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Introduction. In the present paper we shall prove some properties of
torsion-free discrete subgroups $\Gamma$ of the title which were announced in our
previous note [2], and then we shall show a method for the construction of
all such $\Gamma$ . Those properties are possessed by subgroups $\Gamma$ of more general
abstract groups $G$ (defined in \S 1), $e$ . $g$ . free product of two groups with some
amalgamated subgroups, and so we shall treat them together in an abstract
manner. In \S 2, we shall show that $\Gamma$ is isomorphic to a free group with
some explicitly given set of generators. In \S 3, we shall compute the number
of primitive conjugacy classes of $\Gamma$ with given ” degree “ or, what is the
same, evaluate certain “

$\zeta$ function ” attached to $\Gamma\subset G$ . This is based on
the results of \S 2. \S 4 is for the construction of all $\Gamma$ . The problem is noth-
ing but a purely combinatorial one. There are many $\Gamma$ and they have many
non-trivial deformations. In the case where $G=PL(2)$ over p-adic fields, these,
together with the remarks on spectral decompositions of $L^{2}(G/\Gamma)$ given at the
end of \S 3, show that although some $\Gamma$ (with $ G/\Gamma$ compact) are arithmetically
defined, their arithmetical properties are not preserved by taking subgroups
with finite indices (cf. also [2] \S 4); here everything is algebraic and, in gen-
eral, not arithmetic. For example, Ramanujan’s conjecture for some type of
modular cusp forms is equivalent with some conjecture for arithmetically de-
fined $\Gamma$ , but the latter fails to be true if we take some subgroups of $\Gamma$ with
finite indices instead of $\Gamma$ . Finally in \S 5, a remark on the structure of “

$\mathfrak{p}-$

unit groups “ of totally definite quaternion algebras, which is a direct appli-
cation of Theorem 1 (\S 2), is given.

Throughout the followings, for any set $S,$ $|S|$ will denote its cardinal num-
ber; and the summation symbol $\Sigma$ over some subsets of a set implies disjoint
union. For any ring $A$ and positive integer $n,$ $M(n, A)$ will denote the ring
of all $n$ by $n$ matrices whose entries are elements of $A$ .

* This work was supported by the National Science Foundation Grant.
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\S 1. Definition of $(G,l)$ and $\Gamma$ .
Let $G$ be an abstract group. Assume that for each element $x$ of $G$ we are

given some non-negative rational integer $1(x)$ , called the length of $x$ , satisfying
the following conditions $(G, 1, I),$ $(G, 1, II)$ ; where $G_{l}$ denotes the set of all
elements of $G$ with length 1 $(1=0,1, 2, )$ and $U$ denotes $G_{0}$ (once and for all).

$(G, l, I)$ For any $1=0,1,2$ , $\cdot$ .. , $G_{l}$ is non-empty, $U=G_{0}$ forms a subgroup
of $G$ and

$G_{\overline{\iota}}^{1}=G_{\iota}$ , $UG_{l}U=G_{l}$ , $|U\backslash G_{l}|<\infty$ for all $l=0,1,2,$ $\cdots$

According to this we can define the double coset ring $\mathfrak{R}(G, U)$ with respect

to $U$ and $G$ . Since each $G_{l}$ is a union of finite number of U-double-cosets, it
can be considered as an element of $\mathfrak{R}(G, U)$ (by taking formal sum instead of
disjoint union).

$(G, l, II)$ Put $|U\backslash G_{1}|=q+1$ . Then, as elements of $\mathfrak{R}(G, U)$ ,

(1) $G_{1}^{2}=G_{2}+(q+1)U$

(2) $G_{1}G_{\iota}=G_{l+1}+qG_{l-1}$ $(l\geqq 2)$ .
From this it follows directly that $|U\backslash G_{l}|=q^{\iota}+q^{l-1}$ for $1\geqq 1$ .
EXAMPLE 1. Let $G$ be the free group with $n$ generators $x_{1},$

$\cdots$ , $x_{n}$ . For
any $\chi\in G$ , let $l(x)$ be the sum of absolute values of exponents of $x_{1}$ , $\cdot$ .. , $\chi_{n}$ in
the reduced expression of $x$ . Then $G,$ $1$ satisfies $(G, 1, I, \Pi)$ , and $U=\{1\}$ ,
$q=2n-1$ .

EXAMPLE 2. $G=PL(2, k)=GL(2, k)/k^{*}$ where $k$ is a locally compact field
under a discrete valuation. Let $0$ (resp. p) be the ring of integers (resp. prime
ideal) of $k$ . As a representative modulo $k^{*}$ of any element $x$ of $G$ , we can
choose a matrix $((a_{ij}))(1\leqq i, j\leqq 2)$ such that $a_{ij}\in 0(1\leqq i, j\leqq 2)and\sum_{i,j=1}^{2}a_{ij}0=0$ .
Put $det.((a_{ij}))0=\mathfrak{p}^{\iota_{(x)}}$ . Then, $l(x)$ depends only on $x$ . Now $G,$ $l$ satisfies $(G,$ $l$ ,
$I,$ $\Pi$) with $q=N\mathfrak{p}$ , and $U=PL(2,0)=GL(2, \mathfrak{o})/0^{*}$ .

EXAMPLE 3. Let $U$ be any (abstract) group with a proper subgroup $H_{1}$

such that $(U:H_{1})<\infty$ . Let $H$ be another group with a subgroup $H_{2}$ with
index two, where $H_{2}$ is isomorphic to $H_{1}$ . Then the free product $G$ of $U$ and
$H$ with “ amalgamated subgroups “

$II_{1}$ and $H_{2}$ satisfics $(G, 1, I, \Pi)$ with some
length $l$ . $(G, 1)$ satisfying $(G, 1, I, \Pi)$ can be obtained in this manner if and
only if $G_{1}$ consists of a single U-double-coset. (Detailed explanation is given
in \S 5, Supplement 1.) E. g. $G=PL(2, k),$ $U$, etc. being as in example 2, $G$ is
the free product of $U$ and $\tilde{U}_{B}$ with amalgamated subgroup $U_{B}$ , where $U_{B}$ is
the group of all matrices $((a_{ij}))(1\leqq i, j\leqq 2)$ in $GL(2,0)$ with $a_{21}\equiv 0$ (mod p)

divided by the center, and $\tilde{U}_{B}$ is the normalizor of $U_{B}$ in $G$ ; namely $\tilde{U}_{B}=U_{B}$

