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\S 0. Preliminaries.

Given a topological space (X, $\sigma$) with the family of open sets $\sigma$ , the cor-
responding topological measurable space is defined to be the pair (X, $\mathscr{D}_{\sigma}$),

where $B_{\sigma}$ is the family of Borel sets. If in particular $\sigma$ is defined by a
metric with distance function $d$ , then we write it $\mathscr{D}_{a}$ instead of $\mathscr{D}_{\sigma}$ , Further-
more, if the topological measurable space is furnished with a measure $\nu$ , the
completion of $\mathscr{D}_{\iota I}$ or $\mathscr{D}_{d}$ will be denoted by $C_{\sigma}$ or $x_{d}$ respectively.

In this paper, for basic measure space is taken Lebesgue space $(M, X, \mu)$ ,

where X is the underlying $\sigma$ -algebra, complete under $\mu$ , and $\mu(M)=1^{1)}$ .
Let $(\Omega, d)$ be a complete metric separable space with distance function $d$ ,

and probability measure $P$ over $\mathscr{D}_{d}$ . Then $(\Omega, X_{d}, P)$ is a Lebesgue space.
The family of Lebesgue spaces coincides with that of such probability spaces;
any Lebesgue space is isomorphic with $[0,1]$ endowed with an ordinary pro-
bability distribution.

A flow’ on $M$ is a set $\mathfrak{S}=\{M, T_{t}, \mu\}=\{M, T_{t}\}$ , where $t\in T=(-\infty, \infty),$ $T_{t}$

is a one-parameter group of automorphisms on $M$. In the theory of flows,
the choice of Lebesgue space for underlying measure space eliminates mea-
sure-theoretic complexities. This depends on the separability properties
specific to every Lebesgue space.

Now given a flow $\mathfrak{S}=\{M, T_{t}, \mu\}$ , one can carry it over a metric space $\Omega$ ,

getting a flow $\mathfrak{S}^{\gamma}=\{\Omega, S_{t}, P\}$ which is isomorphic with $\mathfrak{S}$, with the path
$\omega_{t}=T_{t}\omega,$ $\omega\in\Omega$ , continuous in $(t, \omega)$ . Such a method of representing a given
flow on a metric space goes back to Ambrose and Kakutani [2].

Among those representations a convenient one is that in which the under-
lying space $\Omega$ consists of measurable t-functions, and $S_{t}$ is the one-parameter
family of shifts acting on $\Omega$ . For such a flow $(\Omega, S_{t}, P)$ , the trajectory
$S_{t}\omega,$ $-\infty<t<\infty$ , is also continuous in ( $t$ , to). The advantage of this method
consists in the fact that the regularity of the paths and metric topology in

1) For basic properties of the Lebesgue space, see Rohlin [6].
2) Rohlin [7] presents an excellent exposition of the theory of automorphisms

and flows developed up to 1949.
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$\Omega$ often simplify arguments.
In the analysis of flows, very often required is its measurability but not

mere continuity. For such examples from recent studies we may quote the
determination of the spectral type of a Kolmogorov flow (Sinai [10]) and
computation of the entropy of a flow (Abramob [1]). However, the definitions
of the spectral type or the entropy of a flow do not require its measurability.
So that as Rohlin ([8], p. 10, pp. 21-22) points out, it would be useful to find
a general principle which makes those problems free from the measurability.
For this purpose, Theorem 3 will provide a general way. Results obtained
are related to the theory of stationary processes.

In the beginning sections we will prove fundamental theorems on the
isomorphism of flows or l-parameter semi-groups of endomorphisms. Then
they are applied, on the one hand, to give a direct proof of Sinai’s theorem
on the spectra of the Kolmogorov flows, and on the other hand, to construct
a natural extension of a l-parameter semi-group3).

\S 1. Fundamental concepts.

When a proposition depending on points of $M$ is true except on a set of
$\mu\cdot measure$ zero, we say that it is true $(mod 0)$ .

A measurable partition $\zeta$ on $M$ is generated by an at most denumerable
system of measurable sets $\{B_{n}\}_{1}^{\infty}$ , a base of $\zeta$ . The corresponding factor space
will be denoted by $ M/\zeta$ . $M$ is the sum of disjoint sets $C$ of the form $C$

$=A_{1}A_{2}$ ... , $A_{i}=B_{i}$ or $B_{t}^{c}$ . $C$ is called a $\zeta$ -cell. A set represented as a sum
of $\zeta$ -cells will be called a $\zeta$ -set. The system of measurable sets of the form
$D=A_{1}A_{2}\ldots A_{m}$ also serves as a base of $\zeta$ (multiplicative base). By $B(\zeta)$ and
$X(\zeta)$ will be denoted the $\sigma$ -algebra generated by $\{B_{n}\}_{1}^{\infty}$ and its completion
under $\mu$ . There are two extreme partitions $\nu$ and $\epsilon,$

$\epsilon$ the partition into in-
dividual points, whereas $\nu$ consists of the single cell $M$. Thus $X(\epsilon)=x$ .

In the following, two time domains $T=(-\infty, \infty)$ and $ T_{+}=[0, \infty$) are used.
We metrize the space $L_{0}(M)$ of all real-valued measurable functions on $M$ by
the distance

$\delta(f, g)=\int_{M}\frac{|f(x)-g(x)|}{1+|f(x)-g(x)|}d\mu$ ,

$f,$ $g\in L_{0}(M)$ .
Next consider the space $L_{0}(T),$ $L_{0}(T_{t})$ of real-valued measurable, with respect
to the ordinary Lebesgue measure on $T$ and $T_{+}$ , functions and metrize them

3) Rohlin [9] discussed the same problem for the time-discrete semi.groups of
endomorphisms.
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respectively by

$d(f, g)=\int_{-\infty}^{\infty}p(u, f(u)-g(u))du$ ,

$d_{+}(f, g)=\int_{0^{\infty}}p(u, f(u)-g(u))du$ ,

where

$p(u, x)=\frac{1|x|}{1+u^{2}1+|x|}$ .

An endomorphism $T$ over $M$ is a measurable and measure-preserving point
transformation from $M$ onto itself. Further, if $T$ is 1–1, then it is an auto-
morphism. Besides such a (strict) endomorphism and automorphism, there
are their variations. A measurable and measure-preserving point transforma-
tion $T$ from $M$ onto itself $(mod 0)$ is called an endomorphism $(mod 0)$ . Two
endomorphisms $(mod 0)S$ and $T$ are equal when

$Sx=Tx$ $(mod 0)$ .
Distinction between strict and $(mod 0)$ measurable transformations (auto-

morphisms and endomorphisms) are essential only in the discussion of a 1-
parameter family of such transformations, because a single transformation
$(mod 0)$ can be made a strict one after dropping from $M$ a set of measure
zero.

Suppose now $U$ is a mapping from a measure algebra (X, $\mu$) into itself
which commutes with the operations of making union, intersection and com-
plementation, and further suppose that it is measure preserving, then it is
called an endomorphism on $(X, \mu)$ . Furthermore, if $U$ is an onto mapping,
then it is called an automorphism on $(X, \mu)$ .

To every $endo_{\Delta}71orphism$ (automorphism) on $(X, \mu)$ there corresponds a
unique endomorphism (automorphism) $(mod 0)$ on $M$ such that

$T^{-1}A=UA$ for any $A\in x$ .
Therefore we may identify endomorphisms and automorphisms over the mea-
sure algebra $(X, \mu)$ with those $(mod 0)$ over $M$. Let $\mathfrak{G},$ $\mathfrak{G}^{\prime}$ be respectively the
set of all automorphisms and endomorphisms $(mod 0)$ over $M$. As is well-
known $\mathfrak{G},$ $\mathfrak{G}^{\prime}$ can be made complete separable metric spaces, and under the
corresponding topologies they are respectively topological group and topo-
logical semi-group.

DEFINITION I. Let $\mathfrak{S}_{+}=\{M, T_{t}, \mu\}=\{M, T_{t}\},$ $t\in T_{+}$ , satisfy the following
conditions.

(i) For any $t\in T_{+},$ $T_{t}$ is an endomorphism over $M$.
(ii) $T_{s}T_{t}x=T_{s+t}x$ for every $x\in M,$ $s,$ $t\in T_{+},$ $T_{0}=I$ (indentity). Then $\mathfrak{S}_{+}$
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is called a l-parameter semi-group of endomorphisms (simply l-parameter
semi-group) over $M$. Further, if for any $f(x)\in L_{0}(M),$ $f(T_{t}x)$ is measurable in
$(t, x)$ under the obvious product measure, then $\mathfrak{S}_{+}$ is said to be measurable.

This is an obvious generalization of the definition of a one-parameter
group of automorphisms (or flow) over $M$, and its measurability.

Correspondingly we may make the following definition.
DEFINITION II. Suppose that there is given a homomorphic mapping $\psi$

from the topological semi-group $T_{+}$ (group $T$ ) into the topological semi-group
$\mathfrak{G}^{\prime}$ (group $(SS):t\in T_{+}(T)\rightarrow\psi(t)=T_{t}\in \mathfrak{G}^{\prime}(\mathfrak{G})$ , then $\{M, T_{t}\},$ $t\in T_{+}(T)$ , is called a
continuous l-parameter semi-group (group) of endomorphisms (automorphisms)
$(mod 0)$ over $M$. In this case the equality $T_{t}T_{s}x=T_{t+s}x$ is understood to be
true $(mod 0)$ , and the exceptional null-sets may depend on $s,$

$t$ .
Corresponding to Definition I, II, we may introduce two kinds of isomor-

phisms among l-parameter groups (semi-groups).

DEGINITION III. Given two continuous l-parameter semi-groups $(mod 0)$

$\mathfrak{S}_{+}=\{M, T_{t}, \mu\},$ $\mathfrak{S}_{+}^{\prime}=\{M^{\prime}, T_{t}^{\prime}, \mu^{\gamma}\}$ . When there is an isomorphism $(mod 0)\varphi$

from $M$ to $M^{\prime}$ such that for $t\in T_{+}$ ,

(1) $T_{t}x=\varphi^{-1}T_{\ell}^{\prime}\varphi x$ (mod O),

$\mathfrak{S}_{+},$ $\mathfrak{S}_{+}^{\prime}$ are said to be isomorphic $(mod 0)$ each other, denoted by $\mathfrak{S}_{+}\sim \mathfrak{S}_{+}^{\prime}(mod 0)$ .
Similarly for the definition of the isomorphism $(mod 0)$ for l-parameter

groups. The equality (1) is precisely understood as follows. For any $t\in T_{+}$ ,

there exist $N_{t}\in X,$ $N_{t}^{\prime}\in X^{\prime}$ of $\mu,$
$\mu^{\prime}$ -measure zero, and an isomorphism $(mod 0)$

$\varphi$ from $M$ to $M^{\prime}$ such that $\varphi$ is an exact isomorphism from $M-N_{t}$ to $M^{\prime}-N_{t}^{\prime}$ ;
$T_{t}$ and $T_{t}^{\prime}$ are defined respectively on $M-N_{t},$ $M^{\prime}-N_{t}^{\prime}$ , and is valid $T_{t}x$

$=\varphi^{-1}Ti\varphi x$ on $M-N_{t}$ .
DEFINITION IV. Given two measurable l-parameter semi-groups $\mathfrak{S}_{+}$

$=\{M, T_{t}, \mu\},$ $\mathfrak{S}_{+}^{\prime}=\{M^{\prime}, T_{t}^{\prime}, \mu^{\prime}\}$ . Suppose there exist measurable $M_{0},$ $M_{0}^{\prime}$ such
that $\mu(M_{0})=\mu^{\prime}(M_{0}^{\prime})=1,$ $T_{t}M_{0}=M_{0},$ $T_{t}^{\prime}M_{0}^{\prime}=M_{0}^{f}$ for any $t\in T_{+}$ , and an isomor-
phism (in the exact sense) $\varphi$ from $M_{0}$ to $M_{0}^{\prime}$ such that $T_{t}x=\varphi^{-1}T_{\iota}^{\prime}\varphi x$ for any
$x\in M_{0}$ , then $\mathfrak{S}_{+}$ and $\mathfrak{S}_{+}^{\prime}$ are said to be isomorphic each other, denoted by
$\mathfrak{S}_{+}\sim \mathfrak{S}_{+}^{\prime};$ the same definition is made for the exact isomorphism between mea-
surable flows.

It should be noted that in the defining equality of the isomorphism be-
tween two measurable flows $\mathfrak{S},$

$\mathfrak{S}^{\prime}$ , the exceptional null sets depend only on
$\mathfrak{S},$

$\mathfrak{S}^{\prime}$ but not on $t$ , and they are strictly invariant under $T_{t},$ $\tau;$. As is well-
known, a measurable l-parameter group (semi-group) is continuous.

