (Gg), wWith an invariant measure |P| ¢ dx.
Therefore, by Theorem 3.1 of Bruhat [4], there exists a ¢ = C such that

TH=cf, f0IPI"4dx  (9f = CaVa).
Thus we get

T(f)zcjmlpwf(x)dx. q.e.d.

LEMMA 13. Let T be a distribution on R™ whose order r is finite and
whose support is contained in the set of zeros of an infinitely differentiable
Sfunction ¢ on R*. Then (9)*T =0 when L>r.

PROOF. We take an infinitely differentiable function 8 on R such that

BH=1 when t1=1

BH=0 when [t|=2.

and
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Put U={reR"; p(x)=0}. When fe< C3(R"), f—,B(--}]wgo)fe Cy(R*—U) for

every 7> 0, where we put ,8(%} SD)(;c):ﬁ(- )17—¢(x)>. Since the support of T
is contained in U, we have

TH=T(6( 9)f) W eCiRY, 7>0).

Now we assume that the support of f is contained in a relatively compact
open subset W. Since the order of T is r, there exists a positive constant
C, such that

IT()ISCiSup. 5

iyt TipSr

ail+-~+in
ax{l .. ax’rfn

A wrecsmy.
If L is a natural number which is larger than r, we get, for every fe C&(W),
1
1T N1 =| T(¢"8(- 0)7)

L onttie e 1
é Cl §C1:JI% 11+~~§in§’f axfl T ax?ﬁn 90 ﬂ< 7] sp)fl )

Since ,B(—%go(x)) =0 when |p(x)| =279, we have |T(pXf)|< Cu(f)nt™ (Vy>0),
where C,(f) is a positive number which does not depend on 7.

Whence, we get T(pZf)=0 (Vf= C°(W)). Since W is an arbitrary rela-
tively compact open subset, we have ¢*7 =0. g.e.d.

LEMMA 14. There exists a q(t) = C*(R) which satisfies the following two
conditions:

(i) All the derivatives of q(f) are bounded functions on R and q(t)=0

Jor t<1.
(i) Put

2@)=| “rogddt (Rez<0).
0
For every pair of positive numbers c,, ¢, (¢, > ¢c,), there exists a ¢; >0 such that
the following inequality holds:
[A(@)| = c,exp {—+/|Imz]} (—c;<Rez< —c,).
PrROOF. We put

p@=— [TV Y G=xtin >0,

Then, ¢(2) is a holomorphic function on the upper half plane and
_ 1 = Y
Rep@=—— [ ~Itl (= fursndt

vy = Al



142 T. SHINTANI
Since v/ [t+x] =V |t|+V | x|,
= & |t4x| 0 VIt
j_w' 1+t2 dtéﬂ\/lxl+51 (51_5_00‘7 1422 dt)-
On the other hand, when x=0, the following inequality holds:

V| t+x|

(7 Vil
— 1+122

sy Az

dt= Z—lel.

Similarly, jw \/lljjt;x' dt=~ x| 7;,4’ when x<0. Hence, we get

—VTx -0V =Rep)= — 5 VIxl (3= 18)).

Now we put A(z)=exp ¢(—iz). Then A(z) is a holomorphic function in the
left half plane {z; Re z <0}, and satisfies the following inequality

(114 exp{—+/|Imz|—&v|Re z]} =|A(2)| < exp {— ;—«/um 21},

Put q()=- 275;}_1 [Rez: A(2)t*dz (t > 0). Then one sees by (1.14) that the

<0
integral converges absolutely and that q(t)=0 for t<1. It can be easily

seen thatTq(f) is infinitely differentiable and all the derivatives are bounded.
It follows from Mellin’s formula

A(2) = f 0°° #1q(t)dt .

Since A(z) satisfies the inequality (1.14), 4(z) has all the required progperties.

q.e.d.
THEOREM 1.1. (i) We have

=1

Fu(s= 1y ) = 1)@y 1bol'e ™5 @ S ey F(—s, /).

where fe S(Vpg),

1 when eig;by >0,
€:5(s) = { _
e_’“/_“ when SiSjbo < 0 B
and t;;(s) is a polynomial in e~?=/~1¢ whose degree does not exceed

[, Czi] when  &,;6,>0,
[i;l] when g0 < 0.

(ii) We have bl(S)———(—l)dbl<1—s——~ Z)
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PROOF.” (i) It follows from Proposition 1.3 that the mapping
f->Fi<s——fZ,',f) defines a tempered distribution on V5 By (1.12) and Prop-

osition 1.3, we get
F(s—1 g 7) =1y ue) i F(s— ' 7) (Vg€ Gah S S(Va).

Therefore it follows, from Lemma 1.2, that there exist functions ¢;;(s), -+, c:,(s)
of s such that

Fi(s= o)) = 1= S eu(F (=5, 1)

for every feCy((V—S)g). For any fe C(V—S)g), Fi<3—”Z‘»f> and

7(—s)F;(—s, f) are entire functions of s. Forany s C and j (1 <j=1), there
exists an f& C3(V;) such that y(—s)F,;(—s, f)+ 0. Hence, ¢;;(s) is an entire
function of s (1<j<1D).

Making use of (1.6) and (1.11), it can be easily proved that P/”}[=
Q@r~ —1)7QW ,)*f. It follows from Proposition 1.3 that

(1.15) Fu(s, B°f)=@rv/—.
=12 -.; fe8(Vg). Therefore, we have

(— 207/ =T) 268 y(v—s) j}jlcﬁ(s—y)Fj(p_ 5, 1)

= r(—s)jg_‘sl el ()F(—s+u, NTETI (yreCs(V—S).

7(—9)
Hence,
(1.16) ()= (eie )b (— 27/ —1) e, (s—v)  (v=1,2, ).
Put
1.17) () = (2m) 5| by e Peyy($)tes(s)

(e (s)= 2 YTIa—8mesepy  Tpan 4o(s) is an entire function of s such that
(1.18) tZ](S-’_l) = tij(s) .
Put /

TN=F(s— )19 Zea@F (s, 1)  (f€SVa).

Then T, is a tempered distribution on V, for Res=0. Furthermore
T«(f)=0 provided fe C((V—S)g). We take a base in Vi and identify Vg
with R*. For any non negative integers N, M, we define a semi-norm v(N, M)

on S(Vpg) as follows:

5) The following proof is due to the author.
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ail+...+in

v(N, M)(f)=§g‘g>};(1+nxn2)~ ) .ot

i+ tinSH axfl oo 8x,f"

(Ix[|2= x3+x3+ --- +x2). It follows from [Corollary] to [Proposition 1.3, that

if we put N(,:[»VZ ]—}—2 and take a sufficiently large natural number M,,

there exist positive numbers C, and C, such that

£ (M, M)
(1.19) Fi<s—~g , f) < Cp 2o Y - (0=—Res=))
‘ l |r(s+No"‘d‘>‘
and that
(1.20) l7(—=S)F(—s, /I = Cov(M,, M)(f) (0< —Res=1).

Therefore, {T;; 0< —Res=<1} is a family of distributions on Vg whose
orders do not exceed M, and whose supports are contained in S.

It follows from that T,(P*/)=0 (0< —Res<1, feC3(Ve)
if v> M, Also we see from the equalities and that

T(P*f)=(=2rv=1)"He:bo)Ts- L f) -

Hence, we have T, . (/)=0 (VfeC(Vy), 0< —Res=1). Since T,(f) is an
analytic function of s, we have T(f)=0 (Vs C, fC5(Vg). Since T; is a
tempered distribution, we get T,(f)=0 (Vs C, f S(Vg). Thus

a2 F(s= ) =19 Beu@F—s.f)  NseC fesVa.

It follows from the inequalities [(1.19) and [(1.20) that, when 0< —Re s=1, the
equality (1.21) holds for any f& C=(Vg) such that v(M,+1, M)(f) <co. (We
note that, for any such f, there exists a sequence {f;} in S(Vg) such that
}HE v(M,, Mo)(f—f;)=0.) Put

_ 1 n. _l)i—l
a)—d 2 P xidxl/\ b /\dxi,l/\dx,».:.l/\ o /\dxn,

=1

G'={g<s(Gr); Xg)=1}
Ki={xeV;; P(x)=¢;}.

and

Then o is a differential form on (V—S); such that dx=dP Aw. K; is a real
nonsingular hypersurface on which G! operates transitively. It is immediate
to see that there exists an orientation on K; such that >0 on K.

Take an h; = C3(K;) such that

j h(Dw=1.
Ky

Furthermore we take a ¢(t) € C*(R) which satisfies the conditions of Lemma
14. For every natural number L we define /¥ & C=(Vp) as follows:
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0 when xe Vj ’
P = .
| P12 PGDAS( | pypvar)  When xeV.
The support of f{& is contained in the set:

{xe Vs IP@IZL, -~ p iy < Supp. Ay} .

Therefore we can take L so large that

(1.22) v(M,+1, M)(f ) < oo
and that
(1.23) L>1+ Z- .

Then (1.21) yields
Fi(s—1, ) =r(—=9)ci,(DFS—s, /¥) (0= —Res=1).
On the other hand we get

r(—F=s, f#)=[ P17 2@ PlYA(~ pluagzy )P A @
=T T gwar | hy@e
0 K;

=a(—s—L+ 1)  (a@=( :ot’“lq(t)a’t> .

Also we see from that
270) | b | -8 "LA‘/Q—_I;G"'
(1.29) t“(s):,,,,( )7 1o ,,,,,,e,n _— Fi(s~~n , f}”) 0= —Res=1I).
2(—3—L+~~d ~>e“~(s)

By [(1.19), we have

w2 |F(s— 7)) |z e Mo MIUD g Res<).

Trens )

From Lemma 1.4 and [(1.23), it follows that there exists a ¢, > 0 such that

26 |A(—s—L+ )z exp{—vIims]} (0= —Res=<D).

Making use of relations (1.24), (1.25), (1.22), and [1.8), we can conclude

that there exists a positive number ¢, such that the following inequality
holds:
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le” 2 ef(s)lexp v/ |Ims|

[t =c, 'y - " (0 —Res=D.
|7 (4N —eit1)]

1

Applying Stirling’s asymptotic formula for the Gamma function, we can

conclude that for any 7 >0, there exists a positive number ¢ such that the
following inequality holds:

_7f~/7—1‘_‘ s nd_ m s|
[t;()|=cle 2 de;j(s)le( 2 i (0 —Res=D.

We know, by [1.18), that #;,(s) is an entire function of s with period 1. Hence
t;;(s) must be a polynomial in e-27v== whose degree does not exceed

[ g ] when ¢;;(s)=1,

[v d;l] when ¢;,(s) = e,

Thus, the firstipart of our theorem is proved.