$UU_{B}\omega$ , where $\omega=\left(\begin{array}{ll}0 & 1\\\pi & 0\end{array}\right),$
$\mathfrak{p}=\pi 0$ .
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Throughout the followings we shall fix once and for all any pair $(G, 1(x))$

satisfying the conditions $(G, l, I, \Pi)$ (as well as the above notations), and con-
sider subgroups $\Gamma$ of $G$ satisfying either $(\Gamma I)$ alone or both $(\Gamma I)$ and $(\Gamma\Pi)$

which are stated as follows.
$(\Gamma I)$ . $\Gamma$ is torsion-free, and $\Gamma\cap x^{-1}Ux=\{1\}$ for any $x\in G$ .
$(\Gamma\Pi)$ . $|U\backslash G/\Gamma|<\infty$ .
In example 1, $(\Gamma I)$ is satisfied by any subgroup of $G$ and $(\Gamma\Pi)$ is equi-

valent with $(G:\Gamma)<\infty$ . In example 2, $(\Gamma I)$ is equivalent with torsion-freeness
and discreteness of $\Gamma$ in $G$ , and $(\Gamma I),$ $(\Gamma II)$ is equivalent with torsion-freeness,
discreteness of $\Gamma$ in $G$ and compactness of $ G/\Gamma$ . In example 3, $(\Gamma I)$ is equi-
valent with the condition that no element of $\Gamma$ other than the identity is
conjugate to the elements of $U$ or $H$.

Our purpose is, given any $(G, l(x))$ satisfying $(G, l, I, II)$ and $\Gamma$ satisfying
$(\Gamma I- II)$ (or sometimes only $(\Gamma I)$) to study the structure, method for construc-
tion, and to see how conjugacy classes of $\Gamma$ are embedded in those of $G$ .

\S 2. The structure of $\Gamma$ .
2-1. In this section, we shall prove Theorems 1 and 1’.
THEOREM 1. Let $\Gamma$ be a subgroup of $G$ satisfying $(\Gamma I)$ . Then $\Gamma$ is iso-

morphic to a free group (over a set of at most countable generators). If more-
over $(\Gamma II)$ is satisfied, the number of generators of $\Gamma$ is finite and is equal to
$\frac{1}{2}(q-1)h+1$ , where $q+1=|U\backslash G_{1}|,$ $h=|U\backslash G/\Gamma|$ . (When $q$ is even, $h$ must

also be even.)

COROLLARY. Any torsion-free discrete subgroup $\Gamma$ of $PL(2, k),$ $k$ being as
in the example 2, is isomorphic to a free group (over a set of at most counta-
$bl\dot{e}$ generators). If moreover $ PL(2, k)/\Gamma$ is compact, the number of free genera-

tors of $\Gamma$ is equal to $-2-(q-1)h+11$ where $q=N\mathfrak{p}$ and $h=|PL(2,0)\backslash PL(2, k)/\Gamma|$ .
As for applications to “ p-unit groups ‘’ of totally definite quaternion alge-

bras, cf. \S 5, Supplement 2.
Before going into the proof of Theorem 1, we need a few elementary

1 $m$ nas on $(G, 1)$ . The proof of Theorem 1 will be based on Lemma 1, Lem-
ma 5 and on the particular choice of representatives of $ U\backslash G/\Gamma$ .

2-2. LEMMA 1. Let $\pi_{0},$ $\pi_{1},$ $\cdots$ , $\pi_{q}$ be a set of representatives of $U\backslash G_{1}$ .
Then for any $1=0,1,2$ , $\cdot$ .. , the product $\pi_{i_{1}}\pi_{\iota_{2}}$

..,
$\pi_{i_{l}}$ has length 1 if and only

if $\pi_{\iota_{n}}\pi_{\iota_{n+1}}\not\in U$ holds for all $n=1,2$ , – , 1–1; and conversely any element $x\in G$

with length 1 has a unique factorization of the form:
(3) $x=u\pi_{i_{1}}\pi_{i_{2}}\cdots\pi_{t_{l}}$

where $u\in U$ and $\pi_{in}\pi_{in+1}\not\in U$ for all $n=1,2,$ $\cdots$ , $l-1$ .
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In short, $G_{1}=\sum_{i=0}^{q}U\pi_{i}$ implies $G_{l}=\Sigma^{\prime}U\pi_{i_{1}}\cdots\pi_{i}$,, the disjoint union $\Sigma^{\prime}$ being

taken over all $0\leqq i_{1}$ , $\cdot$ .. , $i_{\iota}\leqq q$ such that $\pi_{in}\pi_{\iota_{n+1}}\not\in Ufor$ all $n=1,2$ , $\cdot$ .. , $l-1$ .
PROOF. By (2) we obtain

(4) $ G_{1}^{\iota}=G_{l}+cG_{l\rightarrow 2}+c^{\prime}G_{l-4}+\cdots$ $(l\geqq 1)$

where $c,$ $c^{\prime},$ $\cdots$ are non-negative integers. In fact, it is trivial for $l=1$ ; so
assume that (4) is true for some $1\geqq 1$ , and multiply $G_{1}$ on both sides. Then
from (2) follows directly that (4) is true also for $l+1$ .

(4) implies in particular that the length of a product of 1 elements of $G_{1}$

is at most equal to $l$ . Now, the expression of $G_{1}^{l}$ by the formal sum of left
U-cosets, multiplicity being taken into account, will be

(5) $\Sigma U\pi_{i_{1}}\cdots\pi_{\iota\iota}=\Sigma\prime U\pi_{i_{1}}\cdots\pi_{i_{l}}+$ lower length terms,

the first formal sum $\Sigma$ being taken over all $0\leqq i_{1},$ $\cdots$ , $i_{\iota}\leqq q$, the second formal
sum $\Sigma^{\prime}$ being taken over all $0\leqq i_{1}$ , $\cdot$ .. , $i_{l}\leqq q$ such that $\pi_{t_{n}}\pi_{\iota_{n+1}}\not\in U$ for all
$n=1,2$ , $\cdot$ .. , $l-1$ , On the other hand, the number of terms under $\Sigma J$ in (5) is
$q^{l}+q^{l-1}$ which is also equal to $|U\backslash G_{\iota}|$ . Thus by comparing (4) and (5) we see
that all left U-cosets under $\Sigma^{;}$ in (5) must be mutually distinct, elements of
such left U-cosets must have length $l$ , and that

$G_{l}=\Sigma\prime U\pi_{i_{1}}\cdots\pi_{i_{n}}$ (disjoint union)

which proves Lemma 1.
REMARK. Moreover we can easily verify that under the condition $(G, l, I)$

the statement of Lemma 1 is equivalent with the condition $(G, l, \Pi)$ for $G$ and
$l(x)$.