When we deal with mappings of a Lebesgue space into another measure
space, the following proposition and its corollary are useful.
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PROPOSITION 1. Let $M$ be a Lebesgue space, (X, $X,$ $\nu$) a separable4) mea-
sure space, and $\varphi$ a homomorphic mapping from $M$ into $X$.

Then the image $\varphi(M)$ is a Lebesgue space, and therefore $\varphi(M)\in x$ .
$CoROLLARY$ . Let (X, $\sigma$) be a Hausdorff space satisfying the second count-

ability axiom, $\mathscr{D}_{\sigma}$ its topological Borel field, $M$ a Lebesgue space, and $\varphi$ a mea-
surable mapping from $M$ into (X, $\sigma$). Let (X, $X_{\sigma},$ $\nu$) be the measure space with
$\nu$ , the induced measure’ (denoted as $\nu=\varphi\mu$), and $X_{\sigma}$ the completion of $B_{\sigma}$

under $\nu$ . Then $\varphi(M)$ is a Lebesgue space and therefore $\varphi(M)\in X_{t}$.

\S 2. Isomorphic mapping of a flow into a metric space.

Consider a product space $\Omega(\Omega_{+})$ with a finite or denumerable number of
components in $L_{0}(T)(L_{0}(T_{+}))$ with metric $d(d_{+})$ . Define metrics over $\Omega$ and
$\Omega_{+}:$

(2.1) $d(\omega_{1}, \omega_{2})=\sum_{k=1}^{\infty}\frac{1}{2^{k}}d(f_{k}, g_{k})$ ,

$\omega_{1}=\{f_{1}(u),f_{2}(u), \cdots\}$ , $\omega_{2}=\{g_{1}(u), g_{2}(u), \cdots\}$

$f_{i},$ $g_{i}\in L_{0}(T)$ $(1\leqq i<\infty)$ ;

(2.2) $d_{+}(\omega_{1}, \omega_{2})=\sum_{k=1}^{\infty}\frac{1}{2^{k}}d_{+}(f_{k}, g_{k})$ ,

$\omega_{1}=\{f_{1}(u), f_{l}(u), \cdots\},$ $f_{1},$ $f_{g},$ $\cdots\in L_{0}(T_{+})$ ,

etc..
Regardless of any measure on $\Omega(\Omega_{+})$ there is a flow (l-parameter semi-

group) $S_{t},$ $t\in T(T_{+})$ over $\Omega(\Omega_{+})$ ;

(2.3) $\omega=\{f_{1}(t),f_{2}(t), \cdots\}\rightarrow S_{\tau}\omega$

$=\{f_{1}(t+\tau), f_{2}(t+\tau), \cdots\},$ $\tau\in T(T_{+})$ .
Obviously (i) $S_{t},$ $t\in T(T_{+})$ is a one-to-one (many-to-one) mapping from $\Omega(\Omega_{+})$

onto itself, (ii) $(t, \omega)\in\Omega\times T(\Omega_{+}\times T_{+})\rightarrow S_{t}\omega\in\Omega(\Omega_{+})$ is a continuous mapping.
Let $9^{i}=\{f_{k}(x)\}$ be a family of a finite or denumerable number of $L_{0}(M)-$

functions. Given a measurable flow (l-parameter semi-group) over $M$, define
a mapping $\varphi=\varphi(\ddagger F)$ from $M$ into $\Omega(\Omega_{+})$ as follows:

(2.4) $x\in M\rightarrow\omega=\varphi x=\{f_{1}(T_{t}x),f_{2}(T_{t}x), \cdots\}$ ,

whenever $\varphi x\in\Omega(\Omega_{+})$ .
4) The separability is in the sense of Rohlin [6], and $X$ is supposed to be com.

pleted under $\nu$ .
5) The induced measure is completely determined by assigning to $ A\in\sigma$ the value

$\nu(A)=\mu(\varphi^{-1}A)$ . It is enough to make this assignment of the value $v(A)$ only for all
sets of $\sigma^{\prime}\subset\sigma$ , where $\sigma^{\prime}$ is a countable base of $\sigma$ .
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PROPOSITION 2. In either the case, a flow or a l-parameter semi-group,
there is an $M_{0}$ , $\varphi(M-M_{0})=0,$ $T_{t}M_{0}=M_{0}$ and such that if we put $\Omega_{0}=\varphi\Lambda f_{0}$

$\subset\Omega(\Omega_{+})$ , then $S_{t}\Omega_{0}=\Omega_{0}$ and

$\varphi T_{t}x=S_{t}\varphi x$ for any $x\in M_{0}$ .
PROOF. In the case of a flow, if we put $M_{0}=\{x:\varphi x\in\Omega\}$ , then by Fubini’s

theorem $M_{0}$ is measurable, $\mu(M_{0})=1$ , and $T_{t}M_{0}=M_{0}$ . On the other hand, in
the case of a l-parameter semi-group, if we put $M^{\prime}=\{x:\varphi x\in\Omega_{+}\}$ , we have
$\mu(M-M^{\prime})=0,$ $T_{t}M^{\prime}\subset T_{s}M^{\prime}$ for $ 0\leqq s<t<\infty$ . Denote now by $\tilde{T}_{t}$ the restriction
of $T_{t}$ to $M^{\prime}$ , then $\tilde{T}_{t}$ is a homomorphic mapping (Rohlin [6]) from $(M^{\prime}, \mu)$ into
itself, because for any measurable $A\in M^{\prime},\tilde{T}_{\overline{\iota}^{1}}A=(T_{\overline{\iota}^{1}}A)M^{\gamma},$ $\mu(\tilde{T}_{t}^{-1}A)=\mu(T_{t}^{-1}A)$

$=\mu(A)$ . Therefore $T_{t}M^{\prime}$ is measurable by Proposition 1’ and $\mu(T_{t}M^{\prime})=1$ .
Define now $M_{0}=\bigcap_{t\geqq 0}T_{t}M^{\prime}$ , then $M_{0}$ is measurable, $\mu(M_{0})=1$ , and $T_{t}M_{0}=M_{0}$

for any $t\in T_{+}$ .
In either the case, a flow or l-parameter semi-group, for $x\in M_{0}$

(2.5) $\varphi(T_{t}x)=\{f_{k}(T_{s}(T_{t}x)), -\infty<s<\infty\}$

$=\{f_{k}(T_{s+t}x), -\infty<s<\infty\}=S_{t}\varphi x$ .
Therefore $\Omega_{0}=\varphi M_{0}$ satisfies $S_{t}\Omega_{0}=\Omega_{0}$ , and

(2.6) $\varphi T_{t}x=S_{t}\varphi x$ on $M_{0}$ .
THEOREM 1. There is given a flow $\mathfrak{S}$ (l-parameter semi-group $\mathfrak{S}^{+}$) over $M$.

Suppose $q$ satisfies either the following (i) or (ii): (i) $s$: is dense in $L_{0}(M)$ ,
(ii) the set $\mathfrak{G}=\{g_{k}\}$ of all linear combinations of the finite products of func-
tions from $S^{i}$ is dense in $L_{0}(M)$ .

Then $\varphi=\varphi(9^{i})$ is an isomorphic mapping from $M$ into $\Omega(\Omega_{+});\mathfrak{S}^{\prime}=\{\Omega, S_{t}, \mu\}$

$(\mathfrak{S}_{+}^{\prime}=\{\Omega_{+}, S_{t}, P\})$ , where over $\Omega(\Omega_{+})$ are defined a $\sigma$ -algebra $X_{a}(X_{d+})$ and a
probability $P$, is a flow (l-parameter semi-group) over $\Omega(\Omega_{+})$ ; through $\varphi$

(2.7) $\mathfrak{S}\sim \mathfrak{S}^{\prime}$ (strict isomorphism),

(2.8) $\mathfrak{S}_{+}\sim \mathfrak{S}_{+}^{\prime}$ $(mod 0)$ .
Suppose that $\mathfrak{S}_{+}$ satisfies the additional condition $(C)$ : there exists a mea-

surable $M_{0}\subset M$ such that $\mu(M_{0})=1,$ $T_{t}M_{0}=M_{0}$ , and whenever $T_{t}x=T_{t}x^{\prime}$ for
all $t>0,$ $x,$ $x^{\prime}\in M_{0}$ , then $x=x^{\prime}$ .

Then the isomorphism (2.8) can be strengthened to the strict one.
REMARK. $\mathfrak{S}_{+}^{\prime}$ in the above satisfies $(C)$ .
PROOF. Proof of (2.7). $\varphi$ is obviously a measurable mapping from $M$ into

$(\Omega, d)$ , and the P-measure is completely determined by setting

(2.9) $P(\omega:d(\omega, \omega_{0})<a)=\mu(x:d(\varphi x, \omega_{0})<a),$ $a>0,$ $\omega_{0}\in\Omega$ .
As we have seen in the above, there is a (strictly) $T_{t}$-invariant set $M_{0},$ $\mu(M_{0})=1$ .
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Let $\Sigma=\{D_{k}\}$ be a multiplicative base of $M$, and $\chi_{D_{k}}$ the indicator of $D_{k}$ .
Now if $\{h_{n}\}\subset g$ satisfies the relation $h_{n}\rightarrow\chi_{D}$ (in $L_{0}(M)$), $ n\rightarrow\infty$ , then

$\int_{M_{0}}d\mu\int_{-}^{\infty_{\infty}}P(t, h_{n}(T_{t}x)-\chi_{D}(T_{t}x))dt$

$=\pi\delta(h_{n}, \chi_{D})\rightarrow 0,$ $ n\rightarrow\infty$ .
This implies that there is a subsequence $\{h_{n}^{\prime}\}$ of $\{h_{n}\}$ such that $h_{n}^{\prime}(T_{t}x)$

$\rightarrow\chi_{D}(T_{t}x)$ (in $L_{0}(T)$), except on a null subset of $M_{0}$ . More precisely, if we set

$N_{k}=\{x : x\in M_{0}, \varlimsup_{n\rightarrow\infty}d(h_{n}^{\prime}(T_{t}x), \chi_{D_{k}}(T_{t}x))\neq 0\}$ ,

$N_{k}$ is $T_{t}- invariant^{6)}$ , and $h_{\eta}^{\prime}(T_{t}x)\rightarrow\chi_{D_{k}}(T_{t}x)$ (in $L_{0}(T)$) for all $x\in M_{0}-N_{k}$ . There-
fore if we put $N=\bigcup_{k}N_{k},$

$N$ is a $T_{t}$ -invariant subset of $M_{0},$ $\mu(N)=0$ , and

whenever $\varphi x=\varphi x^{\prime},$ $x,$ $x‘\in M_{0}-N$, then $\chi_{D_{k}}(T_{t}x)=\chi_{D_{k}}(T_{t}x^{\prime})$ (as elements of
$L_{0}(T))$ for all $k$ . This means $x=x^{\prime}$ .