(ii) We can choose 7z so that (x,y)=<{x, ty>=(y, x) (cf. Lemma 1.1).
Then it follows from [(1.6) and [(1.11) that

QW YT = (—2zv/=Ty*P*f .
Since

Fi(s=14 1) = 1(=9 2 cofOF (=5, ),

we obtain
fp—T
(—2xv —1)"%% 7‘(3 ’ nd )
T(s“'d‘)

= H(=—D* D OF(—s—, Nt (f €SV, s€O).

H—s—v) j_zi:l Ce (5 0)F (—s5—v, f)

Taking the equality [(1.16) into account, we have

r(str—4) o 7(=9)
- r(s——z-) ci;(8)=(—1) —f(zi—_gib)*c”(s).

Since there exists a j (1 =<j =<!/) such that ¢;;(s)#0,

T(S'l'v—r:it") =<_1)dv*xbl,“ .
7’(‘“‘%‘) 7(—s5—)
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Therefore, by [L.9), b.(s+v— Z—)z(——l}“”bp(—s) and by(s) = (—1)%,(1—s— Z )
Since b; is, up to a constant factor, independent of the :hoice of 7, the second

part of our theorem is established. g.e.d.
2.2 In the following we put

C(s) = @m) 0 by |7 TV Cey(tiyls) A=, J= D),

and
n — 1)1,

w:‘"'b El‘( '*’1-)P‘ x"/ dxl/\ A /\dx‘[_l/\dxi+1/\dxn.
Then o is a differential form on (V—S)g and we have dx=dP ANw. We also
put

K,W)={xeV;; P(x)=c¢,t} #>0,1=5=0).

Then K;(f) is a real non singular hypersurface in Vp and there exists an
orientation on K;(f) such that w >0 on K;(f). The following lemma can be

easily proved.
LEMMA 1.5.

fViIP(x)Isf(x)dx:j'O“ts{J'

PROPOSITION 1.4. We assume that Rec,>Rec,= - =ZRec¢; (cf. (1.8}).‘
Then we have

f(x)w}dt (Res=0, feS(Va).

K

lim #°1 f ADw
t—+0 Kt

[

= (1L 1) Beu(f+a—1) [ IPGIT" (9

i=1

Vfe Co(Vr—Sk) -
PROOF. Take an fe C3(Vz—Sg). It follows from that

Q.27) r—DF(s—1/=[ 1P@|*fxdx

:Lm ts'l{ Kmf‘(x)w}dt.

Regarded as a function of s, the left side of the equality [(1.27) is rapidly
decreasing on any line of the form: Res=o¢, (6,>1). Hence we have

s 1 e .
[ Fe= e jRes:mt r(s—DFi(s—1, f)ds

Kit)

(o0,>Max.(1, c,). Also we see from that

6) The following subsection is due to the author.
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rs—DFG—1 ) =76—DFey(s+-5—1) Vj|P|1's"5‘(x)f(x)dx.

It follows from [Theorem 1.1 and the assumption that (s—c;)y(s—1)X
ci,(s—{— Z, —1) is a holomorphic function of s if Res> ¢, and is slowly in-

creasing on any line parallel to the imaginary axis. We also know that
[ 1P@I™ @ fodx
Vi

is an entire function of s which is rapidly decreasing on any line parallel to
the imaginary axis. Therefore we have

tcly Ff®w

Ki(t)

= 27“}_1 fRes:mt““sr(s—l)jz;cij(s+ m—1){ jyj\P(x)x““‘Z fx)dx) ds

= {ILTC—eo} Beo(e+ § —1)f 1P@I" 4 fd

1

T oang 1 Juer, =D Zea(s g —D{f 1PN fdx) ds

where Re ¢, <o, <Rec,. Therefore

lim t f
t—+0 Kity

fwo= {11 e~} Beu(et  —1)f, 1POIT " f0dx.
g.e.d.

We denote by S% the set of regular points of the irreducible hypersurface
Sr: Se={x= Sg; (dP),#0}. Si is a Zariski-open subset of Sg.

We say that two connected components V; and V, of (Vp—Sg) are
mutually neighbouring if V; "\ V., Si+#0 (V; is the closure of V;, with respect
to the Euclidean topology).

PROPOSITION 1.5. Let V; and V, be mutually neighbouring. Then c;;(1)
Feux(H=0 A =150,

PROOF. Take a pe V,n\V, N\ Si There exists a neighbourhood U of p
in Vi which satisfies the following two conditions:

1. U=UNnV;VuUnV,VvUunSs’.

2. We can take a positive number 7 and an orientation preserving C>-
diffeomorphism ¢ of I,=(—%», 7)* onto U such that P(e{(yy, ", ¥))) =1
((¥1, -+, ¥x) € I;) and that ¢(0,:--,0)=p. We put

a(xlv oy xn)
JO= OV )

Take an f C§(U). We may assume that ¢;=1, ¢, =—1. Then

((xlv ) xn):SO(yly ot ’yn))-
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lim (1—s) j | P(x)| ~*f(x)dx
Vi

$—1—-0

— lim (l—s)f(:7 dylf_: dy, fjvdynyrsf(y)f(so(y))

$—1—0

7 7 7
={"dv. |7 dys - [T dvaJ(O, as -, NSO, oy, ) -
-7 -7 -7
Similarly, it can be proved that

lim (1—s) J' , JP@I -z

= [ dya o [ 7 A O, 3o DO, 3 3.

Since U=UNV;,VUNV,JUN(S)k we have f | P(x)| *f(x)dx=0 unless
Vi
. . ] __77’1.4‘ 2\ . . . . o . ___ZL_ A
t=j or k. Since Fz(s d ,f) is an entire function of s, 81—1.11‘510(1 s)Fl(s d ,f)
=0. It follows from that
A L
Fi(s—4+ ) =r(=9 e OF(=s.1)

=, 1P @dxteu@f, 1PGI-/0dx.
Therefore

lim (l—s)Fi(s—— 73 )

10
=@t eat " vy 7 (O, 30, -, YN SO, 0, 7))
=0.

As we can take an f= Cy(U) such that

f_:dyz f_:dyn]((O, Yar o5 YD S0, Yoy -, ¥u)) # 0,
we conclude that

C”(l)+clk(l) = O . g. €. do

Chapter 2. Dirichlet series associated with the vector space
of binary cubic forms

§1. The vector space of binary cubic forms

1. We denote by V the vector space of binary cubic forms.

V= {F(u, v) = x,u®+ x,u*v+x,uv?+x,0°%; (x;, x5, X3, x,) € C*}.
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We put G=GL(2, C). Then V becomes a G-module if we put
g F(u,v)=F(u,v)g (g€0C).

We define a linear isomorphism of C* onto V as follows: C*ox—F,V,

where
Fox((u, v)) = x i’ +xu’v+xuv® +x,0°,  (x=(xy, Xy, X5, X)) -

In the following we identify V with C* via this isomorphism. We put
g-(Fp=F,, (xeC* g=G). When

e=(7 §)e6
and x=(x,, x;, x;, x,) € C*, we have
@ ap aft B\ [
3a’y a®d+2afy 2aBé+rp: 382 Xy
3ay® 2apo+riB  ad®+-2Bys 3po* X
r "0 ro* o EN

Let FeV, we say that (u,v)e P(C) is a root of F if F((u,v))=0. We
identify P,(C) with the Riemann sphere C\J {0} by the mapping:

@1 (g-x) =

u
v -

For every F=F,<=V, we denote by P(F)= P(x) the discriminant of F. By
the definition, we have

2.2) P(x) = xix3+18x,x,x5x,—4x, x3—4x3x,—27x3x2.
We say that a binary cubic form F is degenerate if P(F)=0. It is well-
known that P is an irreducible polynomial on V and
2.3) P(g-x)=(det g)°P(x) (geCG, xeC*=V).
In the following we put
(2.4) x(g)=(detg)® (g€6).
The following lemma is well-known.
LEMMA 2.1. (i) Every non zero binary cubic form F has, taking multi-

plicities into account, three roots; they are all distinct if and only if F is non-

degenerate.
(ii) Let A,, 2, and 2, be the roots of 0+ FeV. Then the roots of g-F

(g=G) are g-4,, g-2, and g-A,, where we put

g A= _5123;+a (g=(‘; g) A€ C\V{co}).,
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We denote by 3, the central cyclic subgroup of order 3 in G. Then G/3,
operates effectively on V and can be identified with an algebraic subgroup
G in GL(V).

PROPOSITION 2.1.” The pair (G, V) is a prehomogeneous vector space whose
set of singular points coincides with the set of degenerate binary cubic forms.

ProOOF. It follows from Lemma 2.1 that &G operates transitively on the
set of non-degenerate binary cubic forms. Let S be the set of degenerate
binary cubic forms. Then we have

(2.5) S={F;; P(x)=0}
and S is a G-invariant proper algebraic subset of V. Therefore (G, V) is a
prehomogeneous vector space whose set of singular points is S. g.e.d.

In the following we denote by S the set of degenerate binary cubic forms.

We put Vy={F,; x€ R*} = R*. Then G is defined over R and G, can
be identified with Gx=GL(2, R). Since G is reductive and S is an irreducible
hypersurface in V, the prehomogeneous vector space (G, V) satisfies the
conditions 1 and 2 in §1 of Chapter 1.

2. We define G, V, and V, as follows:

G.=(Gro={2€GL(2, R); det g> 0},
Vi={xeVg; P(x)>0}, Ve={x€Vg; P(x)<0}.

Obviously, (V—=8)y=V,UV,. '

PROPOSITION 2.2. (i) The group G, acts transitively on V, and the isotropy
subgroup of any point of V, in G4 is a cyclic group of order 3.

(ii) The group G, acts simply transitively on V,.

PrROOF. (i) Take an xV,, then F, has three distinct roots in R\U {oo}.
Via the fractional linear action, G. acts transitively on the set of triples of
distinct points on R\J {co}. Hence it follows from Lemma 2.1 that there
exists a g < G, such that g-F, has roots 0,1 and co.