It is direct consequence of Lemma 1 that for any $x_{1},$ $\cdots$ , $x_{n}\in G$ we have

$l(x_{1}\cdots x_{n})\leqq l(x_{1})+$ $+l(x_{n})$

and that
$l(x_{1}\cdots x_{n})\equiv l(x_{1})+$ $+l(x_{n})$ $(mod 2)$ .

We say that the product $x_{1}\cdots x_{n}$ is free when the equality instead of the
above inequality holds.

LEMMA 2. Suppose $x,$ $y,$ $z\in G,$ $y\not\in U$. If the two products $xy,$ $yz$ are both
free, then the product $xyz$ is also free.

PROOF. Let $\pi_{0},$
$\cdots$ , $\pi_{q}$ be as in Lemma 1 and factorize $z=u\pi_{\lambda_{1}}$ ...

$\pi_{\lambda_{l}},$ $yu$

$=u^{\prime}\pi_{\mu 1}\cdots\pi_{\mu_{m}},$ $xu^{\prime}=u^{\prime\prime}\pi_{\nu 1}\cdots\pi_{\nu_{n}}$ , where $u,$ $u^{\prime},$ $u^{\prime\prime}\in U,$ $l=l(z),$ $m=l(y)>0,$ $n=l(x)$

(cf. lemma 1). By the assumption, $y\cdot z,$ $x\cdot y$ are free products; hence $\pi_{\mu m}\pi_{\lambda_{1}}\not\in U$ ,
$\pi_{\nu_{n}}\pi_{\beta 1}\not\in U$. Therefore by Lemma 1, $xyz=u^{\prime/}\pi_{\nu_{1}}\cdots\pi_{\nu_{n}}\pi_{\mu 1}\cdots\pi_{m},\pi_{\lambda_{1}}\cdots\pi_{\lambda_{l}}$ has
length $l+m+n$ . Q. E. D.

LEMMA 3. Let $x\cdot y$ be a free product and let $xy=u\pi_{i_{1}}$ ...
$\pi_{i_{l}}$ be the fac-

torization (3) of $xy$ . Then $x=u\pi_{\iota_{1}}\cdots\pi_{\iota_{m}}u^{\prime},$ $y=u^{\prime-1}\pi_{im+1}\cdots\pi_{it}$ with some $u^{\prime}\in U$
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and $m=l(x)$ .
PROOF. Let $y=u^{\prime}\pi_{Jm+1}\cdots\pi_{jl}$ be the factorization (3) for $y$ . Since the fac-

torization of $xy$ can be obtained by factorizations of $x,$ $y$ and then by carrying
the $e1_{\vee}^{\circ}m_{\vee}^{\mathfrak{D}}nts$ of $U$ to the left (no influence to y-side), we see directly by the
uniqueness of factorization (3) for $xy$ that $j_{m+1}=i_{m+1},$ $\cdots$ , $j_{l}=i_{l}$ , and hence
$y=u^{\prime}\pi_{t_{m+1}}\cdots\pi_{i_{l}}$ for some $u^{\prime}\in U$. Q. E. D.

LEMMA 4. Let $x,$ $y\in G$ and put $l(xy)=l(x)+l(y)-2d$ . Then $d\leqq l(x),$ $l(y)$ ;
and if $x=x^{\prime\prime}\cdot x^{\prime},$ $y=y^{\prime}\cdot y^{\prime\prime}$ are free products with $d\leqq l(x^{\prime}),$ $l(y^{\prime})$ , then $l(x^{\prime}y^{\prime})$

$=l(x^{\prime})+l(y^{\prime})-2d$ .
PROOF. The first assertion is clear. Let $x=u\pi_{i_{1}}\cdots\pi_{i_{l}}$ , $y=u^{\prime}\pi_{11}\cdots\pi_{Jm}b_{\vee}^{\circ}$

the factorization (3) of $x,$ $y$ . By Lemma 3, $x^{\prime}=u^{\prime\prime}\pi_{i_{\theta}}\cdots\pi_{i_{l}},$ $y^{\prime}=u^{\prime}\pi_{j_{1}}\cdots\pi_{j_{t}}u^{\prime\prime\prime}$

with $u^{\prime\prime},$ $u^{\prime\prime\prime}\in U,$ $l(x^{\prime})=l-s+1\geqq d,$ $I(y^{\prime})=t\geqq d$ . It is enough to prove that
$l(\pi_{i_{s}}\cdots\pi_{\iota\iota}u^{\prime}\pi_{11}\cdots\pi_{Jc})=(l-s+1)+t-2d$ . This can be seen easily from the pro-
$c_{\vee}^{D}ss$ of obtaining the factorization (3) for $xy$ from that of $x$ and $y$ above.

Q. E. D.
LEMMA 5. Let $\chi_{1}$ , $\cdot$ .. , $x_{n}$ be any elements of $G$ and put

$l(x_{i}x_{i+1})=l(x_{i})+l(x_{i+1})-2d_{i}$ $(1 \leqq i\leqq n-1)$ .
If $l(x_{i+1})>d_{i}+d_{i+1}$ holds for all $i(1\leqq i\leqq n-1)$, ihen

$l(x_{1}\cdots x_{n})=l(x_{1})+$ $+l(x_{n})-2(d_{1}+\cdots+d_{n-1})$ .