Therefore we have the $T_{t}$ -invariant $\overline{M}_{0}=M_{0}-N$, and $S_{t}$-invariant $\overline{\Omega}_{0}$

$=\varphi(M_{0}^{\leftarrow}),$ $\mu(\overline{M}_{0})=P(\overline{\Omega}_{0})=1$ (cf. Corollary to Proposition 1’), $\varphi$ is an isomorphic
mapping from $\overline{M}_{0}$ onto $\overline{\Omega}_{0}$ , and as in (2.6) $T_{t}x=\varphi^{-1}S_{t}\varphi x$ on $\overline{M}_{0}$ . That $S_{t}$ is
P-measure preserving is obvious from the relation that for $a>0$ , if we put

(2.10) $A=\{\omega:d(\omega, \omega_{0})<a\},$ $\omega_{0}\in\Omega$ ,

$S_{\tau}^{-1}A=\{\omega:d(S_{r}\omega, \omega_{0})<a\}$ ,
one has

$P(\omega;d(S_{\tau}\omega, \omega_{0})<a)$

$=\mu(x:d(S_{\tau}\varphi x,,\omega_{0})<a)=\mu(x:d(\varphi T_{\tau}x, \omega_{0})<a)$

$=\mu(x;d(\varphi x, \omega_{0})<a)=P(\omega;d(\omega, \omega_{0})<a)$

or

(2.11) $P(A)=P(S_{\tau}^{-1}A)$ .
Collecting the discussions in the above, we finally have $\mathfrak{S}\sim \mathfrak{S}^{\prime}$ .
We shall prove (2.8) and the succeeding additional proposition. As in the

above, there exists a measurable $M^{\prime}\subset M,$ $\mu(M^{\prime})=1,$ $T_{\ell}M^{\gamma}\subset M^{\prime},$ $t\in T_{+}$ . There-
fore, by the same device as in the proof of Proposition $2^{o}$ , there is defined a
measurable $M_{0}\subset M$ such that $\mu(M_{0})=1,$ $T_{t}M_{0}=M_{0}$ , and for $x,$ $x^{\prime}\in M_{0},$ $\varphi x=\varphi x^{\prime}$

implies

(2.12) $\chi_{D_{k}}(T_{t}x)=\chi_{D_{k}}(T_{t}x^{\prime})$

for all $t>0$ , and $ 1\leqq k<\infty$ . But this does not necessarily imply that the
partition $\zeta$ generated by the system $\{T_{\overline{1/}n}^{1}D_{k}, 1\leqq n<\infty, 1\leqq k<\infty\}$ separate

6) Hereafter $T_{t}\cdot invariance$ is understood in the strict sense.
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$x,$
$x^{\prime}$ . Now $\zeta$ can be written as $\zeta=T_{\overline{1/}n}^{1}\epsilon n\geqq 1$ and the continuity of $T_{t}$ implies

$X=X(\epsilon)=X(T_{\overline{1/}n}^{1}\epsilon)n\geqq 1=X(T_{\overline{1/}n}^{1}\epsilon)n\geqq 1$

$i.e$ . $\zeta=\epsilon(mod 0)$ . So that there is an $N,$ $\mu(N)=0$ such that whenever $\varphi x=\varphi x^{\prime}$

for $x,$ $x^{\prime}\in M_{0}-N$, then $x=x^{\prime}$ , i. e. $\varphi$ is an isomorphism from $M_{0}-N$ into $\Omega_{0}$ .
Since $\varphi(T_{t}x)=S_{t}\varphi x$ for $x\in M_{0},$ $T_{t}x=\varphi^{-1}S_{t}\varphi x$ on the set $\{x:x\in M_{0}, T_{t}x\in M_{0}-N\}$ ,
$i.e$ . for every $x\in M_{0\cap}T_{\overline{\iota}^{1}}(M_{0}-N)=M_{0}-N_{t}$ , where $N_{t}$ is a suitable null set.

That $S_{t}$ is measure preserving is proved as in (2.11). Collecting results
in the above one has

$S_{+\sim}\mathfrak{S}_{+}^{\prime}(mod 0)$ .
The fact that under $(C)$ , the last isomorphism is strengthened to the strict

one follows immediately from (2.12).

In connection with the flow (l-parameter semi-group) generated by shifts
on $\Omega(\Omega_{+})$ we can state the

PROPOSITION $3^{O}$ . If there is given a $S_{t}$-invariant probability measure over
$\Omega(\Omega_{+})$ , then $\mathfrak{S}=(\Omega_{f}S_{t}, P)(\mathfrak{S}_{+}=(\Omega_{+}, S_{t}, P))$ becomes a measurable flow (l-para-
meter semi-group satisfying $(C))$

PROOF. Since the proof is the same in either the case, a flow or l-para-
meter semi-group, we will state it for a flow. Let $S^{\gamma_{T}}$ be the family of Borel
sets on $T,\overline{B_{a}\times\Psi_{T}}$ the completion of $B_{d}\times q_{T}$ under $dP\times dt$ , and $f(\omega)$ a d-
continuous function, then $f(S_{t}(\omega)$ is continuous in $(t, \omega)$ . Therefore, $f(S_{t}\omega)$ is
$\overline{\mathscr{D}_{cl}\times g_{T}}$-measurable, if $f(\omega)$ is a Baire function. Further, if $f$ is $X_{a^{\rightarrow}}measur-$

able, there are two Baire functions $f_{i}(\omega)(i=1,2)$ such that

$f_{1}(\omega)\leqq f(\omega)\leqq f_{2}(\omega),\int(f_{2}(\omega)-f_{1}(\omega))dP=0$ .
Then

$f_{1}(S_{t}\omega)\leqq f(S_{t}\omega)\leqq f_{2}(S_{t}\omega)$ ,

$\int\int_{1}(f_{2}(S_{t}\omega)-f_{1}(S_{t}\omega))dtdP=t_{0}\int_{9}(f_{2}(\omega)-f_{1}(\omega))dP=0$ ,

for any $t_{0}>0$ , which implies that $f(S_{t}\omega)$ is $\overline{B_{d}\times\Psi_{T}}$-measurable, as was to be
proved.

We shall show further that as an underlying space $\Omega$ a more restricted
function space serves as well.

PROPOSITION $4^{o}$ . Given a flow $\mathfrak{S}=\{M, T_{t}\}$ , there exists a flow $\mathfrak{S}^{\prime}$ isomor-
phic with $\mathfrak{S}$

$\mathfrak{S}^{J}=\{\Omega, S_{t}\}$ ,

where $\Omega$ is a compact metric space.
PROOF. Take a multiplicative base $\{D_{k}\}$ and put
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$C_{n,k}(t, x)=\int_{\iota}^{t+1/n}\chi_{D_{k}}(T_{t}x)dt,$ $1\leqq n,$ $ k<\infty$ .

Without loss of generality we may assume that for every $x\in M$, all $\chi_{Dk}(T_{t}x)$

$\in L_{0}(T)$ . Let $C(T)$ be the F-space consisting of all continuous functions
$f(t),$ $-\infty<t<\infty$ , satisfying $|f(t)-f(s)|\leqq 2|s-t|,\sup_{-\infty<s<\infty}|f(s)|\leqq 1$ , with the re-
levant metric

$|f|=\sum_{n=1}^{\infty}\frac{1}{2^{n}}\frac{\Vert f||_{n}}{1+\Vert f\Vert_{n}},$
$\Vert f\Vert_{n}=\max_{|t|\leqq n}|f(t)|$ .

Ascoli-Arzela’s theorem implies that $C(T)$ is compact. Define now $\Omega$ to be
the countable product of $C(T)$ , and consider the mapping

$ x\in M\rightarrow\omega=\varphi x=\{C_{n,k}(t)\}\in\Omega$ .

If $\varphi x=\varphi x^{\prime},$ $x,$
$x^{\prime}\in M$, then since $nC_{n,k}(t, y)\rightarrow\chi_{D_{k}}(T_{t}y)$ , as $ n\rightarrow\infty$ , for almost

all $t$ and every $y\in M$, there holds the equality $\{\chi_{Dk}(T_{t}x)\}=\{\chi_{Dk}(T_{t}x^{\prime})\}(L^{0}(T))$

for all $k$ . Therefore, from the proof of Theorem 1, $x=x^{\prime}$ . The remaining
part in the proof is similar to that of Theorem 1.

REMARK To THEOREM 1. Theorem 1 provides us with a principle of re-
alizing isomorphisms among flows or semi-groups. Sometimes, it is useful to
construct a homomorphic mapping of a flow into the function space or its
factor flow, using a smaller class $g$ than that in Theorem 1. Let $q=\{f_{k}(x)\}$

be a family of $L_{0}(M)$ -functions, $\mathscr{D}^{0}$ the smallest $\sigma$ -algebra, with respect to
which any $f_{k}(x)$ is measurable, and put

$\mathscr{D}=_{t<\infty}T_{t}\mathscr{D}^{0}-\infty<$

To $B$ there exists a unique (mcd $0$) partition $\zeta$ such that $\mathscr{D}=\mathscr{D}(\zeta),$ $\zeta$ is $T_{t^{-}}$

invariant. Then by the same argument as in Theorem 1, one can prove the
following statement which generalizes Theorem 1. Let $T_{t}^{\zeta}$ be the factor flow
induced by $T_{t}$ on the factor space $ M/\zeta$ , then we have an isomorphism

$T_{t}^{\zeta}\sim S_{t}$

Especially if $-\infty<_{\iota<\infty}T_{t}\mathscr{D}^{0}=x$ , then

$T_{t}\sim S_{t}$ .

\S 3. Representation of stationary processes by means of flows and
$1$-parameter semi-groups.

In this section by a stationary process $\xi(t, \alpha)=\{\xi_{n}(t, \alpha), t\in T\}$ or $\eta_{+}(t, \alpha)$

$=\{\eta_{n}(t, \alpha), t\in T_{+}\}$ is meant a measurable stationary process with real-valued
component processes $\xi_{1}(t, \alpha),$ $\xi_{2}(t, \alpha),$ $\cdots$ $\eta_{1}(t, \alpha),$ $\cdots$ on an abstract probability
space $(A, X, Q)$ . If for any set of finite number of points $t_{1},$ $t_{2}$ , $\cdot$ .. , $t_{n}\in T$,
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two stationary processes $\xi,$
$\eta$ have the same joint distribution, then they are

said to be equivalent in probability law, written as $\xi\sim\eta$ (in law), and the
same definition with $\xi_{+},$

$\eta_{+}$ .
It is usual to represent a given stationary process on the space of sample

functions with a measure invariant under the shifts. Unfortunately, the
measure space thus obtained is not necessarily Lebesgue space. A more con-
venient way is to make use of the function spaces $\Omega,$ $\Omega_{+}$ .

Suppose that $\xi(\xi_{+})$ is a (measurable) stationary process over $T(T_{+})$ , then
by dropping a set of Q-measure zero, $\xi_{n}(t, \alpha),$ $t\in T(T_{+})$ are supposed to be
elements of $L_{0}(T)(L_{0}(T_{+}))$ for all $\alpha\in A$ , and the correspondence

$\alpha\in A\rightarrow\omega=\varphi\alpha=\{\xi_{1}(t, \alpha), \xi_{2}(t, \alpha), \}\in\Omega(\Omega_{+})$

is a mapping from $A$ into $\Omega(\Omega_{+})$ .
PROPOSITION $5^{O}$ . $\varphi$ is a measurable mapping from $(A, X)$ into $(\Omega, \mathscr{D}_{a})$

$((Q_{+}\mathscr{D}_{a_{+}}))$ , and under $P=\varphi Q,$ $\mathfrak{S}=(\Omega, S_{f}, P)(\mathfrak{S}_{+}=(\Omega_{+}, S_{t}, P))$ is a measurable
flow (l-parameter semi-group satisfying $(C)$).

PROOF. Since for any $\omega_{0}=(\omega_{1}^{0}(t), \omega_{2}^{0}(t),$ $\cdots$ ) $\in\Omega,$ $a>0,$ $\tau\in T$,

$d(\varphi\alpha, \omega_{0})=\sum_{k=1}^{\infty}-2^{1_{k}}\int_{-\infty}^{\infty}p(t, \omega_{k}^{0}(t)-\xi_{k}(t, \alpha))dt$

is measurable in $\alpha$ , and

$Q(\alpha;\sum_{k=1}^{\infty}-2^{1_{k}}-\int_{-\infty}^{\infty}p(t, \omega_{k}^{0}(t)-\xi_{k}(t+\tau, \alpha))dt<a)$

$=Q(\alpha:\sum_{k=1}^{\infty}-2^{1_{k}}-\int_{-\infty}^{\infty}p(t, \omega_{k}^{0}(t)-\xi_{k}(t, \alpha))dt<a)$ ,

$\varphi$ is a measurable mapping as designated in the above, and

$P(\omega:d(\omega, \omega_{0})<a)=Q(\alpha;d(\varphi\alpha, \omega_{0})<a)$

$=Q(\alpha:d(S_{\tau}\varphi\alpha, \omega_{0})<a)=P(\omega;d(S_{\tau}\omega, \omega_{0})<a)$ ,

$i$ . $e$ . $P$ is $S_{t}$-invariant; similarity for $\mathfrak{S}_{+}$ .
DEFINITION. $\mathfrak{S}(\mathfrak{S}_{+})$ in Proposition 5’ is called a flow (l-parameter semi-

group) determined by the stationary process $\xi(\xi_{+})$ .
By this definition, if the two stationary processes are equivalent, $\xi\sim\eta$

$(\xi_{+}\sim\eta_{+})$ (in law), then the flows (l-parameter semi-groups) determined by the
two processes coincide.

THEOREM 2. Suppose there is given a stationary process $\xi(\xi_{+})$ , and consider
the flow (l-parameter semi-group) $\mathfrak{S}(\mathfrak{S}_{+})$ (determined by them), then there exists
$a$ (measurable) stationary process $x(t, \omega)(x_{+}(t, \omega))$ satisfying the conditions

$x(t, \omega)=x(O, S_{t}\omega)$ for all $t,$ $\omega$ .
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$x(t, \omega)\sim\xi(t, \alpha)$ (in law);

the same is true with $\xi_{+},$ $x_{+}$ .
PROOF. First we notice that an $\omega\in\Omega$ is an equivalent class of measur-

able functions. We will select from every $\omega$ a representative in a unique
way.