Then g-Fy((u, v))=c(u®v—uv?®) (c= R*). Putting g’= ¥¢-'g, we have
g’ F,((u, v)) =u*v—uv®. Therefore if we put x,=(0,1, —1,0) eV, we have
V,=G. x,., We denote by I,, the isotropy subgroup of x, in G,. Take a

0z—r
—pBz+a
induces a permutation of {0, 1, co} without fixed point unless g 1. Therefore,
it induces a cyclic permutation of {0, 1, ©}. Hence we have g.-z=2z or
—z+1 —1

grz=-—Cl_"Or g-z= 4" (Vze C\J{}). So, there exists a = R* such

that g=(" ) or g=(" (Y Dore=(" )(77 7). Since grx=1x,

7) ‘This proposition was communicated to the author by Professor M. Sato.

g:(? g)efxo, then the fractional linear transformation z—g-z=
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we obtain, by [2.1),
e (8 DY) e

(ii) Take an x=V, then F, has roots z 2 and 2 (z€C, Imz>0;
A€ RU{}). We can take a g =G, such that g-F, has roots v —1, —~/ =1
and co. Then we have g F,(&, v))=cu>v+v*) (ce R*). Put g/'= ¥c-'. g
Then g’-F,((u, v)) =u?v+v®. Therefore if we put x,=(0,1,0,1), V,=G.,-x,.
Take a g= G, such that g-x;=x,. Then the fractional linear transformation
corresponding to g fixes v —1, —v/—1 and c. Hence g is of the form

(t t> (te R*). Since g-x,=x;, we have g=1. Thus, the isotropy subgroup

of x, in G4 consists only of the identity element. q.e.d.

In the following we put G'=SL(2, R)C G,.

The following proposition can be similarly proved.

PROPOSITION 2.3. We put Sg=S\Vg. Then S decomposes into the union
of three orbits under the action of G'=SL(2, R) as follows:
Sg=G'w,IG'w,\J {0}, where we put w,=(0,0,1,0 and w,=(0,0,0, 1).
Further we have

IL,,={geG'; gw,=w,} = {1}
and

1
L,=1{geG'; gw,=w}={(; |); x=R}.
3. We define the usual subgroups K, A,, N and N’ of G, as follows:

6 sin6
K={(_sin0 coss)’ =B}

A+={(t t“); t>0},
N:{(gl\: 1); *<R},
WD xen).

Furthermore, we introduce the following notations.

. cosf sind
ko = (——sin 6 cos@ @<=k,

a=(" ) =R,

n(x)z(}c 1) (xe R),
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v(x):(l ]16) (xeR).

The following lemma is well-known and can be easily proved.

LEMMA 2.2. (i) The mapping KX Ay X N=(k, a, n)— kan =G' is an analytic
diffeomorphism of KX A.XN onto G,

(ii) For any g=G?, there exists a unique (60(g), t(g), u(g)s(R/2rZ)X R+ X R
such that g= kppupn(u(g)). In particular, t((x))=+1+x* '

We define an invariant measure dg on G' as follows:

e | He)dg= 217? { :"de [ o°° At fkan()ay)

—~-co

= o [0 [ " au [ "1 tfkean@)  (fE LG
— 271_ 0 e 0 gLt 1 .
We also define an invariant measure dg on G, as follows:

@7) [, de=["aaf [(* Da)is U=LG.

Let dx be the standard Euclidean measure on Vpg:
dx=dx,dx,dx,dx, (x=(x;, X5, X3, x) V).
We note that
- 1 %) y oo oo oo N 2
(2.8) j ,J@dg=-5 - jo d*2 j_wdx j _du j _dt A(( Z)u(x)n(u)m)
Vfe L(GY).

PROPOSITION 2.4. Take an f& C(V—S)g, then the following equalities
hold :

@) @9 [ fendz=-g [ @@ @D eV,

G) (2.10) ja+f<g-y>dg=—1-§ﬂ— [, Py @ (vev.

PRrOOF. - (i) . It follows from Proposition 2.2, that it is sufficient to prove
the equality (2.9) for y=(0, 1,1, 0). We put
(21, 25, 23 20) = ('2 Z)v(x)n(u)ary-
Then we have, by (2.1),
z, = A3 {tx+Qut-+tHx*+ Wit +ut Hx®}
2, = A{t+2Qut+t ) x+3wt+ut Hx?}
2o = {2ut+ 1"+ 3x(ut+ut™)}
z, =Pt +ut™).
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Since P(x)"'dx, A dx, Adx; Adx, is a unique (up to a constant factor) G,-
invariant 4-form on V,, there exists a ¢ € R* such that

P 'dz,ANdz, Ndz, Ndz,= cd*A N dx A\ du N d*t.

By a straightforward computation one has ¢= —6.
The group G. can be viewed as a threefold covering space of V, by the
mapping g— g-y. Hence, by (2.8),

. 1 1 _ 1 _
[, f&ndg=3 g [ fOP@dx= o [ FPGdx.
(ii) It is sufficient to prove the equality (2.10) for y=(1,0,0,1). We
put
(zy, Zgy 23y Z5) = <2 z)v(x)n<u)at'y .

Then we have
z; = A{*A+ux)®*+1t%x°}

2z, = 2 {3t*u(l+ux)*+3x2t"%}
2z, = A3{3Pu*(1+ux)+3xt72}
z, = (But+t7%).
There exists a ¢ R* such that
P@)'dz, ANdz, Ndzy Ndz,=cd*A AN dx N\ du N d*t.

By easy computations, we have ¢= —6. Since the mapping g—g-y gives a
bijection from G4 onto V,,

. e 1,_,. 1 — -1
[, f@ndg= 5§ f F(P@)dx
1 -1
=-iop j S P @) dx. q.e.d.
2
COROLLARY. The equality (2.9) or (2.10) holds, if the integral on either

side of (2.9) or (2.10) converges absolutely.
4. We define a non-degenerate alternating form <, ) on V as follows:

(2.11) X, YD =x,),— é"xsyz‘l" é"xzys“x1y4-
Then
(2.12) (g-x,8y>=[<x,9> (Vgei),

where ¢ is an involution of G defined as follows:

(213) e=( e Y.
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In particular, if g SL2,C), {g-x,g2-¥y>)=<x, ¥>. In the f{following, we
identify V with V* via this alternating form.
For every fe S(Vg), we put

(2.14) f(x) = j\ f(y)e21r~/—_1<x-y>dy .
VR
Then we have

=g f, FoermTirdy.

§ 2. Fourier transforms of complex powers of the discriminant

1. In the following two subsections 1 and 2 we construct two tempered
distributions 2, and 2, on V; whose supports are contained in Sgp; we then
calculate their Fourier transforms. They are “ G'-invariant integrals” on the
G'-orbits in Sp and play important roles in the remaining part of this chapter.
We put w,=(0,0,1,0) = S\ Vg For every f€S(Vg) and z C (Rez>1) we
define 2 ,(f, 2) as follows:

(2.15) I, = Oz”do [“auf ooot"f(kgn(u)at-wl)d*t :

LEMMA 23. (i) The integral defining 2,(f, z) converges absolutely if
Rez>1. Regarded as a function of z, it can be continued analytically as a
meromorphic function in the whole plane whose poles are simple and are situated
on the set {1, —1, —3, —5, ---}.

(ii) If we denote by 2 .(f) the value of 2,(f,2) at z=0, the mapping
f— 2 .(f) defines a tempered distribution on Vg, whose support is contained in Sp.

PROOF. We put f(x)=72——1; f  f(kp-0)d6. Then fe S(Vy).
o

We write f(x) =F(xy, X5, X5 x) for x=(x;, %, X5, x). We have, by
and |(2.15),

S a={ duf tfnGa, wyat
—C0 0
={ wduj°°t~2f(0, 0, 1, t'u)d"t .
—00 0
Hence, the above integral converges absolutely if Rez>1 and is equal to
jw fmtz-lf(o, 0, ¢, wydud*t .
—00 0

Since ‘fwf(O, 0, t, w)du is an even rapidly decreasing function of ¢, (i) and (ii)

follow from the well-known elementary results in calculus. q. e.d.
PROPOSITION 2.5. For every fe Cy(V—S)g), one has
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S(H=—n fdr— G- fGdx.

PROOF. We may assume that f(ks-x)=f(x) (V6 = R). It follows from
(ii), that

[ Cau [ fneacwydt=a+x" (5 Rez> D).
—o0 0
So, if Re z>1, the integral
{ " dx { Zdu | " foona, w)dt
—_00 —00 [1]

converges absolutely and is equal to

I’(» z+1 )
Jlavey e a=ve 2 L5,
- r(3+1)
On the other hand, by
v()n(wa, - w, =t (x*(14+ux), x(2+3ux), 1+3ux, u).

Therefore we have, if Rez > 1,

r(5h)
v 2l (= tim [ Tdx [ au [ T irte e fon@e wdt
r(-Z-+1) et e e
= el_i}g jj:odx j_o:odu fooot-w—st‘l

X {f exp 27r«/—lft“[u(y,—xyﬁx2ys—x3y4)

_"':];"‘yz‘*‘"g‘xya_x2y4]f(y)dy} axt®

= lim dxf t2emet!
0

€~ 0V —oo

X Ut exp 27V —1 t“[—- éfy2+ g xya*szQ]

X (Yo = X293 X1, Ve, Yoy Y AYadyedy,) d*t
TI'z=1)

=lim [ dx - ST

e—+0 ¥ —~co (e—Zn;/—:i [— éyz"*‘ g x—ys_xzy“])z_l

Xf(Xyz—x2y3+x3y4a Yoy Vs y4)dy2dy3dy4 .

8) See (2.11).
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Since f(¥) is an even function of ¥,

F( z+1
l(fy z)
r( 2 +1)
— lim L= Dj dx [ (8—271'\/ 1[—73 Yok 13— x%,]) v

e—+0

—|—(e—|—27r\/ 1[—"3 -V, xyg—‘x y4])

X (Y, — X293+ X4y Yoy Vs, Vo) dY2AYsdyy .

By the assumption, the support of f is compact and is contained in (V—S)p.
Hence, when (xy,—x2y,+x%y,, ¥,, ¥s, ¥,) varies in the support of f,

—~é~y2+~§—xys—x 2y4| = —H —g; (=Y1F 2y, —x%ys+x%Y,)

is always larger than a fixed positive number. (We note that (¥y, ¥, Vs, Vs)
is in V—S if and only if the equation —y,+xy,—x%y;-+x°y,=0 has no double
roots.) Hence, if Rez>1, we have

F( z+1-

G

=I"(z—1) cos w?f (1—z)(2ﬂ)1"32“fi dxfl — Y 2xy,—3x%y, |1 7*

l(fa

X (XY, — XY+ XY4y Yoy Yoy Y1) AV dYsdY, -

But the above integral converges absolutely if Re z=0, hence, one obtains
A 1 oo
72,(N)= (=5 )@m 5 [ dx [|—yu+2uy—3x%
X J(xYy— XY+ 1Y, Yoy Vi Ya)AYdY5dY,
_
=75 (3], fdy+ [ fndy}. q.e.d.

REMARK. We can prove Proposition 2.5 for any f& S(Vg) and that the
following equality holds.