$|^{\frac{d_{i-1}}{\frac{----||^{\prime}/////}{\overline{x_{i-1}}}}}||^{\frac{d_{i-1}d_{i}}{\frac{///////||_{\backslash }\backslash \backslash \backslash \backslash \backslash }{\overline{x_{i}}}}}||^{\frac{d_{i}d_{t+1}}{\frac{\backslash \backslash \backslash \backslash \backslash \backslash ||_{-}^{-}--}{\overline{x_{i+1}}}}}|\cdot.\cdot\cdot\cdot$

.
PROOF. Factorize each $x_{i}$ into free product $x=a_{i}b_{i}c_{i}$ with $l(a_{i})=d_{i-1}$ ,

$l(b_{i})=l(x_{i})-d_{i-1}-d_{i}>0,$ $l(c_{i})=d_{i}$ (hare we understand $a_{1}=c_{n}=1$). Lemma 4
shows that $c_{i}a_{i+1}\in U(1\leqq i\leqq n-1)$ and that $l(b_{i}c_{i}a_{i+1}b_{i+1})=l(b_{i})+l(b_{i+1})$ , and
hence the product $(b_{i}c_{i}a_{i+1})\cdot b_{i+1}$ and hence also the product $(b_{i}c_{i}a_{i+1})\cdot(b_{i+1}c_{i+1}a_{i+2})$

are free. Now our lemma follows directly from Lemma 2. Q. E. D.
$CoROLLARY$ . Let $S$ be a subset of $G$ such that $ S\cap S^{-1}=\phi$ . Assume that

$1(y)>d_{xy}+d_{yz}$ holds for any three elements $x,$ $y,$ $z\in SUS^{-1}$ with $xy\neq 1,$ $yz\neq 1$ ,

where $d_{xy},$ $d_{yz}$ are defined by $1(xy)=l(x)+l(y)-2d_{xy},$ $l(yz)=l(y)+l(z)-2d_{yz}$ .
Then the subgroup of $G$ generated by $S$ is the free group over $S$ .

PROOF. By Lemma 5, any reduced word $\neq 1$ over $S$ has positive length,
and hence cannot be the identity. Q. E. D.

2-3. Now let $\Gamma$ be a subgroup of $G$ satisfying $(\Gamma I)$ . Since $|U\backslash G_{l}|<\infty$

for $1=0,1,2,$ $\cdots$ , $|U\backslash G|$ is countable. Put $G=\sum_{i=1}^{b}Ux_{i}\Gamma,$ $ h=|U\backslash G/\Gamma|\leqq\infty$ . Let
$\mathfrak{R}(G, U)$ be the double coset ring with respect to $U$ and $G$ , and let $\mathfrak{T}$ be the
subring of $\mathfrak{R}(G, U)$ generated by $G_{\iota}(1=0,1, 2, )$ . For each U-double-coset
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$UyU$ in $G$ , we correspond an $h\times h$ matrix whose ( $i$ , j)-component is the ele-
ment of the group ring $Z[\Gamma]$ of $\Gamma$ over the ring of rational integers $Z$ de-
fined by the formal (finite) sum of all elements of $\Gamma\cap x_{i}^{-1}UyUx_{j}$ . Then this
gives a homomorphism $\varphi$ of $\mathfrak{R}(G, U)$ into the ring $M$ of all $h\times h$ matrices
$((m_{ij}))$ over $Z[\Gamma]$ such that for each $i$ (resp. $j$), $m_{ij}=0$ for almost all $j$ (resp.
$i)$ , and hence the restriction $\varphi|\mathfrak{T}$ of $\varphi$ to $\mathfrak{T}$ gives that of (

$\mathfrak{T}$ into $M$. Put
$T_{\iota}=\varphi(G_{l})(l=0,1, 2, )$ . Then by (4)

(6) $ T_{1}^{l}=T_{\iota}+cT_{l-2}+c^{\prime}T_{l-4}+\cdots$

where $c,$
$c^{\prime},$ $\cdots$ are non-negative integers. Since any element $\gamma$ of $\Gamma$ is con-

tained in some $G_{l}$ , and hence appears in $(1,1)$ component of $T_{l}$ , we see directly
from (6) that $\Gamma$ is generated by the set of elements of $\Gamma$ which appear in
some components of $T_{1},$ $i$ . $e$ . $\Gamma$ is generated by $\Gamma\cap x_{i}^{-1}G_{1}x_{j}(1\leqq i, j\leqq h)$ . It is
also easy to see that if we put $A_{l}=((a_{ij}^{(l)})),$ $a_{vj}^{(l)}=|\Gamma\cap x_{i}^{-1}G_{l}x_{j}|$ , then

(7) $a_{ij}^{(l)}=a_{j\iota}^{(l)},\sum_{j=1}^{h}a_{ij}^{(l)}=\sum_{i-1}^{h}a_{ij^{)}}^{(l}=q^{\iota}+q^{l-1}$

for any $l=1,2,$ $\cdots$ , and $1\leqq i,$ $j\leqq h$ .
2-4. THE PROOF OF THEOREM 1. (A) Put $ G=\sum_{i=1}^{h}Ux_{i}^{\prime}\Gamma$ (disjoint), and

$S_{ij}^{\prime}=x_{i^{\rightarrow 1}}^{\prime}G_{1}x_{f}^{\prime}\cap\Gamma(1\leqq i, j\leqq h)$ . We have seen that these $S_{1t}^{\prime}(1\leqq i, j\leqq h)$ to-
gether generate $\Gamma$ . To find a minimum set of generators, we need some
special representatives of $ U\backslash G/\Gamma$ .

For that purpose, we fix once and for all a set of representatives $\pi_{0},$ $\pi_{1}$ ,
... , $\pi_{q}$ of $U\backslash G_{1}$ , and consider the totality $\Pi_{\iota}$ of all elements of $G_{l}$ which have
expressions of the form $\pi_{t_{l}}\cdots\pi_{t_{1}}$ where $\pi_{i_{n+1}}\pi_{i_{n}}\not\in U$ for $n=1,2$ , $\cdot$ .. , $l-1$ . By

Lemma 1, $\Pi_{l}$ is a set of representatives of $U\backslash G_{l}$ ; hence $\Pi=\cup\Pi_{\iota}\infty$ is that of
$l-0$

$U\backslash G$ . We shall introduce in $\Pi$ a lexicographic ordering in the following
manner.

1) $x\in\Pi_{\iota},$ $y\in\Pi_{l^{\prime}},$ $l>l^{\prime}\Rightarrow x>y$ .
2) $x,$ $y\in\Pi_{\iota},$

$x=\pi_{i_{l}}\cdots\pi_{i_{1}},$ $y=\pi_{j}$ $\pi_{j_{1}}$ ,

$i_{1}=j_{1},$ $\cdots$ , $i_{m-1}=j_{m-1},$ $i_{m}>j_{m}$ for some $m\geqq 1\Rightarrow x>y$ .
Now let $ Ux\Gamma$ be any $ U\backslash G/\Gamma$ double-coset and let $x_{0}$ be the smallest element
among $Ux\Gamma\cap^{\Pi}(\neq 0)$ . We shall call $x_{0}$ the smallest representative of $ Ux\Gamma$ ,

and denote by $\mathfrak{R}$ the set of all such smallest representatives of $ U\backslash G/\Gamma$ double-
cosets. Thus $G=U\mathfrak{R}\Gamma,$ $|\mathfrak{R}|=h$ , and $\mathfrak{R}\ni 1$ .