Take a natural number $\lambda$ , put

$g_{\lambda}(y)=y$ , $|y|\leqq\lambda$ ,

$=\lambda,$ $|y|>\lambda$ ,

$\omega=\{\omega_{1}(t), \omega_{2}(t), \cdots\}$ ,
and define

$x_{k}(t, \omega)=\lim_{2\rightarrow\infty}\varlimsup_{n\rightarrow\infty}G_{\lambda}^{n}(t, \omega_{k})$ ,

where

$G_{\lambda}^{n}(t, \omega_{k})=n\int_{\lambda}^{t+1/n}g_{\lambda}(\omega_{k}(s))ds$ .

Then $x=\{x_{k}(t, \omega), t\in T\}$ belongs to $\omega$ and is the required representative,
and since $G_{\lambda}^{n}(t, \omega_{k})=G_{\lambda}^{n}(0, (S_{t}\omega)_{k}),$ $x(t, \omega)$ is defined for all $t\in T,$ $\omega\in\Omega$ , and

$x(t, \omega)=x(0, S_{t}\omega)$ .
Since $x(O, \omega)$ is $x_{d}$ -measurable, $x(t, \omega)$ is a measurable process by $Proposi\sim$

tion 3’.
Since for every $\omega$ , there exists

(3.1) $\tilde{x}(t, \omega)=\{\lim_{\lambda\rightarrow\infty}\lim_{n\rightarrow\infty}G_{\lambda}^{n}(t, \omega_{k})\}$

for almost all $t$ , by Fubini’s theorem, this limit exists for almost all $\omega$ , for
almost all fixed $t$ . However, since $P$ is $S_{t}$ -invariant, the limit actually exists
for almost all $\omega$ , for every fixed $t$ , and

$x(t, \omega)=\tilde{x}(t, \omega)$

for almost all $(t, \omega)\in\Omega\times T$ .
If we use the stationarity of $\xi$ , the above argument applies also to $\varphi\alpha$ ,

instead of $\omega$ . For all $\alpha,$
$t$ define now

$\tilde{x}(t, \varphi\alpha)=\{\lim_{\lambda\rightarrow\infty}\varlimsup_{n\rightarrow}G_{\lambda}^{n}(t, \xi_{k}(t, \alpha))\}$

which exists for almost all $\alpha$ , for every fixed $t$ . Again by the stationarity,
$\tilde{x}(t, \varphi\alpha)=\xi(t, \alpha)$ for almost all $\alpha$ , for every fixed $t$ . By the definition of the
P-measure $\tilde{x}(t, \varphi\alpha)\sim x(t, \omega)$ (in law). Combination of these gives $\xi\sim x$ (in
law).

The same argument applies to $\xi_{+}$ .
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\S 4. Measurable representation of continuons flows.

In this section we shall prove that if there is given a continuous flow (1 $\cdot$

parameter semi-group), there exists a measurable one isomorphic $(mod 0)$ to
the given one. Thus obtained flow (semi-group) is called the measurable
representation.

THEOREM 3. (i) Let $T_{t}$ be a continuous flow (l-parameter semi-group)
$(mod 0)$ over $M$ (in the sense of Definition $\Pi$), then there is a measurable flow
(semi-group satisfying $(C)$) which isomorphic $(mod 0)$ to $T_{f}$ .

(ii) The representation given in (i) is unique, $i$ . $e$ . if we have two representa-
tions $\mathfrak{S}=(M, S_{t}),$ $\mathfrak{S}^{\prime}=(M^{\prime}, S_{t}^{\prime})$ , then $\mathfrak{S}\sim \mathfrak{S}^{\prime}$ (strict isomorphism); the same is
true with the semi-group case.

We will state the proof for a flow. For the proof we require several
lemmas.

LEMMA 1. If there is given an automorphism (endomorphism) $T(mod 0)$

over $M$, then there exists an $M_{0}\subset M,$ $\mu(M-M_{0})=0$ , such that the restriction of
$T$ to $M_{0}$ is a (strict) automorphism (endomorphism) over $M_{0}$ .

PROOF. The following argument applies to either the case, an automor-
phism, or an endomorphism.

Let $M^{\prime}\subset M$ be the domain of $T$ , and write $M^{\prime\prime}=\bigcap_{n=-\infty}^{\infty}T^{n}M^{\prime}$ , then $TM^{\prime\prime}$

$\subset M^{\prime\prime}$ . Therefore if we define $M_{0}=\bigcap_{n\geqq 0}T^{n}M^{\prime/}$ , then $TM_{0}=M_{0},$ $\mu(M_{0})=1$ .

LEMMA 2. Let $(Y, \sigma)$ be a Hausdorff space satisfying the second count-
ability axiom, and $\lambda,$

$\mu$ respectively equi-measurable mappings from Lebes$gue$
spaces $(M, \mu),$ $(M^{\prime}, \mu^{\prime})$ into $Y,$ $i$ . $e$ . $\mu(\pi^{-1}A)=\mu^{\prime}(\lambda^{-}A),$ $A\in x_{\nu},$ $\nu=\pi\mu=\lambda\mu^{\prime}$ .
Let $\zeta_{\pi}$ be the partition of $M$ generafed by the cells of the form $C=\pi^{-1}y,$ $y\in Y$,

and the same with the partition $\zeta_{\lambda}$ . Then there exists an isomorphism $(mod 0)$

$U$ from $M/\zeta_{\pi}$ to $M^{f}/\zeta_{\lambda}$ such that, for any $y\in Y_{0}=\pi(M)\cap\lambda(M^{\prime}),$ $\pi^{-1}y\in M/\zeta_{\pi}$

$\rightarrow C^{\prime}=UC=\lambda^{-1}y\in M^{\prime}/\zeta_{\lambda}$ .
LEMMA 3. Let $\varphi$ be a measurable mapping from $(M, \mu)$ into a Hausforff

space $(Y, \sigma)$ satisfying the second countability axiom, and suppose that there is
given an automorphism $S$ over $Y$ associated with $(X_{\nu}, \nu),$ $\nu=\varphi\mu$ .

Then
(i) There exists a $Y_{0}\subset\varphi(M),$ $Y_{0}\in x_{\nu},$ $\nu(Y_{0})=1$ , such that $ V=\varphi^{-1}S\varphi$ is a

strict automorphism over $M_{0}/\zeta_{\varphi},$ $M_{0}=\varphi^{-1}(Y_{0})$ ; (ii) if $f$ is a measurable mapping
from $(Y, X_{\nu}, \nu)$ into a Hausdorff topological measurable space $Z$, and write
$c=\zeta_{\varphi}(C)$ , $c’=\zeta_{\varphi}(C^{\prime}),$ $C=\{x : f(S\varphi x)=z, x\in M_{0}\},$ $C^{\prime}=\{x : f(\varphi x)=z, x\in M_{0}\},$ $z\in Z$,
then $c’=Vc$ , where $\zeta_{\varphi}(\cdot)$ implies the mapping of a $\zeta_{\varphi}$-cell to $ihe$ corresponding
point on $M_{0}/\zeta_{\varphi}$ .

There are corresponding lemmas concerning endomorphisms. In either
case, the proof is easily derived from fundamental properties of measurable
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partitions and factor spaces.
PROOF OF THEOREM 3. We shall prove the theorem for a flow. Take a

multiplicative base of the space $M$ and put

(4.1) $\xi_{0}(t, x)=\{\chi_{D_{k}}(T_{t}x)\}$ ,

then by the continuity of $T_{t},$ $\xi_{0}(t, x)$ is a stationary process continuous in pro-
bability, and it has a measurable modification $\xi(t, x);\xi(t, x)=\xi_{0}(t, x)$ for almost
all $x$ , for $e$very fixed $t$ . Let $x(t, \omega),$ $\omega=\varphi x$ , be the measurable representation
of $\xi(t, x)$ , obtained in \S 3, and apply Lemma 1 to $S=S_{\iota}$ , then we have a mea-
surable $Y_{0}\subset\varphi(M),$ $P(Y_{0})=1$ , over which $S$ is a strict automorphism. If we
write $f(\omega)=x(0, \omega)$ , Theorem 2 implies $x(t, \omega)=x(0, S_{t}\omega)$ , for all $t,$ $\omega$ , and

(4.2) $f(S\varphi x)=x(t, \varphi x)=\xi(t, x)=\xi_{0}(t, x)$

(4.3) $f(\varphi x)=x(O, \varphi x)=\xi(O, x)=\xi_{0}(0, x)$ ,

for almost all $x$ .
Now $\pi(x)=\xi_{0}(t, x),$ $\lambda(x)=\xi_{0}(0, x)$ are equi-measurable mapping, and their

dependence on the base as defined in (4.1) implies

(4.4) $\zeta_{\pi}=\zeta_{\lambda}=\epsilon(mod 0)$ .
So that if we denote by $\zeta_{f\circ\varphi}$ the partition generated by the mapping $x-\rightarrow f\circ\varphi(x)$ ,
the obvious relation $\zeta_{J^{0}\varphi}\leqq\zeta_{\varphi}$ together with (4.2), (4.3) and (4.4) gives

(4.5) $\zeta_{\varphi}=\epsilon(mod 0)$

An application of Lemma 2 guarantees the existence of an automorphism
(mod O) $U$ from $M/\zeta_{\pi}=M(mod O)$ to $M/\zeta_{\lambda}=M(mod O)$ , whereas in view cf
(4.1) we must have $U=T_{t}(mod 0)$ . Also from Lemma 3 there is the automor-
phism $ V=\varphi^{-1}S\varphi=\varphi^{-1}S_{t}.\varphi$ over $M_{0}/\zeta_{\varphi}=M_{0}(mod 0)$ , and from Lemma 3, (ii),
with $f(S\varphi x)=\pi(x),$ $f(\varphi x)=\lambda(x)(mod 0)$ , one has $V=U(mod 0)$, therefore
$T_{t}=\varphi^{-1}S_{t}\varphi(mod 0)$ .

To show the uniqueness of the representation, notice that $S_{t}\sim S_{t}^{\prime}(mod 0)$

through an isomorphism $\psi$ from $M$ into $M^{\prime}$ . Now let $\{D_{k}\}$ be a base of $M$

and put $D_{k}^{\prime}=\psi D_{k}$ , then $\{D_{k}^{\prime}\}$ becomes a base of $M^{\prime}$ . Clearly mappings $\varphi,$
$\varphi^{\prime}$ ,

such that $x\rightarrow\varphi x=\{D_{k}(S_{t}x)\},$ $x^{\prime}\rightarrow\varphi^{\prime}x^{\prime}=\{D_{k}^{\prime}(S_{\iota}^{\prime}x^{\prime})\}$ from $M,$ $M^{\prime}$ into $\Omega$ are
equi-measurable; dropping apropriate null sets we may assume $\varphi(M),$ $\varphi(M^{\prime})$

$\subset\Omega$ . If we denote by $\overline{S}$ , the shifting flow on $\Omega,$ $Y_{0}=\varphi(M)\cap\varphi(M^{\prime})$ is $\overline{S}_{t^{-}}$

invariant, with $P(Y_{0})=1$ , and $M_{0}=\varphi^{-1}Y_{0},$ $M_{0}^{\prime}=\varphi^{\prime-1}Y_{0}$ are respectively $S_{t},$ $S_{t^{-}}^{\prime}$

invariant, having $(\overline{S}_{t})_{Y_{0}}\sim(S_{t}^{\prime})_{Mo}$ ,, $(\overline{S}_{t})_{Y_{0}}\sim(S_{t})_{M_{0}}$ (either strictly), where $()_{A}$ means
the reduction of a flow to an invariant set $A$ . So that $S_{t}\sim S_{t}^{\prime}$ in the strict
sense.

As an application of Theorem 3 we prove the
COROLLARY. Let $x_{t},$ $y_{t},$ $-\infty<t<\infty$ , be real Gaussian stationary processes,
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with mean zero, spectral measures $dF(\lambda),$ $dG(\lambda)$ . If they are mutually absolutly
continuous, $dF(\lambda)\sim dG(\lambda)$ , then the flows $\mathfrak{S}_{x},$ $\mathfrak{S}_{y}$ generated by $x_{t},$ $y_{t}$ respectively
are isomorphic. If in particular, $dF(\lambda)\sim d\lambda,$ $\mathfrak{S}_{x}$ is isomorphic with the flow
generated by the stationary random destribution $\frac{dB(t)}{dt}$ where $B(t)$ is the one-
dimensional Brownian motion.