21<g'f):21(f) <g€GR7 fE‘S(VR>)y

where we put g-f(x)=/(g ' -x).
2. We put w,=(0,0,0, 1) e SA\Vs Forevery fe S(Vg), we define 3,(f)
as follows:

(2.16) 3.0 = 217; { :’da { 0°° 12 (g, - w,)d"t .
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The following lemma can be easily proved.

LEMMA 2.4. (i) The mapping f— 2,(f) defines a tempered distribution on
Ve whose support is contained in Sg.

(ii) We have X, (g-f)=X(@V2,(f) (feS(Vy), g<=Gg), where we put

g-f(x)=/(g* .
PROPOSITION 2.6. For any fe C3((V—S)g), one has

r( 3 )eo? 1 , 9
()=~ ( ~3‘>v2f~« (V3 [ PGy s rdx+ (—PG) e fxdx) .
67L'F( 3 ) Y1 Ve

PrROOF. We may assume that f(ks;-x)=f(x) (V@ € R). Then we have, by
Lemma 2.2 (ii),

w— 7 X 1 OO- 72 X
Jrie@awydt= | C . [ fawdnt.
Hence

23,(f) = j dx | 12 f((Da, wdt .
—_c0 0

By (2.1), we have v(x)a,-w, =1t"3x? 3x2% 3x,1). Therefore

Z,(f)= f:dxf:?‘z {fexp 27V =117y, — Xy, +x2y,—x%y,) f(y)dy} d*t.
Taking into account that f(y) is an even function of y,

_2 oo 2

3y =3 T(-5 )@ 3cos 5[ dx [ fO) = xyet 29,23, 7 dy.

We put Q(x)=y,—xy,+x*y,—x*y,. When y< V,, it follows from Proposition

2.2 that there exists a g—= (: §>€G+ such that

Q(§riT) Grtoy=x—x.

We have, by (2.2) and (2.3), (ad—B7)°P(y»)=1. Hence
oo 2 _1 oo _2
§ mi—xytxty =2ty T2 dx=(PON | |x*—x| Trdx
1 2
1 T(3)
=(PON #3-

r(s)

On the other hand, when y e V,, there exists a g:(: g) e G, such that

9) It can be proved that this equality holds for every f=S(Vg).
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o ST Yeperar— .
We have (ad—S7)°P(¥)= —4 and

co 2 i 1 ©o _2
| m—antaty—xty] T3 dx=25(—P) o [ D) 5 dx

()

1
— 23 (—PO) V0
r(3)

Hence one obtains

I (-1
”Zz(f)—' —( > ~-(2rm) 3cos 3 {3 (3> j (P(x)) 6f(x)dx
r(-3)
: F( )
428 j Vz(——P(x)) ¢ f(x)dx)

(2

_ o ()
° r(} )

+, (—PGY /()

(v3 j (PGD” © A(Odx

(note that we have used the relations 257\/ 551’(' é«)zl’ (71;) r (~§-—),
( )F( ) ;—/4 7). q.e. d.

3. By the definition, Q(F,) is a differential operator with constant co-
efficients on Vj, such that

QW )es">= P(y)e<*>.
Hence it follows from [2.2) and [2.11),

@17) Q=0 5 at b )

where we put Q¥ Ya Y5 ¥e) = 813333+ 162y, 3,¥,¥,—1083y,— 108y, ¥i—27y11 1.
By the definition, b,(z) is a polynomial of z such that

P)QW )P*(x)=b,()P*(x) (z€C).

PROPOSITION 2.7.)® We have bl(s)=24-3“-sz(s—'ér-‘><s+~é'—v>,

10) This proposition is due to Sato.
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PROOF. We know that b,(s) is a polynomial of degree 4. Let b, be its
leading coefficient. We put a,.P_—aP (t=1, ---,4). Then we have, by the

definition of b,, Q@,P, 9,P, 9,P, 0 P)-—b P3  Putting x=(0,1,1,0) in the
above equality we obtain b,=11664 = 2¢-3%. By Theorem 1.1 (ii), we have b,(s)
=b,(—s). It follows easily from the definition of b,(s) that »,(0)=0. So, there
exists an even monic quadratic polynomial ¢(s) such that

(2.18) b,(s)=2*.3%-s%¢(s).
Now let f= Cg(V,). Then it follows from Proposition 2.6,
1 F( 1 )
? 2m)?
S N= Gy [ (PG fGodx.
3
r(4)

Since X,(Pf)=0, we have

f, PG QW ftodx=b,(— ¢ )f (P@Y* fndx=0

for every f<C§(V). Thus b,(— §)=0. Hence, from (218), it follows
C(— (15 ):0. Since ¢(s) is an even monic quadratic polynomial, c(s)=
1 1 _ 1 1
(s—i— 6 )(s— 6—)‘ Therefore b(s)-—Z‘-BG-sz(s— 6~)(s+ 6 ) g.e.d.
4. We put
0= 41P {xdxy N dxs N\ dx,—x,dx, A\ dx, A\ dx,

+xdx, ANdx, N dx,—xdx, \ dx, A\ dx,} .

Then w is a differential form on (V—S)z and dx=dP A w.}*
PROPOSITION 2.8. Let f& S(Vg), then

F()

lim p ¢ f fDw=r 2,(f)
H—+0 P=u < 3 )

and

lim g f f(X)w=7r3
=—-p

p—+0

ProOOF. We put y,=(0,1,1,0) and y,=(,0,0,1). It follows from Pro-
position 2.4 that

11) Cf. Chapter 1, §2. 2.
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fomdx,zfalf( g (y))dg, = 4%1' J‘oOOdX)(/eJ‘l'k #f(X)a)
and
fooodx Zjalf( 81+ (Ay))dg, = 717%7;."000(1"#];:_#][(35)0)

for every feC((V—S)r) (G*'=SL(2, R)). Since P(2*y,)=2*? and P(i%y,)=
—274", we have

jl:l-?jlp:‘uf(x)w = 7*112“‘l61f(g1 : (<ﬂ);i;y1))dgl

and
12e o J@o= 15 [ (e ((-f5)92))de:

(feCe(V—S)), #>0). Obviously, the above equality holds for every
S €8(Vg). Hence, when we put

~

2
F@y= o [ ks 018,
we get, by and (2.6),

1 1 poo oL, 1
pef, J@o= Fpe [ duf fnGa- Gt ynd-
1 pco ., 1
=S| duf Fpt(0 1, 2ut+t7, wittutd< e
_ v,
co o, 1
=-3-[ auf Fo, tp®, Qutp§ 4 p b 1 WPt ut-)dt
I
(replace u by y—'éu and t by ‘Lﬂlﬁ"t). Hence it follows
1 oo o ,,
limps | fo= 5[ duf 70,00, witturd-
. _771'_ [} oo ,, ~3_ -1 y
e 2 jo dujo 70, 0, 0, w2 (t+1-2)d*¢
[ee] OCI~ »37
+ 5 f__duf 70,00 (w2 c—t"dt
- ;g = O”f(o, 0, 0, u*)udu

13>

x { j‘ow(t+t-l)**§‘d*t+j:°| (11| 2 dt)

12) We put f(x) =F(x1, %2 X3, %), When x=(x1, X, X3, Xs)-
13) We note that f is an even function.
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r¢ly
=z (3) 2L
r(3)

Similarly, we have
7 éﬁf}ﬁ_yf(x)w = éj‘:odufomf(( 2’,17) i‘(t", 3t%u, 3t%u?, t3u3+t‘3))d"t

oo 00 1
=7rf duf f( A (pr e, 3t3u/,z§, 3tutp é; tsus-i—t‘s))d*t.
e V0 2N+
Hence we get

limpe | fo=@nixf duf 70,00 Pwttdt
1 2
(-
_ver > )
r(3)

5. We put r(s):r(s+7727-)r(s+1)2r(s+--g ), then, by we
know that’ the following ‘assertions are true. For every f& S(Vpg),

Zz(f) q.e.d.

1 .
Fis, N=" (5], FDIP@Idx
and
Fi(s, /=4[, F0IP@)|"dx
= )’(S) Vs
are entire analytic functions of s which satisfy the following equality:
(Flcs—l, H a(s) b<s>><F1<—s, f>> 10
Fy(s—1, /) c(s) dis) \F(—s, )/

where a(s), b(s), c(s), d(s) are of the following forms;

) =re=s@-16,1*(

a(s) = a_le—sz—_ls+ ao+-a,e?mv 1

b(s)=>b_ 1e""~’-_18+ blem\/:—l:
(2.19)

c(s) = c_,e" ™ 4c e

d(s) = d_,e 271 4-dy+d, e
(ao, do, Gy, bsy, €1y, diy=C). Furthermore, the equality
a(s) b(s)> <a(1—s) b(l—s))

2.20 bo|(27)*
2.20) 6] 2) (c(s) ds)/ \e(l—s) d(1—s)

14) We put by=24¢.38,
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1 1
=9 =pri—s C 1)
=97 ~*sin’zs sin 7r<s—- 613 )Sin 71'(3—%—“(15 )(1 1)

holds, since f=9/.

The connected components V, and V, of V,—S; are obviously mutually
neighbouring (see Chap. 1,§2. 2). Therefore we get the following lemma by
[Proposition 1.5

LEMMA 25. We have

{ a()+b1)=0,

2.21)
cD)+d1)=0.

LEMMA 2.6. We have

1 1 J3 1
() b(g) L2 2
(2.22) . . =g ] 3 .
(4« Pl
PROOF. Take an fe Cy((V—S)g) and define the CZ*valued function g(#)
(¢t > 0) as follows:
fnw
p=t
= .
| fwo
It follows from Proposition 1.4 that
lim £ q(f)
t—+0
1 1 - L
L L a(-»6~—) b(- ¢-) jV1|P<x)| 5 f(x)dx
(et 10 L)
() d(g)\[, |POI7 s 0dx

On the other hand, it follows from Proposition 2.8 and Proposition 2.6 that
1\ 2
limts g)=m-— - o | .
v r(-5) \ws s«
1
2 1 . -6
r(3) esir(l) ( v3 o1 ) [, 1P ¢ fdz
—g— . N2 : )
2 2 B
r(53) eI(3) 3 V3 [ 1PI7¢ fadx

Va
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Hence, we get
a(g) o(s) o 2ixr(-L) (¢37 1) ) 2
(L) a(ly P rs)r(e) Vs vsl FA3 s

q.e.d.
Now we are ready to prove the following.
PROPOSITION 2.9. We have

c(s) d(s)

<a(s) b(s)> 118 (sin 2rs sin s >

3sinzs sin2rs
In other words

§, F1PIsdx
(2.23) ' =I(s— é V(srr(s+ é Y3
[, F@1pIed

3sinms sin2rs

1 (Sin 27s sin7ws ) _fvlf(x)lPI-sdx
X
[, f1PI-dx
for every fe& S(Vp).