Moreover $\mathfrak{R}$ has the following properties. Let $x\in \mathfrak{R},$ $x\neq 1$ and put $x=\pi_{i\iota}$

$\pi_{t_{1}}(l=l(x)>0)$ . Then $y=\pi_{i_{l-1}}\cdots\pi_{i_{1}}$ also belongs to $\mathfrak{R}$ , and it is the only
element in $\mathfrak{R}$ which is smaller than $x$ and which satisfies $x^{-1}G_{1}y\ni 1$ . In fact,
let us suppose that $y$ were not smallest in $Uy\Gamma\cap^{\Pi}$ and let $y^{\prime}$ be the smallest.



Discrete subgroups of the two by two projective linear group 225

Put $y=uy^{\prime}\gamma,$ $u\in U,$ $\gamma\in\Gamma$ . Then $x\gamma^{-1}=\pi_{i_{l}}y\gamma^{-1}=\pi_{i_{l}}uy^{\prime}$ . Choose $u^{\prime}\in U$ so
that $ u^{\prime}x\gamma^{-1}=u^{\prime}\pi_{i_{l}}uy^{\prime}\in\Pi\cap Ux\Gamma$ . If $l(y^{\prime})<l(y)=l-1$ , then $l(u^{\prime}x\gamma^{-1})\leqq 1+l(y’)$

’

$<l=l(x)$ ; hence a contradiction. So $l(y^{\prime})=l(y)=l-1$ . But the uniqueness of
factorization (cf. Lemma 1) shows that $y^{\prime}<y$ implies $u^{\prime}\pi_{i_{l}}uy^{\prime}<\pi_{i_{l}}yi$ . $e$ . $u^{\prime}x\gamma^{-1}$

$<x$ ; hence a contradiction. This proves that $y\in \mathfrak{R}$ . Secondly assume that
$z\in \mathfrak{R},$ $z<x$ and $x^{-1}G_{1}z\ni 1$ . Thus $z=\pi x$ with $\pi\in G_{1}$ . Since $1(z)\leqq l(x)$ by
assumption we have $l(z)=l(\pi x)=l-1$ and hence $\pi=u\pi_{i\prime}^{-1}$ with $u\in U,$ $i$ . $e$ .
$z=u\pi_{i_{l\leftarrow 1}}\cdots\pi_{i_{1}}$ . Since $z\in \mathfrak{R},$ $u=1i$ . $e$ . $z=y$ : hence the second assertion is
proved.

Now put $\mathfrak{R}=\{x_{1}, x_{2}, \},$ $ 1=x_{1}<x_{2}<\ldots$ ; so, $ G=\sum_{i=1}^{h}Ux_{i}\Gamma$ . Put $S_{ij}=x_{i}^{-1}G_{1}x_{J}$

$\cap\Gamma$ . The above argument shows that for each $j>1$ there exists unique
suffix $i=\rho(j)<j$ such that $S_{if}\ni 1$ . We shall show that the following subsets
of $G$ :

$S_{ij}$ $(1\leqq i<j\leqq h, i\neq\rho(j))$ ,
$(*)$

$S_{\rho(!)j}-\{1\}$ $(2\leqq j\leqq h)$

and
$T_{i}$ $(1\leqq i\leqq h)$

where $T_{i}$ is subset of $S_{ii}$ satisfying $S_{ii}=T_{i}\cup T_{i}^{-1},$ $ T_{i}\cap T_{i}^{-1}=\phi$ , are mutually

disjoint, and that $\Gamma$ is the free group over their union $S$ . Since $\sum_{j=1}^{h}|S_{ij}|=\sum_{i-1}^{h}|S_{ij}|$

$=q+1$ by (6), this would show that if $(\Gamma II)$ is satisfied, $i$ . $e$ . if $ h<\infty$ , then $\Gamma$

is a free group with $(q-1)h/2+1$ generators.
(B) First, let $\gamma\in S_{ij},$ $\gamma\neq 1$ and put $\gamma=x_{i}^{-1}\pi x_{j},$ $\pi\in G_{1}$ . Then, the producl

$x_{i}^{-1}\cdot\pi\cdot x_{j}$ is free, i. e. $1(\gamma)=l(x_{i})+l(\pi)+l(x_{j})$ . In fact, let us first show that the
product $\pi\cdot x_{j}$ is free. Suppose $j\neq 1(i. e. X_{j}\neq 1)$ , otherwise it is trivial. Let
$x_{j}=\pi_{\iota\iota}\cdots\pi_{i_{1}}(l=l(x_{j}))$ be the factorization which we defined above. Suppose
$\pi\cdot x_{j}$ were not free, then $\pi\pi_{i_{l}}\in U,$ $i$ . $e$ . $\gamma=x_{i}^{-1}u\pi_{i_{l-1}}\cdots\pi_{i_{1}}$ with $u\in U$, but we
have shown that $x_{j},$ $=\pi_{i_{l-1}}\cdots\pi_{i_{1}}\in \mathfrak{R}$ . Thus $x_{j},$ $=u^{-1}x_{i}\gamma\in Ux_{i}\Gamma$ , and hence
$j^{\prime}=i$ , and hence $\gamma=x_{i}^{-1}ux_{i}\in x_{i}^{-1}Ux_{i}$ . By $(\Gamma I)$ this implies $\gamma=1$ , which is a
contradiction to our hypothesis, and so, the product $\pi\cdot x_{j}$ is free. If we apply
the same argument for $\gamma^{-\iota}\in S_{ji}$ , we see that the product $ x_{i}^{-1}\cdot\pi$ is also free,
and hence by Lemma 2, the product $x_{i}^{-1}\cdot\pi\cdot x_{j}$ is free.