PROOF. By Theorem 3, we suppose that $x_{t},$ $y_{t}$ are the measurable repre-
sentations over $\Omega$ , and write them as usual in the forms

$x(t, \omega)=\int_{-}^{\infty_{\infty}}e^{i\lambda^{t}}d\xi(\lambda, \omega)$ , $y(t, \omega)=\int_{-}^{\infty_{\infty}}e^{i\lambda^{t}}d\eta(\lambda, \omega)$ .

Let us denote by $E_{x},$ $E_{y}$ the expectations under the probability measures $P_{x},$ $P_{?!}$

generated respetively by $x_{t},$ $y_{t}$ . One has $E_{x}(d\xi)=E_{y}(d\eta)=0,$ $E_{x}(|d\xi(\lambda)|^{2})$

$=dF(\lambda),$ $E_{y}(|d\eta(\lambda)|^{2})=dG(\lambda)$ , and may write $q(\lambda)dF(\lambda)=dG(\lambda)$ .
Now for any $\omega_{0}\in\Omega$ , the distance $d(\omega, \omega_{0})$ is a bounded function of $\omega$ and

can be approximated, in the $L^{2}(P_{x})$ and $L^{2}(P_{y})$ -norms, by $L^{2}$-functions of the
form

$F(\xi(t_{1}, \omega)-\xi(s_{1}, \omega),$
$\cdots,$

$\xi(t_{n}, \omega)-\xi$( $s_{n}$ , to)),

$G(\eta(t_{1}, \omega)-\eta(s_{1}, \omega),$ $\cdots,$
$\eta(t_{n}, \omega)-\eta(s_{n}, \omega))$ ,

where $s_{1},$
$t_{1}$ etc. are all rational numbers. This implies that, if $\{\chi_{n}(\lambda)\}$ is

the set of indicator functions of finite intervals with rational end points,
then the family of all linear combinations of finite products of functions

from $\{\int_{-}^{\infty_{\infty}}\chi_{n}(\lambda)d\xi(\lambda, \omega)\}$ and the family similarly defined from $\{g_{n}(\omega)=$

$\int_{-}^{\infty_{\infty}}\chi_{n}(\lambda)d\eta(\lambda, \omega)\}$ are dense respectively in $L^{2}(P_{x}),$ $L^{2}(P_{y})$ , so that they are

dense respectively in $L_{0}(P_{x}),$ $L_{0}(P_{y})$ , where $L_{0}$ means the set of measurable
functions regarded as an F-space under the designated measure.

On the other hand

$f_{n}(\omega)=\int_{-}^{\infty_{\infty}}\chi_{n}(\lambda)\sqrt{q(\lambda)}d\xi(\lambda, \omega)$ $ 1\leqq n<\infty$

is dense in $L_{0}(P_{x})$ . For, if we take any even real-valued function $f(\lambda)\in L^{2}(dF)$ .
then

$E_{x}(\int_{-}^{\infty_{\infty}}f(\lambda)d\xi(\lambda^{\backslash },$ . $\int_{-}^{\infty_{\infty}}’$

implies

$\int_{-}^{\infty_{\infty}}f(\lambda)\chi_{n}(\lambda)\sqrt{q(\lambda)}dF(\lambda)=0$ ,

or $f(\lambda)=0$ almost everywhere in the $dF$-measure. Consider $n\otimes W$ stationary
processes $\{f_{n}(S_{t}\omega), 1\leqq n<\infty\}$ over $(\Omega, P_{x})$ and $\{g_{n}(S_{\iota}\omega), 1\leqq n<\infty\}$ over ($\Omega,$ $P_{y}$ },
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and notice that

$f_{n}(S_{t}\omega)=\int_{-}^{\infty_{\infty}}e^{\iota_{\lambda^{t}}}\chi_{n}(\lambda)\sqrt{q(\lambda)}d\xi(\lambda, \omega)$ ,

$g_{n}(S_{t}\omega)=\int_{-\infty}^{\infty}e^{\iota_{\lambda^{t}}}\chi_{n}(\lambda)d\eta(\lambda, \omega)$ .

Then the above processes are equivalent in probability law, so that

$\mathfrak{S}_{x}\sim \mathfrak{S}_{y}$ .

\S 5. Natural extension of a continuous $1$-parameter group of
endomorphisms.

To every endomorphism over $M$, there corresponds an isometry from
$L^{2}(\mu)$ into itself, so that the natural extension of a l-parameter semi-group
of endomorphisms gives rise to an extension of a l-parameter semi-group of
isometries in Hilbert space.

The time-discrete case was discussed by Rohlin [9]. After Rohlin we
make the

DEFINITION. Let $\mathfrak{S}=\{M, T_{t}\}$ be a measurable flow, $\zeta$ a partition subject
to the following conditions (i) $ T_{t}\zeta\geqq\zeta$ for $t>0$ , (ii) $t\geqq _{0}T_{t}\zeta=\epsilon,$

$T_{t}^{\zeta}$ the l-para-

meter semi-group induced over $(M/\zeta, \mu^{\zeta})$ from $\mathfrak{S}^{7)}$ , and $\mathfrak{S}_{0}=(\overline{M}, U_{t})$ be any
l-parameter semi-group of endomorphisms, satisfying

(5.1) $(M/\zeta, \mu^{\zeta}, T_{t}^{\zeta})\sim \mathfrak{S}_{0}$ $(mod 0)^{8)}$ .

Then $\mathfrak{S}$ is called a natural extension of $\mathfrak{S}_{0}$ .
THEOREM 4. Given a continuous l-parameter semi-group of endomorphisms

$(mod 0)$ over $M$, its natural extension exists and is unique up to strict isomor-
phism.

PROOF. Let $\mathfrak{S}_{0}=(\overline{M}, U_{t})$ be the given l-parameter semi-group. Take a
dense set $\{f_{k}(x)\}$ in $L_{0}(M)$ , and write $\xi_{+}(t, x)=\{\xi_{k}(t, x)\},$ $t\geqq 0,$ $\xi_{k}(t, x)=f_{k}(U_{t}x)$ .
There is then a stationary process $\eta(t, \alpha),$ $t\in T$ , such that

(5.2) $\{\eta(t, \alpha), t\geqq 0\}\sim\{\xi(t, x), t\geqq 0\}$ (in law).

Let $\mathfrak{S}=\{\Omega, S_{t}\},$ $\mathfrak{S}_{0}^{\prime}=\{\Omega_{+}, V_{t}\}$ be the flow and the l-parameter semi-group
determined respectively by $\eta$ and $\xi_{+}$ , then $\mathfrak{S}_{0}\sim \mathfrak{S}_{0}^{\prime}(mod 0)$ .

Define now a mapping $\psi$ from $\Omega$ onto $\Omega_{+}:$

(5.3) $\omega=\{f_{1}(t), f_{2}(t), \cdots\}\in\Omega\rightarrow\psi\omega=\{f_{1}(t), f_{2}(t)\}_{t\geqq 0}\in\Omega_{+}$ .
7) For a $\zeta$ -cell $C,$ $T_{t}cC(t\geqq 0)$ is defined to be the $\zeta\cdot cell$ C’ such that $T_{t}C\subset C^{\prime}$ .

Obviously such a C’ is unique.
8) $\mu^{\zeta}$ is the measure induced by $\mu$ on the space $ M/\zeta$ .
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Since for an $\omega_{0}=(f_{1}^{0}(u), f_{2}^{0}(u),$ $\cdots$ ) $\in\Omega_{+},$ $d_{+}(\psi\omega, \omega_{0})$ is d-continuous in $\omega,$ $\psi$ is a
measurable mapping from $(Q\mathscr{D}_{d})$ into $(\Omega_{+}, \mathscr{D}_{d+})$ . Let $\zeta$ be the partition deter-
mined by $\psi,$

$i$ . $e$ . the partition whose cell $C$ is given by

$C=\{\omega:f_{i}(t)=f_{i}^{0}(t), t\geqq 0, \omega\in\Omega\}$ ,

then obviously

(5.4) $S_{s}\zeta\leqq S_{t}\zeta(-\infty<s<t<\infty),$ $ t=0S_{t}\zeta=\epsilon\infty$ .

If we put $C=S^{\zeta}{}_{\iota}C_{0}$ , by the definition of $S_{t}^{\zeta}$ , we have $V_{t}\psi C_{0}=\psi C$ , and
$\psi S_{t}^{\zeta}C_{0}=V_{t}\psi C_{0}$ for all $ C_{0}\in\zeta$ , or $ S_{t}^{\zeta}=\psi^{-1}V_{t}\psi$ . Further, if we write

$A=\psi^{-1}\{\omega\in\Omega_{+} : d_{+}(\omega, \omega_{0})<a\},$ $\omega_{0}\in\Omega_{+},$ $a>0$ ,

we have $ A\in\Omega/\zeta$ and9)

$P^{\zeta}(A)=P(\omega\in\Omega:d_{+}(\psi\omega, \omega_{0})<a)$

$=P(\omega:\sum_{k- 1}^{\infty}\frac{1}{2^{k}}\int_{()}^{\infty}p(u, f_{k}(u)-f_{k}^{0}(u))du<a)$

$=P(\alpha:\sum_{k=1}^{\infty}\frac{1}{2^{k}}\int_{0^{\infty}}p(u, \eta_{k}(u, \alpha)-f_{k}^{0}(u))du<a)$

$=\mu(\sum_{k=1}^{\infty}\frac{1}{2^{k}}\int_{()}^{\infty}p(u, \xi_{k}(u, x)-f_{k}^{0}(u))du<a)$

$=Q(\omega\in\Omega_{+} : d_{+}(\omega, \omega_{0})<a)$ .
Therefore

$(\Omega/\zeta, P^{\zeta}, T_{t}^{\zeta})_{\iota\geqq 0}\sim \mathfrak{S}_{0}^{\prime}$ (strict isomorphism),

which together with $\mathfrak{S}_{0}\sim \mathfrak{S}_{0}^{\prime}(mod 0)$ implies that $\mathfrak{S}$ is a natural extension of
$\mathfrak{S}_{0}$ .

Uniqueness of the extension. Suppose that there are two such extensions
$\mathfrak{S}=(M, T_{t}),$ $\mathfrak{S}’=(\hat{M},\hat{T}_{r})$ with respective underlying partitions $\zeta,$

$\hat{\zeta}$ , then there
is an isomorphism $\lambda$ :

$(M/\zeta, T^{\zeta_{t}})_{i\geqq 0}\sim(\hat{M}/\hat{\zeta}, T^{\zeta_{i}})_{t\geqq 0}\wedge$ $(mod 0)$ .
Now we want to show that

(5.5) $\mathfrak{S}\sim \mathfrak{S}^{\prime}$ (strict isomorphism).

For this purpose take the respective bases $\{B_{n}\},$ $\{\hat{B}_{n}\}$ of $M/\zeta,\hat{M}/\hat{\zeta}$ , such that
$\hat{B}_{n}=\lambda B_{n}$ . Put $T=T_{t_{0}}(t_{0}>0)$ and define

$D=T^{j_{1}}A_{\alpha_{1}}T^{j_{2}}A_{\alpha_{2}}\cdots T^{j_{k}}A_{\alpha_{k}}$ $\hat{D}=\hat{T}^{j_{1}}\hat{A}_{\alpha_{1}}\hat{T}^{j_{2}}\hat{A}_{\alpha_{2}}\ldots\hat{T}^{j_{k}}\hat{A}_{\alpha_{1}}$. ,

9) $PC$ is the measure induced by $P$ on the space $\Omega/\zeta$ .
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where $\alpha’ s$ and $j’ s$ are positive integers, $1\leqq j_{1}\leqq j_{2}\leqq\ldots\leqq j_{k},$ $A_{n}=B_{n}$ or $B_{n}^{c}$ ,

$\hat{A}_{n}=\hat{B}_{n}$ or $\hat{B}_{n}^{c}$ . Then the set of all $D(\hat{D})$ becomes a base of $M(\hat{M})$ , and the
correspondence $D\leftrightarrow\hat{D}$ gives rise to an isomorphism $\varphi$ between $M$ and $\hat{M}$,

whose reduction to the factor spaces is $\lambda$ . The isomorphism $(\hat{M}/\hat{\zeta},\hat{T}^{\zeta})$

$\sim(M/\zeta, T^{\zeta})$ implies $T^{-j}D\leftrightarrow\hat{T}^{-j}\hat{D},$ $\mu(D)=\hat{\mu}(\hat{D})$ , and

$(M, T_{t_{0}})\sim(\hat{M},\hat{T}_{t_{0}})$ $(mod 0)$ .
$\varphi$ being independent of $t$, this implies $\mathfrak{S}\sim \mathfrak{S}^{\prime}(mod 0)$ . By Theorem 1, we have
then the stronger result $\mathfrak{S}\sim \mathfrak{S}^{\prime}$ (strictly). Q. E. D.