ProOOF. We already know that a(s), b(s), ¢(s) and d(s) are of the forms
described in (2.19) and satisfy relations (2.20), (2.21) and (2.22). We put 4(s)
= a(s)d(s)—b(s)c(s). Then (2.19) and (2.20) yield the following equalities:

A(s+1)=4(s),

4(s)d(1—s)=3"° Sin“n’s-sin"’n(s—— (15 )Sin%(s—{— é) ,

A()(a(l_S) b(l—s))
’ c(l—s) d(l—s)

(2.24)

d —b
— 3-4gin%zs sin 77_-(5—— (1‘) )sin 77:(5—{-— é )( ((5)) Esz) .
—c(s acs

Taking (2.22) into account, we can conclude that 4(s) must be equal to

+3~4sin®zs-sin 7r<s—— é~> -sin 7r(s—i——%S ) Assume 4(s) =37*sin’zs sin 7:(3—%—
sin 7(s+ g-), then it follows from (2.19), (2.22) and (2.24)

a(s) -y L cos TS
<a(s) b(s)> 184/3
c(s) d(s)

1 _
6v/3 cosrws a(l—s)
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Hence,

0= (1) = aaO)— 43, = a(Ly'— g3, .

Thus a(1)2:§—;—4»-q&b(1)2. This is impossible by virtue of Therefore
4(s) = —3"*sin’zs sin n(s—wé») sin n(s—i—% ) and

a(s) ¥118' sin s

a(s)  b(s)
<c(s) d(s)>

fé-sin s —a(l—s)

Hence
J— 1 a2 -4 1.2 . 1 . 1
—a(s)a(l—s) = “108 it ns—3 *sin’zs sin 7r<s—— 6 —)Sm 7r(s+-~-6—

Since a(—éﬁ) = *316‘ /3, we can conclude a(s) = 77’118' sin 2zxs. Thus

<a(s) b(s)> 1 (Sin 2rs  sinzs ) ‘

c(s) d(s) - 18 3sinzs  sin 2xws

g.e.d.

§ 3. Dirichlet series associated with the lattice of integral binary

cubic forms

1. We denote by L the lattice of integral binary cubic forms and by L
the dual lattice of L. We have
L= {(xl! Xoy Xay x4) S5 VR; Xy, Xoy X3, Xy & Z}
and '
L={xeVg;<{x,y>eZ (Vyc L)}

= {(xy, Xo, X3, x) E L; 3|25, X4} .

We put I'=SL(2, Z)c SL(2, R)=G'. Then L and L are stable under the

action of I,
For every integer m we put Lp,={xeL; P(X)=m}, Lpy=L,NL. It is

obvious that L, is a ['-invariant subset of L.
PROPOSITION 2.10. The set L, decomposes into a union of a countable

number of I'-orbits as follows:

Le={0U U 70,00 mv U U 7-(0, 0, m, 7).
m=1n:0r§

m=1yel'/T'"N
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PrOOF. It is obvious that L,C Sg. It follows from Proposition 2.3 that
Se=S,US,U {0}, where 5,=G*-(0,0,1,0) and S,=G*'-(0,0,0,1). Take an
xe L,nS,, then, F, has a rational triple root.

Hence there exists a y €I such that co is a triple root of y-F,. Then

we have y-x=(0,0,0, m) (me Z—{0}). Since (_1_1) e I', we may assume

m>0. It is obvious that (0, 0, 0, m;) and (0, 0, 0, m,)(m,, m, > 0; m,, m, = Z)
lie on the same [ -orbit if and only if m,=m,. We see from Corollary to
Proposition 2.3 that the isotropy subgroup of (0, 0,0, m) in G' is N. Hence,
we get

LinS,=U U 7+(0,0,0,m) (disjoint union).
m=1y<I'/T'"N

Take an xe L, S,, then F, has a rational double root and a rational simple
root. We can take a y<[ such that y-F, has oo as a double root and a
rational simple root. Then, we have

7-x=(0, 0, m, n) meZ—{0}, ne Z).
Since (_1_1)er, we may assume m>0. It can be easily proved that
, 0, m,, ny) and (0, 0, m,, ny,)(m,, n,; my, n, & Z and m,, my, > 0) lie on the same
I’-orbit if and only if m,=m, and n, is congruent to n, modulo m,. Since
G' acts simply transitively on S,
LinS,= U U U7-(0,0,m,n)  (disjoint union),

m=1n=0 y<I"

and
m—1
{O}UU U e -(0, 0, 0, m)V U U Ur-,0 m,n)

m=1y&I m=1n=0 y<I'

(disjoint union). q.e.d.
COROLLARY.
L={0}°U U 7000 m°J U U 700, 0, 3m, n)
m=1y& m=1 n=0 y&rI’

(disjoint union).

The following proposition is classical (see e. g. [1]). We give a proof for
the sake of completeness.

PROPOSITION 2.11. The set L, O+me Z) decomposes into a union of a
finite number of [-orbits. When we denote by h(m) the number of I'-orbits in
L, there exists a positive constant ¢ such that the following inequality holds:

h(m) < c|m|? O+meZ).
PrROOF. We define a subset & of G'=SL(2, R) as follows:

15) In other words, h(m) is the class number of integral binary cubic forms with
discriminant m.
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& = (n(Waky; O R, 0<1=2, luls 3.

It is well known that G*'=SLQ2, R)=1'® ={yg;rel’,g= &'} (see e.g. [2].

We put y, = (0, i, 1,0 and y,= (4 -—217~~, 0,0, §/—2~17v>. Furthermore we put
tn==x"|mly;, when m>0
and

Xm=nx|m| ¥, when m<0.

Then, it follows from [Proposition 2.2, that L,CG'-x,=1€’-x,. Hence, it
is sufficient to prove that there exists a positive constant ¢ such that the
cardinality #{L " &’-x,} is smaller than ¢|m|? Since the set

E={ainGdaks; 0 R, 0<tS2, lul <5}

is a compact subset of G!, E-y, and E-y, are compact subsets of V.
Hence, there exists a positive number N> 1 such that Max|x;| < N when

1=iS4
xe E.y, or E-y,. Take an x={(x,, x,, X3, x) € LN&’-x,,. Then there exists a
t such that 0<¢t=2 and that

Hence one gets

{4l <.
Since x= L, (m+0), it follows max.{|x,|, [x.]} =1. Therefore we have
t>{N ¥|m|}~'. Hence
L& . x,C {at-x; N}}W‘r<t§2, Max. | x;| < %/‘l;’ﬂvlﬂN}
c{x; |nl, |%| <8N ¥[ml, | x| < N*Vml, |x| < N*|m|} |
Hence,

BL NG x,) 28N Vm+1DN*V |m|+1D(N* | m| +1).

Thus it is proved that if we take a C sufficiently large, we have #(L "&’-x,,)
<Clm|® (0=me Z). q.e.d.
For any integer m %= 0, we write L, =0,(m)\J --- U Opm,(m), where O,(m),
-+, Onemy(m) are mutually disjoint ['-orbits in Ln.
Now we assume m >0 and take an O;(m). It follows from
2.2 that the isotropy subgroup of any point of O,(m) in I is either the unit
group or a cyclic group of order 3.
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In the first case we call O,(m) an orbit of the first kind and in the second
case we call O;(m) an orbit of the second kind. We denote by h,(m) the
number of orbits of the first kind in L,, and denote by h,(m) the number of
orbits of the second kind in L,,.

When m <0, I' operates simply transitively on every orbit in L,,.

Furthermore we denote by ﬁ(m) the number of I"-orbits in L,, which are
contained in L. We define ﬁl(m), hy(m) (m > 0) in the similar manner.

PROPOSITION 2.12. We have

2h,(m)=#{(x, y) € Z*%; (Ox*+3xy+y®)*=m} (m=1,2, ).

PROOF. We assume that the isotropy subgroup of x L, in I' is a cyclic
group of order 3. It is well-known that any cyclic subgroup of order 3 in
I' is conjugate in I" tc the group {1, (__(1) _i), (_} _1>}. Therefore
(replacing x by a suitable y-x (y €I') if necessary) we may assume that it
is {1, (__(1) _}), (_i —0)}. We put x=(x,, X,, X5, x). We assume x,+ 0

and take a root w of the equation xu®+x,u*+x,u+x,=0. Then the set of

. . . —1 —w+1
the roots of this equation is {a), o1 4y } Hence
X gy 1 o=l @30+l
X, T 1w o = alw—1)
Ky 0 1, &—3w+]
x, l-o w To—1= w(w—1)
R
Xy
Therefore
(2.25) X, =X, and X, = —x,—3x, .

Hence P(x) =(9x1+3x,x,+xH% If x,=0, (2.25) must be satisfied also.
Conversely take an x< L,, which satisfies (2.25), then we can see, by (2.1)

and Proposition 2.2 (i), that the isotropy subgroup of x in 7" is {1, (_(1) _}),
(_i _0)}. Now we assume that both x and 7-x (x€ L,, y=I') satisfy
(2.25). Then y is a normalizer in I' of the subgroup {1, (_(1) _D,

<—i _0>}- Hence we must have y==*1, or i(——(1) —~D or i(—i _O>'

Therefore y-x= +x.
Thus it is proved that if we put

M= {(x,, —x3—3x,, x5, X,); Xy, X3 € Z, m = (Ox}+3x,x;,+x3)?},
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{I"-x; x= M,} coincides with the set of /-orbits of the second kind in L,
and that two elements x, and x, in M,, lie on the same [ '-orbit if and only
if x,= *x,. Thus

2h,(m)y=#{(x, ) € Z*; (9x*+3xy-+y*)*=m} .
COROLLARY.
2hy(m) =#{(x, y) € Z*; 8L(x*+xy+y°)*=m} .
2. Now we define four Dirichlet series &,(L,s), &(L,s), &(L,s) and
&y(L, s) as follows:

o -1

gL, 9= 5 -0,

_ s b 4. R T

—ngl n’ 3 (x.y)gz—(o} Ox®43xy+y%%
s(L, =3 "M

n=1
“ o A -1p

&L, 9= 3 - MW ).

o~ ﬁ(”),_ ~1-48 U
== n’ 3 (x,y)&zzz—{ol (x*txy+yH)» ¢
N Y
el 9=3 "M
n=1
Then, by [Proposition 2.11, these series converge absolutely for Re s> 3 and
represent there holomorphic functions of s.
3. Weput L'’=L—L,and L'=L—L,, We define Z(f, L;s) and Z(f, L,

s) (feS(Vy), sC) as follows:
27, Li={, e’ s Ag-ndg,

ZfLi={ W S Mg xdg,

G.;./F x=L'
where we put X(g)={(det g)°.
PROPOSITION 2.13. For Res>3, the above integrals both converge ab-

solutely and

LS, L 9= 8L 9f | PO fDdet 5L, 9f | |P@I 0
and

25 Li 9= 6L, 9Of | |P@IT f@dat o &L 9f 1PCI .

PrOOF. We call two elements of L equivalent if they lie on the same
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I-orbit in L. Let x,(m), ---, Xnemy(m) be a complete set of representatives of
I'’-equivalence classes in L,. We denote by I(i, m) the isotropy subgroup of
x;(m) in I" and by v(i, m) the number of elements of I(i, m).