(C) Now let $\gamma=\chi_{i}^{-1}\pi x_{j}\in S_{ij},$ $\gamma^{\prime}=x_{k}^{-1}\pi^{\prime}x_{\iota}\in S_{kl},$ $\pi,$ $\pi^{\prime}\in G_{1},$
$\gamma,$

$\gamma^{\prime}\neq 1$ ,
and consider the product $\gamma\gamma^{\prime}=x_{i}^{-1}\pi x_{i}x_{k}^{-1}\pi^{\prime}x_{\iota}$ . We shall show that

(8) $l(\gamma\gamma^{\prime})=l(\gamma)+l(\gamma^{\prime})-2d$ with $d\leqq{\rm Min}(l(x_{j}), l(x_{k}))$

unless $(l, k)=(i, j)$ and $\gamma\gamma^{\prime}=1$ .
Put $x_{j}=\pi_{J\iota}\cdots\pi_{j},,$ $x_{k}=\pi_{km}\cdots\pi_{h_{1}},$ $l=l(x_{j}),$ $m=l(x_{k})$ , and put $l(x_{j}x_{k}^{-1})=l+m$

$-2d^{\prime}$ $(d^{\prime}\leqq{\rm Min}(l, m)$ by Lemma 4). If $d^{\prime}<{\rm Min}(l, m)$ then $d=d^{\prime}<{\rm Min}(l, m)$

by Lemma 5; so (8) holds. So let us suppose that $d’={\rm Min}(l, m)$ . This im-
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plies that either $l>m$ , and $k_{1}=j_{1},$ $\cdots$ , $k_{m}=j_{m}$ or $l<m$ and $j_{1}=k_{1},$ $\cdots$ , $j_{\iota}=k_{\iota}$ ,

or $j=k$ . First, assume that $l>m$ is the case. Then $\gamma\gamma^{\prime}=x_{i}^{-1}\pi\pi_{j\dagger}$ $\pi_{Jm+1}\pi^{\prime}x_{\iota}$ ,
and hence to show (8), it suffices to show that $\pi_{m+1}\pi^{\prime}\not\in U$ . Suppose on the
contrary that $\pi_{Jm+1}\pi^{\prime}\in U$, and put $\pi_{Jm+1}x_{k}=x_{k},$ . (Since it is a right free factor
of $x_{j}$ , it belongs to $\mathfrak{R}.$) Then $x_{k^{\prime}}x_{k}^{-1}\pi^{\prime}\in U$ , which implies that $x_{k^{\prime}}\gamma^{\prime}x_{l}^{-1}\in U$,
and hence $k^{\prime}=l$ , and hence $\gamma^{\prime}=1$ , which is a contradiction. So we have
$\pi_{jm+1}\pi^{\prime}\not\in U$ , and hence (8) is valid for the case $l>m$ . Just by the same map-

ner, we see that (8) holds for the case $l<m$ . Finally if $j=k,$ (8) is equivalent
with $\pi\pi^{\prime}\not\in U$. Suppose on the contrary that $\pi\pi^{\prime}\in U$ . Then $x_{i}^{-1}\gamma\gamma^{\prime}x_{k}\in U$, and
hence $\chi_{k}\in Ux_{i}\Gamma$ i. e. $k=i$ and $\gamma\gamma^{\prime}\in x_{i}Ux_{t}^{-1}$ , and hence $\gamma^{\prime}=\gamma^{-1}$ , and (8) is
completely proved.

This shows that the sets $(*)$ are mutually disjoint, and assertions (B) and
(C) together enable us to apply the Corollary of Lemma 5 for the set

$S=\bigcup_{1\leqq\iota\triangleleft\leqq h}S_{i}J_{2\ovalbox{\tt\small REJECT}\leqq\iota}\bigcup_{\prime}(S_{\beta(j)j}-\{1\})\bigcup_{1\leqq i\leqq h}T_{i}$

$\#\rho(J)$

which proves the theorem. Q. E. D.
Thus the following theorem is obtained from the above proof of Theorem 1.
THEOREM 1‘. $\Gamma$ , and other notations being as in Theorem 1 and as in the

proof of Theorem 1 (part $(A)$), the subsets $(*)$ of $\Gamma$ are mutually disjoint and
their union $S=S(\Gamma)$ is a set of free generators of $\Gamma$ .

REMARK. For each $j(2\leqq j\leqq h),$ $i=\rho(j)$ is the minimum suffix $(1 \leqq i\leqq h)$

such that $ S_{ij}\neq\phi$ , In fact, if $\gamma=X_{1}^{-1}\pi x_{j}\in S_{ij}$ , we have (by the definition of
$x_{i}\in \mathfrak{R}),$ $u\pi^{-1}x_{i}\geqq x_{J}$ where $u\in U$ is chosen such that $ u\pi^{-1}x_{t}\in\Pi$ . This implies
$x_{i}\geqq x_{\rho(j)},$

$i$ . $e$ . $i\geqq\rho(j)$ ,

\S 3. Conjugacy classes of $\Gamma\subset G$ with given degree.

Throughout this section we assume that $\Gamma$ is a subgroup of $G$ satisfying
$(\Gamma I)$ and $(\Gamma II)$ , and hence is isomorphic to a free group with finite number
of generators. For any conjugacy class $t\gamma$ } $\neq\{1\}$ of $\Gamma$ , we define its degree
by

$\deg\{\gamma\}={\rm Min}_{c,}l(x^{-1}\gamma x)x($ $(>0)$ .

Any element $\gamma\neq 1$ of $\Gamma$ or conjugacy class $\{\gamma\}\neq\{1\}$ in $\Gamma$ is called primitive
if $\gamma$ generates its centralizer in $\Gamma$ (which is always free cyclic group); hence
any element (resp conjugacy class) $\neq\{1\}$ in $\Gamma$ is a positive power of the
uniquely determined primitive element (resp. conjugacy class). Our purpose
in this section is to count the number of primitive conjugacy classes of $\Gamma$

with given degree, or what is the same, to evaluate the following forma1
infinite product:
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(9) $Z_{\Gamma}(u)=\prod_{P}(1-u^{\deg P})^{-1}$

where $t^{}’/$ runs over all primitive conjugacy classes of $\Gamma$ . Taking $log$ . of both
sides of (9), we have

(9) $\log Z_{\Gamma}(u)=\sum_{P,m\geqq 1}\frac{u^{mdgP}P}{m}=\sum_{m=1}^{\infty}\frac{N_{m}}{m}u^{m}$

where $N_{m}=\sum_{\deg P|m}\deg P$ is the sum of $\deg P$ for all $P$ such that $\deg P$ divides
$m$ . More generally, let $\rho$ be a finite dimensional representation of $\Gamma$ over a
field of characteristic $0$ , and let $\chi(\gamma)(\gamma\in\Gamma)$ be the trace of $\rho(\gamma)$ . Let us define
$Z_{\Gamma}(u, \chi)$ by:

$(9^{\prime\prime})$ $\left\{\begin{array}{l}1ogZ_{\Gamma}(u,\chi)=\sum_{P.m\geqq 1}\chi(\frac{P^{m})u^{mdegP}}{m}=\sum_{m=1}^{\infty}\frac{N_{m.\chi}}{m}u^{m}\\logZ_{\Gamma}(0,\chi)=l\end{array}\right.$

where $\chi(Q)=\chi(\gamma)$ for any conjugacy class $Q=\{\gamma\}$ in $\Gamma$ and

$N_{m,x}=\sum_{d|m}d\sum_{\deg P=d}\chi(P^{m/a})$ .