When $U_{t}$ in the above satisfies the condition

(5.6) $\bigwedge_{t\geqq 0}T_{t^{-1}}\zeta=\nu$

$\mathfrak{S}_{0}$ is said to be exact (Rohlin [9]). In this connection, Kolmogorov’s flow is
such that there exists a partition $\xi$ satisfying the condition

(5.7) $\xi\geqq T_{t}^{-1}\xi(t\geqq 0)$ ,

$\iota\geqq 0T_{t}\xi=\epsilon$ , $\bigwedge_{t\geqq 0}T_{t}^{-1}\xi=\nu$ (mod O).

It is easy to show that the natural extension of an exact $\mathfrak{S}_{0}$ is a Kolmo-
gorov’s flow.

To $U_{t}$ there corresponds a semi-group of isometries $\tilde{U}_{t}$ from $L^{2}(\overline{M})$ into
itself. The group of unitary operators $\tilde{T}_{t}$ on $L^{2}(M)$ , corresponding to $T_{t}$ , is
an extension of $\tilde{U}_{t}$ .

\S 6. Spectral type of the Kolmogorov flow.

In this section we present a proof of Sinai’s theorem, not using the Am-
brose representation.

THEOREM 5. (Sinai [10]) The spectral type of the Kolmogorov flow consists
of Lebesgue spectrum with countable multiplicity.

A few remarks and notations before going to the proof.
According to the proof of Theorem 4, the natural extension of $(M/\zeta, T_{t}^{\zeta})_{t\geqq 0}$

on the function space $\Omega$ enables us to assume that $T_{f}$ is measurable and $\xi$ is
such that the defining properies (5.7) are valid in the strict sense.

Let us write $\xi^{t}=T_{t}\xi$ . Take a multiplicative base $\{D_{k}\}$ of $\xi$ , then $\{D_{k,l}\}$ ,
$1\leqq k,$ $1<\infty,$ $D_{k,l}=T_{l}D_{k}$ , is a base of $M$. Consider the usual metric space $\Omega$

of all the element $\omega$ of the form

$\omega=\{\omega_{k,l}(t), t\in T, 1\underline{\leq}k, 1<\infty\},$ $\omega_{k,t}(t)\in L_{0}(T)$ ,

with metric
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(6.1) $d(\omega, \omega^{\prime})=\sum_{k,l=1}^{\infty}\frac{1}{2^{k+l}}\int_{-}^{\infty_{\infty}}p(u, \omega_{k,l}(u)-\omega_{k,l}^{\prime}(u))du$ ,

$\omega,$
$\omega^{\prime}\in\Omega$ ,

the mapping $\varphi,$ $x\in M\rightarrow\omega=\varphi x=\{\chi_{D_{kl(T_{t}x)\}}}$ and define auxiliary function

(6.2) $\tilde{d}(\omega, \omega^{\prime})=\sum_{/=1}^{10}\sum_{k=t}^{\infty}\frac{1}{2^{k+l}}\int_{u^{\infty_{0}}}p(u, \omega_{k,l}(u)-\omega_{k,l}^{\prime}(u))du$ ,

which depends on $l_{0}$ and $u_{0}$ .
From (6.1), (6.2) we see easily that

(6.3) $0\leqq d(\omega, \omega^{\prime})-\ell t(\omega, \omega^{\prime})\leqq\rho(l_{0}, u_{0})$ ,

where

$\rho(l_{0}, u_{0})=\frac{\pi}{2^{\iota_{0}}}+(\frac{\pi}{2}+\arctan u_{0})$ ,

and that there is an integer-valued $N(\epsilon),$ $ N(\epsilon)\uparrow\infty$ as $\epsilon\rightarrow+0$ , such that $\rho(l_{0}, u_{0})$

$<\epsilon$ for $l_{0},$ $-u_{0}\geqq N(\epsilon)$ .
We are now considering the isomorphic image $(\Omega, S_{t})$ of $(M, T_{t})$ . Define

$\eta^{t}$ to be the partition induced by $\xi^{t}$ through $\varphi$ over $\varphi M\subset\Omega$ , take a dense set
$\{\omega^{n}\}_{1}^{\infty}$ in $\Omega$ , and put

(6.4) $U_{\epsilon}(\omega^{n})=\{\omega:d(\omega, \omega^{n})<\epsilon, \omega\in\varphi M\}$ ,

(6.5) $\tilde{U}_{\epsilon}(\omega^{n})=\{\omega:\tilde{d}(\omega, \omega^{n})<\epsilon, \omega\in\varphi M\}$ .
Then the following relations are deduced immediately from (6.3):

(6.6) $ d(\omega, \omega^{\prime})<\tilde{d}(\omega, \omega^{\prime})+\epsilon$ for $l_{0},$ $-u_{0}>N(\epsilon)$ ,

(6.7) $U_{\epsilon}(\omega^{n})\subset\tilde{U}_{e}(\omega^{n})$ .

Now for the proof of the theorem we require several lemmas.
LEMMA 1.

$(6.8.a)$ $\bigcup_{n\geqq 1}\tilde{U}_{g}(\omega^{n})=\varphi M$ ;

$(6.8.b)$ dia $\tilde{U}_{\epsilon}(\omega^{n})\leqq 4\epsilon$ for $l_{0},$ $-u_{0}>N(\epsilon)$ ;

(6.8.c) dia $ C\leqq 4\epsilon$ for any $\eta^{2N(6)}$ -cell $C$ .
PROOF. $(6.8.a)$ follows from (6.7) and the fact that

$\bigcup_{n\geqq 1}U_{e}(\omega^{n})=\varphi M$ ;

$(6.8.b)$ follows from (6.6).
The right-hand side expression in (6.2) implies that

$\varphi^{-1}\tilde{U}_{\epsilon}(\omega^{n})\in \mathscr{D}(\xi^{\iota_{0}-u_{0}})$ ,
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$\tilde{U}_{e}(\omega^{n})\in \mathscr{D}(\eta^{\iota_{0}-u_{0}})$

$=B(\eta^{2N(e)})$ , for $l_{0}=-u_{0}=N(\epsilon)$ .
This together with $(6.8.a),$ $(6.8.b)$ implies $(6.8.c)$ .

LEMMA 2. Let $(\Omega, \rightarrow C, P),$ $ P=\varphi\mu$
) be the measure space considered in the

above, and take a $K\in x$ , with $P(K)>0$ . Then, for any $n\geqq 1$ , there exis $ts$ dis-
tinct $n$ points, $\omega_{k}(1\leqq k\leqq n)$ , such that $P(U_{g}(\omega_{k})\cap K)>0$ for any $\epsilon>0$ .

PROOF. Since $\mathfrak{S}$ is a Kolmogorov flow, $P$ is a continuous measure, $i$ . $e$ .
there is no atomic point on $\Omega$ . Split $K$ into $n$ disjoint measurable sets, $K_{i}$

with $P(K_{i})>0,1\leqq i\leqq n$ . Take a compact $\overline{K}_{i}\subset K_{i}$ , with $P(\overline{K}_{i})>0$ . Then there
exists an $\omega_{i}\in K_{i}$ , such that $P(U_{e}(\omega_{i})\cap\overline{K}_{i})>0$ for any $\epsilon>0$ .

Consider the usual metric $\delta$ in $x_{a},$ $i$ . $e$ . $\delta(A, B)=P((A-B)U(B-A))$ for
$A,$ $B\in\rightarrow C_{a}$ .

LEMMA 3. There exists an $A\in \mathscr{D}(\eta^{0})$ such that $\delta(A, \mathscr{D}(\eta^{t}))>0$ for any $t<0$ .
PROOF. Take a $B\in \mathscr{D}(\eta^{0})$ such that $\delta(t)=\delta(B, \mathscr{D}(\eta^{t}))>0$ for some $t<0$ .

$\delta(t)$ is continuous, because $|\delta(s)-\delta(t)|\leqq\delta(S_{|s-t|}B, B)$ . Let $t_{0}=\inf(t:\delta(t)=0)$ , then
$-\infty<t_{0}\leqq 0$ , and there exists a sequence $t_{n}\uparrow t_{0}$ , and $A_{n}\in \mathscr{D}(\eta^{\iota_{n}})$ , such that
$\delta(A_{n}, B)=0$ . This means that $B\in \mathscr{D}(\eta^{t_{0}}),$ $\not\in \mathscr{D}(\eta^{t})$ for any $f<t_{0}$ . Put $A=S_{-t_{0}}B$ ,

then $A$ satisfies the required conditions.
For a partition $\xi$ , the set of $\mathscr{D}(\xi)$ -measurable square-integrable functions

will be denoted by $L^{2}(\xi)$ .
LEMMA 4. In a Lebesgue space $M$, there are given partitions $\xi,$

$\eta$ with
$\xi<\eta$ (strict refinement). Let { $\mu_{c},$ $ C=\xi$-cell} be the canonical system of measure
for $\xi$ .

Take an $A\in B(\eta),$ $\not\in \mathscr{D}(\xi)$ , and define
$\tilde{A}=U\{C:0<\mu_{c}(A)<1, C=\xi- ell\}$ ,

then $\mu(A\tilde{A})>0$ . Take $B\in X$ , put $E=AB\tilde{A}$ and assume that $\mu(E)>0$ , and
define

$L^{\backslash }=U$ { $C:0<\mu_{c}(E),$ $ C=\xi$-cell}.
Finally define

$F=\tilde{E}A$ ,

$f(x)=\chi_{F}(x)-\mu_{c}(F)$ for $x\in C$ ,

then $f(x)$ is a non-null element of $L^{2}(\eta)$ , orthogonal with $L^{2}(\xi)$ .
PROOF. Obviously $\tilde{A},\tilde{E}$ are $\xi$ -sets, and $\mu_{C}(E)=\mu_{C}(AB)\chi_{A}^{\sim};$ $\mu_{c}(E)>0$ implies

that $C\in\acute{\dot{A}}$ , therefore $\tilde{E}\subset\tilde{A}$ . On the other hand $\mu(E)>0$ implies $\mu(\tilde{E})>0_{j}$

since $\mu_{c}(A)>0$ for $C\in\tilde{A}$ , and therefore for $C\in\tilde{E}$ , one has

$\mu(F)=\int_{E}\sim\mu_{c}(A)d\mu^{\xi}>0,0<\mu_{c}(F)<1$ for $C\in\tilde{E}$ .
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Combination of the results in the last sentence implies that $F\in \mathscr{D}(\eta)$ ,
$\not\in \mathscr{D}(\xi)$ , and $f$ is a non-null $\mathscr{D}(\eta)$ -measurable function, orthogonal with $L^{2}(\xi)$ .

LEMMA 5. Let $\Omega$ be the space introduced in Lemma 2, and $\tau(\omega)$ the hitting
time of the trajectory $S_{t}\omega,$ $t\geqq 0$ , for closed $F,$ $i$ . $e$ .

$\tau(\omega)=\inf\{t : S_{t}\omega\in F, t\geqq 0\}$ .
Then $\tau(\omega)$ is lower semi-continuous in $\omega$ .
PROOF. $\tau(\omega)$ is clearly lower semi-continuous at an $\omega_{0}\in F$, because $\tau(\omega_{0})$

$=0$ . When $\omega_{0}\not\in F$, the lower semi-continuity at $\omega_{0}$ follows from the fact that
$\omega_{t}$ is d-continuous in $(t, \omega)$ .