We have v(i, m)=1 if m <0 or if m >0 and x;(m) is on an orbit of the
first kind. We have v(i, m)=3 if m > 0 and x,(m) is on an orbit of the second
kind. Thus

h(m)

Zfen=3235 = fer-xm).

mF0 i=1 r;l"

It follows from [Corollary] to [Proposition 2.4 that the series

2 e S weyser xmyde

i=1rs/IEm)Y G
converges absolutely when Re s> 1 and is equal to

h(m) 1
Z oG, my ), X8 (g xlm)dg
h(m) 1

i:x v(i, m) |m|

o], 1P(g-xm)|* (g xm)dg

e 3R} AR PGOI . when m>0,

127 KM | e | FOIPG)I*idx when m <0,
_ha(m)+37 Ry (m)

It follows from |[Proposition 2.11 that the series 2 e and
m=1

3 h_(msm)’ are absolutely convergent for Re s> 3.

m=1

Therefore the integral f X(g)’z;/f(g-x)dg converges absolutely when
Re s> 3 and is equal to o

4e 6L O IPQI@dxt 5 8L 9f | [P H0dz.

Thus we get the first equality. The second equality can be obtained simi-

larly. g.e.d.
COrROLLARY. We put
zZ7(f, L; 9= 18y X fg xdg
G/, U1 re L7
and put
zZ7(f, Ly )= gy 3 /g x)dg
G/, (g)Z1 relr

(feS(Vy), seC). Then these integrals converge absolutely for any s<= C and,
regarded as functions of s, are entire functions of s.
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The following Proposition is an immediate consequence of the Poisson
summation formula.

ProrosITION 2.14. () If Res>3,
Z(f, L; 8)=Z*(f, L; )+ Z*(f, L; 1—s)

X(e*{ g e D—17() 2 fg*- )} dg *0

5G+/F.X(g)§l zely

(ii) If Res>3,
Zf, L; =257, L; 9§ 25, L; 1-9)

~f x| 3 g n— g 17@) X fgtn)ds.
G/ X(HEL xr‘iio & Ly

In the following two subsections we prove several propositions which are
necessary for the computation of the integral

X 2 Mg -0—17(g) 5 Ag-n}dg.
zely xelfo
4. By every element of g G'=SL(2, R) can be uniquely
expressed as follows: g= kocpairn(u(g)). We denote by B the group of
lower triangular matrices in G'. We define the Eisenstein series E(z, g) (z=C,
Rez>1; g=GY as follows:

fG+/T,X(g)§1

(2.26) EG o= _3 ey

The following Proposition is well-known, (see e.g. [5] and [10]).

PropPOSITION 2.15. (i) When Rez>1, the series E(z, g converges ab-
solutely and locally uniformly with respect to z and g.

(ii) The series E(z, g can be continued analytically as a meromorphic
Sfunction of z in the whole plane and satisfies the following functional equation:

E+DE(z, 8)=E1—2)E(—3, 8,
where we put e(z)zn—; FC;)C(Z).

(iii) The function: E(z, g8)— -‘757(2)(1241)‘ , 1s holomorphic in the right half
plane {z; Re z> 0}.

(iv) When Rez>0, we have the following Fourier expansion of E(z,
koa, n(u)) with respect to u:

R € -
E(z, kgan(u)) = t=*'4-t* £t ) +2t! Elam(z, t) cos 2rmu ,

16) For the definition of g¢, see |(2.13).
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where a,(z, t) is defined as follows:

® g2Ey/~1 mt2w

1 -z
an(z, t) = L(l+2) {o<§lmd }j'_w(l_*_wz)(l-.uz)/z dw .

The following lemma can be easily proved using partial integration.

LEMMA 2.7. (i) The function an,(z, t) (m=1, 2, ---) is a holomorphic func-
tion of z in the half plane {z= C; Re z> 0}.

(ii) For any natural number k, there exists a positive number C, such that:

142z

(I1+w?) *
5. For any positive number C, we define a subset &, of G' as follows:

lj\jooo €xXp (271'\/——1 thw) dw|§_ Ck(lm[tz)"‘(1+ lzl)k (Re z> 0) )

So={koan(i); 0 R, t2C, [ul= 5 |.

When C2< \gg , we have G*=6&,-I" and we can take a fundamental domain

F in G with respect to " such that FC &, (see e.g. [2].
For any r= R, we define a semi-norm u(r) on C(G'/I") as follows:

() i?;‘é}?; (.17

We put C(GY/I', N={/e CG/I'); pr)(f) < oo}.

LEMMA 28. When r> —2, C(G'/I", < L(G*/]).

PROOF. There exists a fundamental domain F of G' with respect to I’
such that FC&,, Take an fe CG'/I",r) (r> —2), we have, by (2.6),

f If(g)ldng \f(g)ldgéf |/(&)|ag
cl/r F S1/2

< 1INf | K 7dg' =N 17 < oo

Therefore, f = L (G'/I"). q.e.d.
We denote by ¥ the space of entire functions which satisfy the follow-

ing inequalities:
Sup. {14+(Imw)’}¥|p(w)| <o (VN>0, —co <VC, <V, < 00).'®

C1<Re wCy
LEMMA 2.9. We put
1 E(z,
spwiD= pp [ 9@ 29 az
1<xrg<Rew

where =¥ and we C (Rew>1). Then we have the following:

17) For the definition of t(g), see (ii).
18) It is obvious that exp (z2)e¥.
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(i) &, w; g e C(G/I, Rew—1).
(ii) For a fixed ¢,

1§3§D&I(w—1)8(¢, w; 9| <oco, M>1).

£EBy/2

i) lim (w—Deg, w; 9= 43 -

PrRoOOF. We put

EGz ) ="+ o5

(Z+1) t(g)l_z+E/(Z! g) .

(i) It follows from Proposition 2.15 (iv) and Lemma 2.7 that therc
exists a constant ¢ such that the following inequality holds:
|E'(z, @) = ct(g)tRea-8(1+[2])° (Rezz=1).

By the Cauchy’s integral theorem, we have

e, w; g
= bl O a5 e B, ) )
1 1-2z ’ (
T omi Rez:ReWH{”&(i(z) Ky~ + Bz, )~ -dz.
Therefore,
Sup. (g6, w; D]
= g D]z | 00 g2 )

+ zlﬁ—jReFRewﬂ{ sé(fl) |+27-c(1+|2|)8} 16| |dz]| < co.

Hence &(¢, w; g) = C(G*/I’, Re w—1).
(ii) It follows from the above equality that

éggkl (w—De(p, w; g)|

£<@y/2

< 22 -nsup ([ jg@l1dzl}+2esup w1 £ g

- +2M—1) Sup. 1+ w]) | )]

(Ag;r— 1) 1<wEM.§‘Re ot {ZM_Ig(i(fll) ]N J-26+M, C(1+ l Z[)s} [‘/’(Z)I I le

< oo,
(iii) We have, by Proposition 2.15 (iii) and the Cauchy’s integral theorem,
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oy ) 1 E(z, &)
s wi = 55 i+ on e P @

where C is an integral path indicated below:

I

0 ¢ w

C
Since
Jim O J, B8 s@da=0
we get
lim (WD), w; £) = if(%)) ae. d.

COROLLARY (Cf. [7]). For every f L(G*/I", dg),
Jim@-Df A w; de= L5 fade.

PROOF. Take a fundamental domain F in G' with respect to I’ such that
FCc®&,, Then

w-1f  f@ep w; ddg=w—-1f [Qeg, w; gdg
Glr F

(w>1). By Lemma 29 (ii), Lemma 2.7 (iii) and the bounded convergence
theorem,

Jim w—Df Aoy, w; odg= &) [ Aade= §5) [ Aays.
q.e.d.
LEMMA 2.10. For every fe S(Vy), define J.(f) and Jz(f)e C(G*/I') as

follows:
JL(F )2 =162Lof(g- x),

Ji(Xe=Z f(g-x) (geCGh.

rELy
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(L, is the set of degenerate integral binary cubic forms and Ly=L,~\L.) Then
1) Ju(H, Je(H e G/, —4)
() Ju.(NH—Je(f)ye CG/T7, N) (VN> 0).
PROOF. (i) We put g=k(0(£)a:n(u(g) and c(g)= k(O(£)a:,n(u(g)ariy.
Then we have

J(g )= fe( (L) xy, L)Xy, 1) 2 t(Q)7°xy))  (x=(xy, Xy, Xy, X)) -

When g varies in ©,,,, ¢(g) remains in a compact subset of G'. By Lemma
5 in [11], we can take an f, = S(Vy) such that |f(c(@)-x)| = folx) VgeES,)p,
Vx e Vg). Hence there exists a constant C, such that

[ JL(H(2)] §x§0fo(t(g)3x1; t(@xs, 1()7 x5, WY Px)= C,t(g)*

(g€©,,). Therefore, we have u(—4(J (/) <oo and [ .(f)eCG'/I, —4.
Similarly, we can prove that Jz(f) e C(G*/I", —4).
(ii) It follows from the Poisson summation formula that

Tl @—~T: (8= X (g n— /(e x,

J.‘EL

= Ef(c(g>t(g) 0= Ef(c(g)t(g) x),

zel

where we put L'=L—L, and L'=L—L,. We can take fy, f,=S(Vg) such
that

fe(@) D= fi(x)  (VgeSy,, Yxe Vy),
1Ae(@)- DS f(x) (VgEBn VxE Va).

Therefore

H{I(N—TeDHD I = T fit(9): 0+ DAY (EeSy).