When $G=PL(2, k),$ $k$ being a locally compact field under a discrete valua-
tion, our $Z_{\Gamma}(u, \chi)$ is an analogue of $S^{3}.1b\circ.rg’ s\zeta$ functions for discrete sub-
groups of $SL(2, R)$ . According to the structure theorems (Theorem 1’) in \S 2,

we can evaluate our $Z_{\Gamma\backslash }^{\prime}u,$
$\chi$ ) algebraically (for general $G$). Namely, put

$G=\sum_{i=1}^{h}Ux_{i}\Gamma(h=|U\backslash G/\Gamma|),$ $S_{ij}^{(l)}=x_{i^{-1}}G_{l}x_{j}\cap\Gamma,$ $S_{ij}=S_{tj}^{(1)}(l\geqq 0,1\leqq i, j\leqq h)$ . Let $\varphi$

be as in \S 2 the homomorphism of the subring $\mathfrak{T}$ of $\mathfrak{R}(G, U)$ generated by
$G_{l}(l=0,1, 2, )$ into $M(h, Z[\Gamma])$ defined by

$\varphi(G_{\iota})=((\sum_{\gamma\in S_{ij}^{(l)}}\gamma))$

.

$\rho$ can be extended to the representation of the group ring $Z[\Gamma]$ of $\Gamma$ in a
natural manner, and hence also to that of $M(h, Z[\Gamma])$ . Thus

$G_{l}\rightarrow A_{\theta}=((\sum_{r\in s_{\iota j}^{(\iota)}}\rho(\gamma)))$

$(l\geqq 0)$

gives a representation of $\mathfrak{T}$ with degree $\chi(1)h$ . (These notations will be kept
throughout this section.) Then we have:

THEOREM 2. The notations being as above, we have

(10) $Z_{\Gamma}(u, \chi)=(1-u^{2})^{-g_{\chi}}\det(1-A_{1}^{x}u+qu^{2})^{-1}$

where $g_{\chi}=(q-1)h\chi(1)/2$ .
The proof of this will be given after another lemma. Let $\pi_{0}$ . $\pi_{1},$ $\pi_{q}$

be a set of representatives of $U\backslash G_{1}$ , and let $\Pi$ and its lexicographic orderings
be defined as before. Let $x_{1},$ $ x_{h}\in\Pi$ be the smallest representatives of
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$ U\backslash G/\Gamma$ with respect to our ordering. As before put $S_{ij}^{(l)}=x_{i^{-1}}G_{l}x_{j},$ $S_{ij}=S_{ij}^{(1)}$

$(1\geqq 1,1\leqq i, ]\leqq h)$ for such $x_{i}$ . Thus the sets $S_{ij}(1\leqq i<j\leqq h, i\neq\rho(j)),$ $S_{\beta(j)j}$

$-\{1\}(2\leqq 1\leqq h),$ $T_{i}(1\leqq i\leqq h)$ , where $S_{ii}=T_{i}\cup T_{?}^{\sim 1},$ $ T_{i}\cap T_{i}^{-1}=\phi$ , are mutually
disjoint and their union $S$ constitutes a set of free generators of $\Gamma$ .

LEMMA 6. The notations being as above,
(i) Let $i,$ $j(1\leqq i, j\leqq h)$ and $1\geqq 1$ be given. Then $S_{ij}^{(l)}$ consist of all elements

$\gamma$ of the form:
(11) $\gamma=\sigma_{ii_{1}}\sigma_{i_{1}i_{2}}\cdots\sigma_{i_{l-1}i}$ ,

where $i_{1},$ $\cdots$ , $i_{\iota-1}$ are any set of indices among $\{$ 1, 2, $\cdots$ , $h\}$ such that $S_{im-1^{i}m}$ are
non-empty ($m=1,2$ , $\cdot$ .. , 1–1; we understand that $i_{0}=i,$ $i_{m}=j$) $;\sigma_{it_{m}}m-1$ are any
elements of $S_{t_{m-1}t_{m}}$ $(m=1,2, \cdots , l-1)$ such that if $i_{m-1}=i_{m+1}$ then $\sigma\sigma_{ii}$

$\neq 1$ .
Moreover for any element of $S_{i.j}^{(\iota)}$ the expression (11) is unique. (Since $S$ is

a set of free generators of $\Gamma$ , this expression (11) is nothing but the expression

of $\gamma$ by the given free generators of $\Gamma$–the only thing different is that some
of $\sigma_{im-1^{i}m}$ can be the identity 1.)

(ii) For the sake of simplicity put $\sigma_{t)}=\sigma_{i_{l)-1}t_{v}}(1\leqq v\leqq l)$ . Assume thal
$\sigma_{\iota}\sigma_{1}=$

$=\sigma_{\iota-k+1}\sigma_{k}=1,$ $\sigma_{\iota-k}\sigma_{k+1}\neq 1(k\geqq 0)$ . Then we have
$\deg\{\gamma\}=l-2k$ .

(iii) Let $k=0$ . Then the conjugates of $\gamma$ in $\Gamma$ which are contained in
$S_{mn}^{(\iota)}$ for some $1\leqq m,$ $n\leqq h$ are

$x=\sigma_{1}\sigma_{2}\cdots\sigma_{l\prime}\sigma_{2}\cdots\sigma_{l}\sigma_{1},$ $\cdots,$ $\sigma_{\iota}\sigma_{1}\cdots\sigma_{l-1}$ .