PROOF OF THEOREM 5. We will prove that the multiplicity of the spec-
trum is exactly countable. Take a compact $ K\subset\Omega$ with $P(K)>0$ , and let
$\{\omega_{k}\}_{1}^{n}$ be the set designated in Lemma 2. Put

$p=\min_{i\neq j}d(\omega_{i}, \omega_{j})$ ,

choose $\epsilon,$
$\delta_{1}>0$ such that

(6.9) $p>2(2\delta_{1}+4\epsilon)$

and define
$K_{i}^{\delta_{1}}=U_{\delta_{1}}(\omega_{i})\cap K$ ,

where $U_{r}(\omega)$ is the clos $\circ$.d sphere with radius $r$ , center $\omega$ . Take $\delta_{2}>0$ suf-
ficiently small, then since the tube $\mathfrak{T}=\bigcup_{|t|\leqq\delta_{2}}S_{t}K_{t^{\backslash }}()_{1}$ with the compact base $K_{i}^{\delta_{1}}$ is
compact, one has

(6.10) $\mathfrak{T}\subset U_{2\delta_{1}}(\omega_{i})$ .
Choose a $\delta_{0}<\delta_{2}$ , and according to Lemma 3, take an $A^{*}\in\eta^{0},$ $\not\in\eta^{-\delta_{0}}$ . De-

fine $\tilde{A}^{*}$ from $A^{*}$ , as $\tilde{A}$ was from $A$ in Lemma 4; write $A=S_{r}A^{*},\check{A}=S_{r}\tilde{A}^{*}$ ,
$B=K_{i^{\backslash }}^{t1}$ and apply Lemma 4 with $\xi,$

$\eta$ replaced respectively by $\eta^{r-\delta_{0}},$ $\eta^{\tau}$ . We
must have then

$E=S_{r}A^{*}\cap S_{r}\check{A}^{*}\cap K_{i}^{\delta}$ ,

and from the mixing property (of order 1) of the Kolmogorov flow, there
exists $t_{0}>0$ such that

$P(E)\geqq-2-P(A^{*}\tilde{A}^{*})P(K_{\dot{1}}^{\delta_{1}})1>0$ for all $\tau\geqq t_{0}$ .

We will further fix $t_{0}$ so large that

(6.11) $t_{0}-\delta_{0}-\delta_{2}>2N(\epsilon)$ .
Now by the definition in Lemma 4,

$E=\cup\{C:0<\mu_{c}(E), C=\eta^{\tau-\delta_{0}}- cel1\}$ ,
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$F=\tilde{E}A$ ,

and
$f_{i}(\omega)=\chi_{F}(\omega)-\mu_{c}(F)$

is a non-null element in $ L^{2}(\eta\gamma$ , orthogonal with $L^{2}(\eta^{\tau-\delta_{0}})$ . From $(6.8.c)$ it fol-
lows that

(6.12) dia $ C\leqq 4\epsilon$ for all $\eta^{r-\delta_{0}}$ -cell $C,$ $\tau\geqq t_{0}$ .
Since Car $f_{i}\subset\tilde{E}^{10)}$ , we have also

(6.13) Car $f_{i}\subset U_{\delta_{1+4}=},(\omega_{i})$ .
From (6.10), (6.11), and (6.12), one has

(6.14)
$\bigcup_{|t|\leqq\delta_{2}}carS_{t}f_{i}\subset U_{2\theta_{1}+4\prime}\wedge(\omega_{i})$ .

Suppose $i_{\mp}^{!}j,$ $1\leqq i,$ $j\leqq n,$ $|t-s|\leqq\delta_{2}$ , then to evaluate $\rho_{ij}(t-s)=(S_{s}f_{i}, S_{t}f_{j})$ ,

we may assume $-\delta_{2}\leqq s,$ $t\leqq\delta_{2}$ . Then by (6.14)

$p_{ij}(t-s)=0$ .

Suppose next $1\leqq i,$ $j\leqq n,$ $t-s>\delta_{2}$ , then $\rho_{ij}(t-s)=(f_{i}, S_{t-s}f_{j})=0$ , since
$S_{s-t}f_{j}\in L^{2}(\eta^{\tau-\delta_{0}})$ ; in the same way $\rho_{ij}(t-s)=0$ for $s-t>\delta_{2}$ . Therefore, the
trajectories $T_{s}f_{i},$ $-\infty<s<\infty,$ $1\leqq i\leqq n$ , are orthogonal each other, and

(6.15) $\rho_{ii}(t-s)=0$ for $|s-t|\geqq\delta$ .
By the Paley-Wiener theorem, (6.15) implies

$\rho_{jj}(t-s)=\int_{-}^{\infty_{\infty}}e^{i\lambda(t-s)}g(\lambda)d\lambda$

with $g\in L(-\infty, \infty),$ $g(\lambda)>0$ almost everywhere.
Since only spectrum for the Kolmogorov flow is of uniform Lebesgue, and

$n$ in the above arguments is arbitrary, its multiplicity must be uniformly
countable.

Concluding this section, we observe an operator-theoretical implication of
Sinai’s theorem. Let $\ovalbox{\tt\small REJECT}_{0}=L^{2}(\xi)$ and $\ovalbox{\tt\small REJECT}$ be the space of square-integrable
functions on $M$. Then $\tilde{T}_{t}$ defined by

$f(x)\in\ovalbox{\tt\small REJECT}_{0}\rightarrow\tilde{T}_{t}f(x)=f(T_{t}x)$

is a semi-group of isometries. P. Masani [5] proved a decomposition theorem
connected with a semi-group of isometries on a Hilbert space. Let $iH$ be the
infinitesimal generator of $(\tilde{T}_{\iota}, t\geqq 0, \ovalbox{\tt\small REJECT}_{0}),$ $V$ the corresponding Cayley trans-
formation

$V=(H-i)(H+\iota)^{-1}$ .
10) Carf means the support of $f,$ $i$ . $e$ . the set of all points at which $f$ is non.null.
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Then $H$ is maximal symmetric with deficiency index $(0, n),$ $n=\dim(K)$ ,
$K=\ovalbox{\tt\small REJECT}_{0}\ominus V\ovalbox{\tt\small REJECT}_{0}$ . Let $(\xi_{\lambda}, \lambda\in\Lambda)$ be a CON base of $K$, and define

$W_{st}=\overline{\sqrt{}}^{1}\overline{2}(\tilde{T}_{f}-\tilde{T}_{s}-\int_{s^{t}}T_{u}du)$ (cf. [5]),

$\xi_{\lambda}(I)=W_{st}(\xi_{\lambda}),$ $I=[s, t]$ ,

then $\{\xi_{\lambda}(dt), \lambda\in\Lambda\}$ is an orthogonal set of orthogonal random measures,
$E(\xi_{\lambda}(I)\xi_{\mu}(J))=\delta_{\lambda\mu}|I\cap J|$ , which enjoys the relation

$\tilde{T}_{r}(\xi_{\alpha}(I))=\xi_{\alpha}(\theta_{r}I)$ ,

where $\theta_{\tau},$ $\tau\geqq 0$ is the shift

$I=[s, t]\rightarrow\theta_{r}I=[s+\tau, t+\tau]$ .
Now denote by $L^{2}(T_{+}),$ $L^{2}(T)$ , the spaces of functions which are souare-

integrable $\ln$ the Lebesgue measure, on the respective spaces $T_{+},$ $T$ . Every
$\chi\in\ovalbox{\tt\small REJECT}_{0}1S$ represented as

$x=\sum_{\lambda\in\Lambda}\int_{0}^{\infty}f_{\lambda}(t)\xi_{\lambda}(dt),$ $f_{\lambda}\in L^{2}(T_{+})$ ,

with
$\Vert x\Vert^{2}=\sum_{\lambda\in\Lambda}\Vert f_{\lambda}\Vert^{2}<\infty$ .

This gives a decomposition of $\ovalbox{\tt\small REJECT}_{0}$ into a direct sum of $\tilde{T}_{t}$ -invariant spaces
and $\mathcal{T}$, is isomorphic with that operator which transform $\{f_{\lambda}(t), \lambda\in\Lambda\}$ to
$\{\tilde{\theta}_{\tau}f_{\lambda}(t), \lambda\in\Lambda\}$ , where

0.$f(t)=f(t-\tau)$ for $ t\geqq\tau$ ,

$=0$ for $0\leqq t<\tau,$ $f\in L^{2}(T_{+})$ .
$T_{\tau}\xi(dt),$ $-\infty<\tau<0$ , enables us to get a random measure, $\xi_{\lambda}(dt)(-\infty<t$

$<\infty)$ , which is an extension of the original $\xi_{\lambda}$ . With this extension, every
$x\in\ovalbox{\tt\small REJECT} 1S$ now represented as $x=\sum_{r_{\subset\Lambda}^{-}}\int_{-\infty}^{\infty}f_{\lambda}(t)\xi_{\lambda}(dt)$ , with $f_{\lambda}\in L^{2}(T),$

$\Vert x\Vert^{z}=\Sigma\Vert f_{\lambda}\Vert^{2}\lambda--\Lambda$

Now $\tilde{T}_{\ell}$ over $\ovalbox{\tt\small REJECT}$ is isomorphic with the direct sum of the shift operators

$\tilde{\theta}_{r}$ : $f_{\lambda}(t)\rightarrow\tilde{\theta}_{r}f_{\lambda}(t)=f_{\lambda}(t-\tau)$ .
Sinai’s theorem signifies that for the Kolmogorov flow $\Lambda$ is always countable.

\S 7. Transformations of a flow by means of an additive functional.

The additive functional, which has been worked out in recent few years,
acquired a central position among tools for studying Markov processes [3].

A certain class of Markov processes are derived from a given one by random
changes of time defined through appropriate additive functionals. However,
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it is worthy of remembering that the same device was used earlier by E.
Hopf in ergodic theory ([4], p. 43).

Suppose that $T_{t},$ $-\infty<t<\infty$ , is a measurable flow without wandering
sets on the Lebesgue space $(\Omega, m)$ . The case $ m(\Omega)=\infty$ is not excluded, and
in this case $\Omega$ is a countable union of disjoint Lebesgue spaces with finite
total measures.

E. Hopf defines the functional $\varphi$ :

$\varphi_{t}(\omega)=\int_{0^{t}}g(\omega_{s})ds,$ $-\infty<t<\infty$ ,

where $g(\omega)$ is a positive measurable function. $\varphi$ satisfies the additivity con-
dition

$\varphi_{s+t}(\omega)=\varphi_{s}(\omega)+\varphi_{t}(\omega_{s})$ .
Precisely speaking, there exists a $T_{t}$-invariant set $\Omega_{0},$ $m(\Omega-\Omega_{0})=0$ such that
for any $\omega\in\Omega_{0}$ , the mapping $ t\in[0, \infty$) $\rightarrow\varphi_{t}(\omega)\in[0, \infty]$ is well defined and
satisfies the above additivity condition.

Now for simplicity, we further assume that $g(\omega)$ is integrable, $m(\omega:g(\omega)$

$=0)=0$ , then as is well-known (cf. [4], \S 13), $\Omega_{0}=(\omega:\varphi_{\infty}=-\varphi_{-\infty}=\infty, \varphi_{t}(\omega)$

is strictly increasing in t) is a $T_{t}$ -invariant set with $m(\Omega-\Omega_{0})=0$ . The map-
ping $\omega\in\Omega_{0}\rightarrow S_{t}\omega=T_{\tau_{t}(\omega)},$ $\tau_{t}(\omega)$ the inverse to the function $\varphi_{t}(\omega)$ , is a 1–1 and
onto mapping. Further it is shown that $ S_{t}\omega$ is a measurable flow with in-
variant measure $d\mu=g(\omega)dm$ (cf. Theorem 6). $S_{t}$ is what we may call the
transformed flow of $T_{t}$ by the time change through $\varphi$ . As its application, we
will observe that the “ ratio-limit theorem ” (cf. [4], p. 53), can be derived as
a corollary of Birkhoff-Khintchine’s ergodic theorem.

Let $f(\omega)$ be an integrable with respect to $m$ function and put $\tilde{f}(\omega)$

$=f(\omega)/g(\omega)$ , then since $f\in L(d\mu)$ , for almost (in $\mu$) every $\omega$ , there exists

(1) $\overline{f}(\omega)=\lim_{T\rightarrow\infty}-T^{1_{-\int_{0^{T}}\tilde{f}(\omega_{s})ds}}$

Recalling that $m$ and $\mu$ are mutually absolutely continuous and using the
relations

$T=\int_{b}^{r_{T}}g(\omega_{t})dt$ ,

$\int_{0}^{T}\tilde{f}(\omega_{\tau_{S}(\omega)})ds=\int_{Q}^{\tau_{T}}\tilde{f}(\omega_{t})g(\omega_{f})dt=\int_{0}^{\tau_{T}}f(\omega_{t})dt$ ,

$\mu(\lim_{t\rightarrow\infty}\tau_{t}(\omega)<\infty)=0$ ,

we deduce from (1) that for almost (in m) every $\omega$

$\overline{f}(\omega)=\lim_{T\rightarrow\infty}(\int_{0^{T}}f(\omega_{t})dt/\int_{0}^{T}g(\omega_{t})dt)$ ,
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and that $(\overline{f}, g)_{m}=(\overline{f}, 1)_{/J}=(\tilde{f}, 1)_{/1}=(f, 1)_{m}$ ”.
Important classes of time changes depend on $\varphi$ built on $g(\omega)$ which

vanishes on a certain set of positive measure. For instance, if $g$ is the
characteristic function of a measurable set $A$ , then roughly speaking, through
the corresponding time change, one obtains a flow over $A$ derived from $T_{t}$ .
Including such a case, a general study of transformations with a reasonably
wide class of additive functionals needs a considerably careful analysis. Al-
though we aim at considering a transformation of a flow with as wide a class
of additive functionals as in Markov processes, here we confine ourselves to
dealing with an intermediate class12).