.zx.L

Hence, for every natural number m, there exists a constant C, such that

HJ()—=Te ()} Q)]

<cC, 1

m 2, {U+H @ x DA+ @ x D)™+ 2x DU+ 1(2)°xD)
(Vge®,,,). Since Max {|x,], |x,|} =1, there exists a constant C,, such that
xe L/

H{ (D)=t (HHQI = CLt(g®*™ (Vg e S,,,). Thus we get J.(/)—J:(/)eCGY/T,
2m—8) (m=1, 2, ---) and J.(f)—Jz:(F) e C(GY/I", N) (YN < R). q.e.d.
6. PROPOSITION 2.16. We have

Jour (S S8 0~ = e 0)dg

1/1" Lo

=D (x(0) f(O))+g(f AN ELN—Z AU DIZ =35} -
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ProoF. We put f(0)= 5 [ fko 98, Ju( &)= 3 /(g-x), and Jz(FX&)
= sz(g x). It follows from Lemma 2.8 and Lemma 210 that J.()—Jz(F)

x=Lg

e L(G'/I', dg"). By Corollary to Lemma 2.9, we get

@.27) lim w=1f  {(J:(N-J:(HN@e, w; Hdg

w—1+

—-45-§ RG]

By Lemma 2.10 (i), Lemma 2.9 (i) and Lemma 2.8, we can see that J.(f)&(¢,
w, g € L(G'/I") and Jz(félg, w, g) € L(G*/I") for Rew >3. Hence

[, L N=T: (DN DG, w; 9)dg

=[ e w; adg— | ()X DEP, w; g)dg
Gl/r GYr
for Rew >3. We put
L) =U U 7:0,00m),
I'NN

m=1 TET"/

© m-—1
Lo(][): U U U 7"(0; 07 m, n) ’
m=1 n=0 Y€
and

Ln= 0" U 7+0,0,3m, ).

Then it follows from Proposition 2.10 that L,= {0}V L,(I)\J L,(II) and from
its corollary that L,= {0} \U L,(J)\J L,(II). Hence

@2 [ LUX@e, w; odg
=§ . S Wi DdEFOF[ S f(g-De, w; gdg

+f EP,w; g > flg-xydg (Rew>3)
Gur zeloUn)

and

@29 [ I, w; g)dg

=fOf &g w; gt 3 Ke-neg,w;gdg

Glurzx Lo(

+f 2 flenegwigds Rew>3).

GUT ey
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We emphasize that all the terms in the equalities (2.28) and (2.29) can be
regarded as functions of w, holomorphic in the half plane {w; Rew >3}. In
the following, two holomorphic functions ¢,(w) and ¢,(w) in the half plane
{w; Rew > 3} are said to be equivalent when the function (¢;—¢,)(w) can be
continued as a holomorphic function in the half plane {w; Rew > 0}. In this
case, we write ¢,(w)~ @,(w).

Now we establish the following sublemma.

SUBLEMMA. For any ¢ € ¥ and f< S(Vg), we have the following:

(i) [ &pwindg= 4D Rew>D.
Gy [ e@win B fendgi~ 2 6@ 70,00, ndt

1 ¢(1)
where we put

B _ @
fx)= 27{'}0 ko 2)d8, 0@ = 20,71

(e@=="% (-3 )@).
G [ w3 fgndg
¢(3)ao(3) IS, DO+ gb(Z)C(O) a0<2)j' f(O 0, 0, Wdu

GOU=D 1 g oo

w—l  £Q)
iv) | egpwie T fgxde
Gur refy(In

~- 1 gll(3)ao(3) Y (f 2)_|_ ¢(2>C(0) 0(2)5‘ f(o () O u)du

4 39ME=D 1
ol ey SO

PROOF OF SUBLEMMA. (i) When Re w > 1, it follows from and (2.6),

j01/f8<¢’ w; g)dg= zm IGWURe imo E(z g) sb(Z)dz)dg

1<zxo<Re w

19) See (2.15).
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142

1 &y)
- 27u jgl,r(fRez_Iorer/rrlﬁ ir . ¢(Z)dz)dg

. d
4ri Gl/rnnv \Y Re z=x¢

= gi 2 ), %) :o""zd“ff (. ey $@dz)

G S e b2

(ii) We put

O™ (2ydz)dg

OP(w) = jGW €Lomf(g xep, w; g)dg (Rew >3)

Then it follows from (2.6) and [Proposition 2.19 (iv) that

Opwy=[ 3 5 fgr0 0,0, mes w; Hdg

G/ m=1y _I'/'NN

=5f  fg(0,00,megp, w; gdg
GY/rnN

oo 2n co 1
=3 7&—2—1.— dé jo t-Zdtho duf(kgan(u)-(0, 0, 0, m))

E(z, kgatn(u))
X — -¢(2)d
qg;&gw ?)
= 2m ,,,21 j 70, 0,0, ¢ m))UR“:Io e ;ao(;)t ' )t
2 1— z
=g (-
=—27;va f((o 0 O £ s))<‘$‘Re z=11<—2y*” 'w Z Sb(z)dz)d ¢
_ 142z
a2t (—
o fy 700,00 (f = ( $(@dz)d"t.
Since the integral
t"‘C(—l—g_Zf
271'1, J' 710, 0,0, ¢ 3))<.f Re z=1;<—2 w—z gb(z)dz)d*t

is an entire function of w, we have

1+
oo —l ZC aO(z)
o9y~ [T 0,0, w0(f (w z) $()dz) dt
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= s [ T 0,0, 0 ([ _ i — 3 dz) av
0zl

43 0(2)¢(2) 5'00]?((0, 0, 0, t"a))l‘—sd"t

2
(43 )¢) .o
‘(1(731%‘5@‘ § 7o, 0,0, 12
(We note that res C<~1—+~Z—-) =3 and that Ezels ao(z)=—§%2-)~>. The integral
1~ 14z
115 ) ae(2)
27” j 70, 0,0, t 3))(f Re sty ~<;U“_3;z ) ¢(Z)dz)d t
0xra<l

is a holomorphic function of w in the half plane {w; Rew >0}. Therefore

we get, by [2.16),
o(5)e

09wy~ -2BDID (70,0, 0, tdt+ o s - Tu).
(iii) We put
OP(w) = fGI/F &g, w; g)IELEom)f(g-x)dg (Rew >3).

Then it follows from (2.6)

oo

opw={ e w3 3 = [ar-© 0, m mdg

«© YEr/r

__ 1 SRS . EG 9)¢)
o ) gy L2 2 (80,0, m, )} ( jg oy e )dz)dg
ZUf)f t2d~ tf du zl n; Fai-(0, 0, m, n+ mw) fRez:xOE(?rﬂ&@E@gl?@dz

Applying Parseval’s identity for the Fourier expansions with respect to u,
we have, by [Proposition 2.15 (iv), the following.

f {3 3 fa©,0,m ntmup)(f LG anG0) yydz)du

0 m=1n=- Re z=x¢
={" 5);1 70, 0, t1m, t- u))du(fRez:IO tlﬂil}a“(?tl = 9(2)dz)
+ 3 (2L ST 0 t7m, e w au

Z3SUl50 “m=1 n=0
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x(fo_ oD gar)

_j Ef((o 0, ¢t 'm, t~ u))du(j a2 gb(z)dz)

—oo m=1 Re z=x9 w—z

12 é él{ { :f((o, 0, t'm, w)) cos (2rlt*u)du}

1 fa,.(z, t
e w22 00002).
Making use of we can prove that the series

fi éJ: {jif((o, 0, t7'm, w)) cos (antsu)du}

X (jReHo tt ’Z)zm(z 1) - (2)dz) t*dxt

can be, as a function of w, continued analytically to a holomorphic function
in the half plane: {w e C; Rew > 0}. Therefore,

@g>(w)~—-~j ({7 37,0, t7m, tu)du)

—00 m=1

% (j'Re . e ao(z)t -2 (z)dz)t“zd"t

= - 27” j (7o, 0,1, wdu)(f_ L tz+zc( 2 "2_gaydz) dt

g (1@ 0,1, waa)(f, DD i

~ L GDEE=D 5 (f, 2Dz .

271 JRe 2=x9 w—2z

It follows from [Lemma 2.3 and its proof

7%— Re z=xg aO(ZJ)C(ZZ 2) Zl(f’ Z— 1)¢'(Z)dz
= 2O 5.7, D9+ COKND_req 3 (7, 2
=Dl (=)
+ 5(2)(w¢ 1) 2+ zm fR“_gz DNETE) 3, == D)pl2)dz.

Hence,

09w~ 9L 5.(£, D@+ “AXOED (7 70, 0,0, wpdu

U=Dpt)
ti@w—1) 2
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(iv) Proof of (iv) is quite similar to that of (iii). q.e.d.
Now we return to the proof of Proposition 2.16f It follows from (2.28)
and Sublemma that

[ nhew, w; pdg~ Y99 37 2
ey/r w—3

+-PD8D (770, 0,0, Dat+ 2O 70, 0, 0, uydu}

2,,
o (5 ot ‘E—*(gy)“zz(f + Sy 20)

C § -
=-299® 5.(r, 9+ PO (1 10+ g(g))zz(fﬁ L))

(We note that f is an even function and that L0)y=— %)

Similarly, it follows from (2.29) and Sublemma that

NZ3 . 1 ¢Q)A‘_ZQ(§)_ f
J'GI/I"[L (f)8<¢’ w, g)dg 3(11) 3) Zl(f) 2) ‘

+ 2O (Lro+ g(g)z“z(fw - 5h).

On the other hand we have, by [(2.15) and [2.14) that

S 3= a0, 0,4, wdu= 3" {7 ], 0,1, watdu=2.(£, 2).
Hence,
[ uhH—JehHreg, w; gdg*
Gir

~ 2011 ro—fop+ E—'<2)> EN=Z+ ) CUH-33) .

w

Therefore, one can see

Jim =D AT (D, w; gdg

:(5)

_ (=D ;
s{ 5 (FO—FO)+ 2y CN=ZUN+ S CuUN-33(N) .

Since there exists a ¢ =¥ such that ¢(1)+0, it follows from that
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§ o LN =T @dg?

= D (O —A+L( 2 ) EN— TN HU=DE LN 32D

(we note that 5(2):‘22) ) g.e.d.

COROLLARY TO PROPOSITION 2.16. When Res>1,

{ e { 3 fe-0—1e 5 fg- 0} dg

G4/, %=1 zely
L2 ¢ fO Ji0) (S 3.(f
)(123) ﬁzzs—T)')+C( DG ) _123(—f1)0

Zl(f) 3 7
(T 12—1) 2 ))
and

xer| = fg 0™ o Z/en}de

j‘GI/I" UHEL

2 0 0 2, 2
C() ({%3 9.15&)_1) )+C<'3’X‘ ‘1:(z? - 9(12s(f)10)

() = 050y ) veswa.

PrROOF. We put f.(x)=f(x) (¢t > 0). Then we have, by [(2.14), (f)t = t“‘(f)t_l.
Making use of Lemma 2.3 and Lemma 2.4 we can see that 2,(f,)=2,(f) and

that X,(f) =t iZ’z,(f). We get, by [Proposition 2.16 and [2.7),

1(gr{ = fg-n—ug™ = flg-n} de
z_Ly PN

fG+/F,Z(g)§1

= fotlzsdxtfol/r {x?:}‘of;s(gl . X)—z?io(fﬂ)(gl : x)} dg,

= [ 1§D (10— Fa+E( 5 )= Tl F)

U Efi) 32T | dnt

0 £ : o(f
C(2) < {(25) 12(5 )1) >+ C( )( 12s— (f) 123(—fl)0 i

2N 32.(f)
+-D( Ty — 12(s—1)

Thus, we get the first equality. The second equality can be similarly ob-
tained. gq.e.d.
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7. Now we are ready to prove the main result of this chapter.

THEOREM 2.1. (i) Four Dirichlet series &L, s), &(L, s), &(L, s) and &,(L,
sy can be continued analytically as meromorphic functions in the whole plane
which satisfy the following functional equation:

&L, 1—s) o
<52(L’ 1—s)> :F<s_" )T F(S+ w3
1 /sin 27s  sinws £l s)
X ‘TS“( ><E2(ﬁ, S)> .
(li) Dirichlet series El(Ly 5), EZ(L, S); $1<f4, S) and Ez(fz, S) have simple pozes

at s=1 and at s:—g»‘ and are holomorphic everywhere else. Their residues

3sinzws sin2zs

are given in the following table.

O aLy  ads  ade &L

| '’ ? ? T

— R i 4 B . T
s=1 9 6 162 81

_ O A3 1 /3 1
=% 18 7 6T 1.2 " 547

I (We put r_c< ) If(l%f(%%%gr)”a )

i) (—D(s— 2 )eulL, 9, s—D(s— g )&, ) —D(s— )&, 5) and

(s—l)(s——%—)éz(ﬁ, s) are entire functions whose orders are all equal to 1.

PrROOF. (i) It follows from Proposition 2.14 and Corollary to Proposition
2.16 that

(2.30) Z(f, L; s)=Z*(f, L; )+Z*(f, L, 1—s)
<<2> £(0) JiO) 2(f) NED!
(os — 12(s—1) )¢5 3 ) fasla —12atio”

20N 33,
_C(—1)< 12s  ~ 12(s—1) >

and that
(2.31) ZU,L; )=Z%f, L; 9+ Z*(F, L, 1—9)

2 0 0 2 2, i
C( ) ({(23 9. 1J;Es>-1> )— C( )( 12 (f?'z '9(123@10) )

—e—n( 32D 9121((5_)1),) (s€C, Res>3, feS(Va).
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Since Z*(f, L;s), Z*(f, L;1—s), Z*(f, L; s) and Z*(f, L ; 1—s) are entire func-
tions of 5,2 we can conclude that Z(f, L; s) and Z(f, L;s) can be continued
analytically as meromorphic functions in the whole plane which satisfy the
following functional equation:

(2.32) Z(f, L;s)=2Z(f, L;1—s).
For any fe S(Vp), we put
0L, =] IP@I'f@dx  Res>0) (=1,2.

When Re s> 3, it follows from Proposition 2.13 that

2.33) 20, L5 9= (&L 9 13 8L, 9) (557 571)
and that
(2.34) Z(f, L; s)= <,_41£51(z,, s én &L, 5))(2282 i:}%) :

Take an fe Cg(V)), then @,(f, s) is an entire function of s and we have

§(L, )P,(f, s—1)=4rZ(f, L; s)
and

gL, D,(f, s—D)=4rZ(f,L;s) (Res>3).

Since there exists an f = Cy(V,) such that @,(f, s—1) does not vanish identi-
cally, we can conclude that &,(L, s) and &(L, s) can be continued analytically
to meromorphic functions in the whole plane. Similarly, &,(L, s) and &,(L, s)
can be continued analytically to meromorphic functions in the whole plane.
We can see, by [Proposition 2.9, that @,(f, s) and @,(f, s) can be continued
analytically to meromorphic functions in the whole plane which satisfy the
following functional equation:

¢1(f1 S”—‘l) 1 ’ 1
2.35) R ) =g 438 (s——- ) () s+ ——
(@(f, s—1) (=) S
1 sin 2xs  sinzws D.(f, —s)
X ——— .
18 <3 sin s sin 2ns>(d)2(f, —s))
Hence we get, by the equalities [(2.32), (2.33), [(2.34) and [2.35),
&L, 1—5) 1 . 1 —isorss
<—%’—52(L, 1——3)) ———F<s-——6—)F(S) F(s+—6-)7r 3

" _11‘ (Sin 27s 3sin 7rs><—$%(f;,2(sl)i’ s)) .

sinzws  sin2ms

20) See to Proposition 2.13.
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(ii) Take an f e Cy(Vr—Sg), then it follows from [2.30), [2.33), Proposition
2.5 and [Proposition 2.6 that

@36) o Of s DEWL, 1o PulS, s—DELL, 9)
=24, L3 9+ 25, L3 1=9+ 52 1y 1y @F, 001, O)
C( ) T(3)em:
12(5——6) 6xI"( - )

+ io’zi(s R (—20.5,0—§ 0.0,0).

vao (- LYo — 1))

For any s € C, there exists an f = C7(V,) such that @,(f, s)# 0 (¢=1, 2). Hence

&.(L, s) and &,(L, s) have simple poles at s=1 and at s= ~2—— and are holomor-
phic elsewhere. It follows from that

0.(f, Ores. &L, 9=-2L O (52 —3t¢-1)r)

and that

o (f ) /3 F(— _)(275)3
—Lflr_f@‘(f’ —(15> sr:eg §lL, )=, 6 ~M6;_P< ) C(%)

Ve Cg(VyY). Therefore,

res. &L, )= 5 (52 —3¢-Da) =T

and
V3 F( )(2@3 0
res 51<L,s>—~-~18F( ) ~¢(3 ).
Similarly,
res. £,(L, s)= n(-——CZ(,zr) —C(-—l)n'> = ’gz
and
r @27) 3
res. &,(L, s)_—-rr < ) C(§ ).
& or(3)
21) As is well-known, c(_1)=_»7112 and C(2)_Jé?,,
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Similarly, we can prove that &,(L, s) and &,(L, s) have simple poles at s=1
and at s= 2 and are holomorphic elsewhere. The residues of &,(L, s) and
&L, s) are calculated in the same manner.

(ili) There exists an f< C(V,) which does not vanish identically and
satisfies the following conditions (a) and (8):

(@) Jf0z0 (VxeVg).

oMt Mekmy iy <C kg T 4 om
x)| < c=1 k
0X™O X2 xT30 x4 K )’“— kg (m)

x

¢<)) Sq}/).

@c>0, my=0,1,2,---). Then, making use of Proposition 2.13 and
to [Proposition 1.3) we can prove without difficulty that Z*(f, L; )+Z*(f, L,
1—s) is an entire function whose order is at most 1. Hence, it follows from

that @,(f, s—l)(s—l)(s— 2 )EI(L, s) is an entire function whose order
is at most 1. Since @,(f, s—1) is an entire function of exponential type of s

which "does not vanish identically and (s—l)(s— 2 )EI(L, s) is an entire func-

tion, we can conclude that (s—l)(s— g )EI(L, s) is an entire function whose
order is at most 1.

Making use of the functional equation of &,(L, s) and Stirling’s formula
for the Gamma function, we can evaluate the asymptotic behaviour of
&L, s) on the negative real axis and we can see that the order of

(3—1)(8— g)EI(L, s) is not smaller than 1. Therefore the order of
(S—l)<8— g)&l(L, s) is equal to 1. Similarly we can prove that

(s——l)(s— 2)52@, s), (s—l)(s— g)&,(f,, s) and (s——l)(s— 2)52@,, s) are all
entire functions whose orders are 1. q.e.d.

8. Applying theorem 2, we can get some informations about the asymp-
totic distributions of class numbers of integral binary cubic forms.

The first part of the following proposition follows immediately from
Ikehara’s Tauberian theorem (see e. g. [6]) and [Theorem 2.1, while the second
part can be proved combining a familiar argument in analytic number theory
with [Theorem 2.1

PROPOSITION 2.17. We put Al(t)=02 h(n) and A,(H)= 3 h(—n).

-n=st 0<nst

2
A;(t) = 7; and lim

l—+oco

A1) _ 7w
t - .

(i) lim 6

t—+oo
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1
: 2 r
@ [ Adi=-T, e 2“3 «(3) (3) (2n) 5 +03" ")
0 18 F( 2 )
3
and
1
r(s)
t _ 4] 2 3 4 A Ste
joAz(t)dt_~12 e ( 3>F-(2 ) ()3t +0@* )
3
Sor any > 0.
REMARK. For every t=1, we put
Vih={xeV; 1Pt}
and

V.y={x€V; —t=P=—1}.

We denote by I'\V,(¥) a fundamental domain in V; with respect to the action
of I’ and denote by vol (I"\V;(#)) the Euclidean volume of I'\V,(¢). It follews
from [Proposition 2.4] that

1/12

vol (I\V, (t))_47zj 112 tj dglz—g;(t—l)
and that

1/12

vol (I'\V,(1)) = 127rf t2dx tj' dg1 = 711-; t—1.

On the other hand, A,;(¢) is the number of lattice points in I'\V,(#). Hence,
by [Proposition 2.17): (i),

A, _
Hm-cor ey =4

and
AWM
lm = o1 PV T2
REMARK 2. Let h,n) (resp. h.(n)) denote the class number of irreducible
(resp. reducible) integral binary cubic forms with discriminant n(n € Z—{0}).

We have then h(n)=h;(n)+h(m). It is easy to see that %h,(n)n‘s

= x"¥(y2—4x2)"* (resp. Zh( nmn~* =3 x *(4xz—y*)~%), where summations

on the right side are taken over the set of all triples of integers (x, ¥, 2)
satisfying the conditions: x>0, 0=<y < 2x and y*—4xz > 0 (resp. x >0, 0=y <2x
and 4xz—y®> 0).

We can prove (the proof will appear elsewhere) that these Dirichlet
series, absolutely convergent for Res>1, can be continued analytically to
meromorphic functions in the whole plane. Further we can show that they
are holomorphic in the half plane {s; Re s> 1/2} except at s=1, where each
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of them has a simple pole with residue #n?/12. Thus, we get

0/§§xh,(n) =(7?/12)x+o0(x)
and )

> h(—n)=(x*/12)x+0o(x).

0ln=r

Hence it follows from [Proposition 2.17| that

5 hn)=@*/30)x+0()

0 . .nsSr

> h(—n)=@%*/12)x+0(x) .

o< n=Er

and

On the other hand, Davenport established the following results:
> hin)=(=*/36)x+0(x""),

0 n==x
> hi(—n)=(x*/12)x+0(x*1%)
0 n=x

(see Davenport [127).

Thus our estimates are consistent with his results.

University of Tokyo
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