To preserve for the transformed path $\omega_{r_{t}}$ necessary regularities, prere-
quisite must be a nice behaviour of the original path $\omega_{t}$ . The representation
of a flow on a conpact metric space ($\sigma- finite$ as a measure space) is so smooth
that it guarantees the regularity in the transformed path, and as is clear
from \S 2, there is no loss of generality in assuming that the given flow is
already such one.

Suppose that there is given a flow $T_{t}$ over a $Co^{1}mpact$ metric measure
space ( $\Omega$ , Sf, $m$), $ m(\Omega)\leqq\infty$ (when $m(\Omega)=\infty,$ $m$ is assumed to be $\sigma- finite$), whose
path $T_{t}\omega=\omega_{t}$ is continuous in $(\omega, t)$ , and an additive functional $\varphi_{t}(\omega)=\varphi(t, \omega)$ ,
$-\infty<t<\infty$ , which satisfies the following properties:

(F.1) (a) For any $t,$ $\varphi_{t}(\omega)$ is measurable in $\omega$ . For any $\omega\in\Omega,$ $\varphi_{t}(\omega)$ is a real-
valued function of $t$ with the additivity

$\varphi_{s+t}(\omega)=\varphi_{s}(\omega)+\varphi_{t}(\omega_{s}),$ $-\infty<s,$ $ t<\infty$ .
(b) For almost all $\omega,$ $\varphi_{t}(\omega)$ is strictly increasing and continuous in $t$ , and
$\varphi_{\infty}(\omega)=-\varphi_{-\infty}(\omega)=\infty$ .
(F.2) $E_{m}(\varphi_{1}(\omega))<\infty^{13)}$ .

THEOREM 6. Define
$\tau_{t}=\inf(s:\varphi_{s}(\omega)>t)$ ,

then
$S_{t}\omega=\omega_{r_{t}}(\omega),$ $-\infty<t<\infty$ ,

is a measurable flow over $(\Omega, \ovalbox{\tt\small REJECT})$ with an invariant measure $\mu$ such that
$\mu(A)=E(\chi_{A}(\omega)\varphi_{1}(\omega))$

for and $A\in\ovalbox{\tt\small REJECT}$ .
PROOF. Since from the additivity, the set of $\omega$ satisfying (b) is $T_{\ell}$ -invari-

ant, we may assume that (b) is satisfied for all $\omega\in\Omega$ .

11) Subscripts in the brackets signify the respective measures used.
12) Generalizations of such a transformation and an interesting study of related

problems will be published in the forthcoming paper by H. Totoki,

13) $E_{m}$ means the expectation under the measure $m$ .
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Let $C(\Omega)$ be the space of continuous functions on $\Omega$ , and define the func-
tional

$\lambda(f, t)=E_{m}(\int_{0^{\iota}}f(\omega_{u})d\varphi_{u}),$ $f\in C(\Omega)$ ,

then by the additivity of $\varphi$

$\lambda(f, s+t)=E_{m}(\int_{0}^{s+t}f(\omega_{u})d\varphi_{u})$

$=E_{m}(\int_{0^{t}}f(\omega_{u})d\varphi_{u})+E_{m}(\int_{t}^{s+t}f(\omega_{u})d\varphi_{u})$

$=\lambda(f, t)+E_{m}(\int_{0^{S}}f((\omega_{t})_{u})d\varphi_{u}(\omega_{t}))$

$=\lambda$($f,$ t)+\‘A(f, $s$).

Therefore there exists a bounded linear functional $\lambda(f)$ over $C(\Omega)$ and the
corresponding measure $\mu$ over $\Omega$ such that

(2) $\lambda(f, t)=t\lambda(f)=t\int f(\omega)d\mu^{14)}$ .

The above equality being extended to satisfy for any bounded measurable
$f$, one has

$\mu(\Omega)=E_{m}(\varphi_{1}(\omega)),$ $\mu(A)=E_{m}(\int_{0^{1}}\chi_{A}(\omega_{u})d\varphi_{u}(\omega))$ .
and taking the Laplace transform of (2)

(3) $\int f(\omega)d\mu=\alpha E_{m}(\int_{0^{\infty}}e^{-\alpha t}f(\omega_{t})d\varphi_{t}),$ $\alpha>0$ .

Now we will prove that $S_{\iota}$ is a 1–1 mapping from $\Omega$ onto itself. Since

$s+t=\varphi(\tau_{s+t}(\omega), \omega),$ $s=\varphi(\tau_{s}(\omega), \omega)$

$t=\varphi(\tau_{s+t}(\omega), \omega)-\varphi(\tau_{s}(\omega), \omega)$

$=\varphi(\tau_{s+t}(\omega)-\tau_{s}(\omega), \omega_{\tau_{S}}(\omega))$ ,

there holds
$\tau_{s+t}(\omega)=t_{1}+t_{2}$ , with $t_{1}=\tau_{s}(\omega),$ $t_{2}=\tau_{t}(\omega_{\iota_{1}})$ ,

therefore
$S_{s+t}\omega=(\omega_{t_{1}})_{t_{2}}=(\omega_{t_{1}})_{\tau_{t}(\omega_{t_{1}})}$

$=S_{t}\omega_{c_{1}}=S_{t}(S_{s}\omega),$ $-\infty<s,$ $ t<\infty$ .
and obviously $ S_{0}\omega=\omega$ .

14) In the last integral sign, as well as in the following, the suppressed domain
is always the whole space,
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This implies that $S_{t},$ $-\infty<t<\infty$ , is a 1–1 onto mapping over $\Omega$ .
$S_{t}$ is a measurable flow. $Defin\circ\vee\tau_{t}^{n}(\omega)=\tau_{c_{i}}(\omega)\equiv\sigma_{i}(\omega),$ $t_{i-1}<t\leqq t_{i},$ $t_{i}=\frac{i}{n}$ ,

$-\infty<i<\infty$ , then $\tau_{t}^{n}(\omega)\downarrow\tau_{t}(\omega),$ $ n\rightarrow\infty$ , and

$S_{t}\omega=\lim\omega_{\tau_{l}^{n}}$ .
On the other hand

$\omega_{r_{\ell}^{n}}=\omega_{\sigma_{i}(\omega)}$ for $(\omega, t)\in\Omega\times(t_{i-1}, t_{i}$],

and since $(\omega, t)\rightarrow\omega_{\ell}$ is a continuous mapping, $\omega_{\sigma_{i^{r}}\omega)}$ is measurable in $\omega$ . This
in turn means that $\omega_{\tau_{t}^{n_{(\omega)}}}$ and therefore $\omega_{\tau_{t^{(}}\omega)}$ is measurable in $(t, \omega)$ .

Finally we shall prove that $\mu$ is an invariant measure. For this purpose
we are going to verify the equivalent equality

$\alpha E_{1^{j}}(\int_{0}e^{\infty_{-\alpha u}}f(\omega_{r_{u}})du)=\int f(\omega)d\mu$

for any $f\in C(\Omega)$ and $\alpha>0$ , or

(4) $\alpha E_{\mu}(\int_{0^{\infty}}e^{-a\varphi_{t^{(\omega)}}}f(\omega_{t})d\varphi_{t}(\omega)=\int f(\omega)d\mu$ .

Now by (3), (4) is in turn equivalent to the equality

(5) $\alpha^{2}E_{m}(\int_{0^{\infty}}\int_{0^{\infty}}e^{-\alpha u-\alpha\varphi_{t}(\omega_{u})}f(\omega_{t+u})d\varphi_{u}(\omega)d\varphi_{t}(\omega_{u}))=\int f(\omega)d\mu$ .

To prove this we make equidistant divisions of the intervals $ 0\leqq u<\infty$ ,
$ 0\leqq t<\infty$ , setting $u_{i}=t_{i}=i/n,$ $1\leqq n<\infty,$ $ 0\leqq i<\infty$ . Then the left-hand side
of (5) is equal to

(6)
$\alpha^{2}\lim_{n\rightarrow\infty}E_{m}\{\sum_{0\leqq i,j<\infty}\exp(-\alpha u_{j+1}-\alpha\varphi(t_{i+1}, \omega_{uj}))$

$\times f(\omega_{u+u_{i}})(\varphi(u_{j+1}, \omega)-\varphi(u_{j}, \omega))(\varphi(t_{i+1} ; \omega_{uj})-\varphi(t_{i}, \omega_{uj}))\}$

$=\alpha^{z}\lim_{n\rightarrow\infty}E_{m}t_{0_{\approx}}\sum_{<t,j<\infty}\exp(-\alpha u_{j+1}-\alpha\varphi(t_{t+1}, \omega_{-t_{i}}))f(\omega)$

$\times(\varphi(u_{j+1}, \omega_{-uj-t_{i}})-\varphi(u_{j}, \omega_{-uj-\iota_{i}}))(\varphi(t_{i+1}, \omega_{-r_{i}})-\varphi(t_{i}, \omega_{-\iota_{i}}))\}$ .

On the other hand, the relation $\varphi(\omega_{s})=\varphi_{s+t}(\omega)-\varphi_{s}(\omega)$ implies

$\varphi(u_{j+1}, \omega_{-uj-\iota_{i}})-\varphi(u_{j}, \omega_{-uj-\iota_{i}})=\varphi(-t_{i}+1/n, \omega)-\varphi(-t_{i}, \omega)$ ,

$\varphi(t_{i+1}, \omega_{-t_{i}})-\varphi(t_{i}, \omega_{-t_{i}})=\varphi(1/n, \omega)$ ,

$\varphi(t_{i+1}, \omega_{-t_{i}})=\varphi(1/n, \omega)-\varphi(-t_{i}, \omega)$ .
Inserting those into the right-hand member of (6), (6) becomes
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(7) $\alpha^{2}\lim_{n\rightarrow\infty}E_{m}\{\sum_{\infty 0\leqq\iota./\backslash }\exp(-\alpha u_{j+1}-\alpha\varphi(1/n, \omega))$

$\times\exp(\alpha\varphi(-t_{i}, \omega))f(\omega)$

$\times(\varphi(-t_{i}+1/n, \omega)-\varphi(-t_{i}, \omega))\varphi(1/n, \omega)\}$

$=\alpha^{2}\lim_{n\rightarrow\infty}\exp(-\alpha/n)(1-\exp(-\alpha/n))^{-1}$

$\times E_{m}\{f(\omega)\varphi(1/n, \omega)\exp(-\alpha\varphi(1/n, \omega))(S_{1}+S_{2})\}$ ,
where

$S_{1}=\sum_{i=1}^{\infty}\exp(\alpha\xi_{i})(\xi_{i-1}-\xi_{i}),$ $\xi_{i}=\varphi(-t_{i}, \omega)$ ,

$S_{2}=\exp(-\alpha\varphi(1/n, \omega))\varphi(1/n, \omega)$ .
We observe firstly

(8) $0\leqq S_{1}\leqq 1/\alpha,$ $ S_{1}\rightarrow 1/\alpha$ as $ n\rightarrow\infty$ ,

$0\leqq S_{1}\leqq 1/\alpha e,$ $S_{2}\rightarrow 0$ as $ n\rightarrow\infty$ .
Secondly, since $\Omega$ is compact $f(\omega_{t})\rightarrow f(\omega)$ uniformly in $\omega$ , as $t\rightarrow 0$ , we have

(9) $\int_{0^{1/n}}f(\omega_{f})d\varphi_{t}(\omega)=f(\omega)\varphi(1/n, \omega)+\epsilon_{n}(\omega)\varphi(1/n, \omega)$ ,

$\epsilon_{n}(\omega)\rightarrow 0$ uniformly in $\omega$ , as $ n\rightarrow\infty$ .
Insert (8), (9) into the right-hand member of (7), then one can easily con-

clude that the right-hand member of (7) reduces to the expression

$nE_{m}(\int_{0^{J/n}}f(\omega_{f})d\varphi_{t})+nO(E_{m}(\epsilon_{n}(\omega)\varphi(1/n, \omega)))$

$=\int f(\omega)d\mu+0(1)$ , as $ n\rightarrow\infty$ .

This completes the proof.

Tokyo University of Education
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