If $r(r\geqq 1)$ of the above expressions coincides with $x(e.g$ . $\sigma_{1}=\ldots=\sigma_{r}=1$ can
happen), then $x$ is contained in exactly $r$ different $S_{mn}^{(l)}’ s$ ( $l$ is fixed).

PROOF. (i): Immediate, by homomorphism $\varphi$ and (4) of \S 1. (ii), (iii): Im-
mediate, by the fact that $S$ is a set of free generators of $\Gamma$ and that for any
$\gamma\neq 1$ of $\Gamma,$ $\deg\{\gamma\}$ is the smallest integer 1 such that $\gamma$ is conjugate (in $\Gamma$)

to some element of $\bigcup_{i=1}^{h}S_{ii}^{(l)}$ . Q. E. D.

The above lemma shows that if $f(\gamma)$ is any class function on $\Gamma$ whose
value domain is an additive abelian group, then we have, for any positive
integer $m$ ,

(12) $\sum_{i=1}^{h}$

$\sum_{\tau\in s_{\gamma}^{(m)};,\deg^{l}l^{ii_{\}=m}}}f(\gamma)=\sum_{d1m}d\sum_{\deg P=d}f(P^{m/d})$

.

Denote the both sides of (12) by $N_{m.f}$ and put

$a_{m,f}=\sum^{h}$
$\Sigma$ $f(\gamma)$ $(m\geqq 1)$ .

$i=1\gamma s_{ii}^{(m)}$
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Then by Lemma 6 (ii), we have

(13) $a_{m,f}=N_{m,f}+(q-1)\sum_{k=1}^{[m-1/2]}q^{k-1}N_{m-2k,f}$ $(m\geqq 1)$

or what is the same,

(13) $N_{m,f}=a_{m,f}-(q-1)\sum_{k=1}^{[m-I/2]}a_{m-2k,f}$ .

THE PROOF OF THEOREM 2. In (13) put $ f=\chi$ , the character of $\rho$ Thus
$N_{m,\chi}$ coincides with the one defined by $(9^{\prime/})$ , and we have $a_{m,x}=tr$ . $A_{m}^{x}$ . Now
(1), (2) of \S 1 is equivalent with the following equality between the formal
power series:

$\sum_{m=0}^{\infty}G_{m}x^{m}=(1-x^{2})(1-G_{1}x+qx^{2})^{-1}$ ,

where $G_{m}(m\geqq 0)$ are considered as elements of $\mathfrak{T}\subset \mathfrak{R}(G, U)$ . Since $G_{m}\rightarrow A_{m}^{x}$

gives a representation of $\mathfrak{T}$ . we have

(14) $\sum_{m-0}^{\infty}A_{n\iota}^{X}x^{m}=(1-x^{2})(1-A_{1}^{\chi}x+qx^{2})^{-1}$ .

Let $a_{1},$
$\cdots$ , $a_{m}(M=\chi(1)h)$ be the eigenvalues of A\S and put $1-a_{i}x+qx^{2}$

$=(1-\alpha_{i}x)(1-\alpha_{i}^{\prime}x)(1\leqq i\leqq M)$ . Then, by (14), the eigenvalues of $A_{m}^{x}(m\geqq 1)$ are

$\alpha_{i}^{m}+\alpha_{\iota^{m}}^{\prime}+(q-1)\sum_{k=1}^{[m/2]-1}q^{k-1}(\alpha_{i}^{m-2k}+\alpha_{t^{m-2k}}^{\prime})+\epsilon_{i}(m)(1\leqq i\leqq m)$

where $\epsilon_{i}(m)=q^{m/z}-q^{m/2-1}$ ( $m$ even), $=(q^{m-1/2}-q^{m-8/2})(\alpha_{i}+\alpha_{i}^{\prime})$ ($m$ odd). From this
follows directly that the eigenvalues of

$A_{m}^{\chi}-(q-1)\sum_{k=1}^{[m/2]}A_{m-2k}^{\chi}$ $(m\geqq 1)$

are $\alpha_{i}^{m}+\alpha_{i}^{\prime m}(1\leqq i\leqq M)$ ; hence we have:

(15) $a_{m,\chi}-(q-1)\sum_{k=1}^{[m/2]}a_{m-2k,\chi}=\sum_{i=1}^{M}(\alpha_{i}^{m}+\alpha_{i^{m}}^{\prime})$ .

By (13) and (15), we have

(16) $N_{m,x}=\sum_{i=1}^{h}(\alpha_{i}^{m}+\alpha_{i}^{r_{m}})+\{0m:odd(q-1)h\chi(1).\cdot.\cdot.\cdot m:even$

Now our theorem follows immediately from (16). Q. E. D.
REMARK 1. In the case of $G=PL(2, k),$ $k$ being a locally compact field

under a discrete valuation, the above formulae (10) can also be obtained by
spectral decomposition of induced representation $\Gamma\uparrow GInd$ . $\rho$ and by calculating its

trace by making use of Gelfand-Graev’s trace formula for unitary representa-
tions of $SL(2, k)$ . Comparing this with our algebraically obtained formula
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(10), we get information on the multiplicity of “ special representation “ (an-
alogue of the first member of the discrete series in $SL(2, R)$ -case) (cf. Gelfand-
Graev [1]) of $G$ in $L^{2}(G/\Gamma)$ . Cf. [2], \S 2--determinant part correspond to
principal series of class one (more or less well-known), and $(1-u^{2})^{-g_{x}}$ cor-
respond to “ special representation “ part.

REMARK 2. As before, put

$\det(1-A_{1}^{\chi}u+qu^{2})=\prod_{i=1}^{JJ}(1-\alpha_{i}u)(1-\alpha_{i}^{\prime}u),$ $\alpha_{i}\alpha_{i}^{\prime}=q$ .

If $\rho$ is unitary, then $A_{\iota}^{x}$ are hermitian, and hence $a_{i}=\alpha_{i}+\alpha_{i}^{\prime}$ are real. By a
trivial estimation (cf. the proposition below) we have $|a_{i}|\leqq q+1(1\leqq i\leqq M)$ ,
and $|a_{i}|<q+1$ except for some obvious cases. But in general (even if $\rho=1$),

it is not true that $|\alpha_{i}|=|\alpha_{i}^{\prime}|=q^{1/2}$ (or equivalently that $|a_{i}|\leqq 2q^{1/2}$ ). In the
case where $G=PL(2, k),$ $k$ being the same as in the previous remark, it is
equivalent to say that in general $L^{2}(G/\Gamma)$ contains supplementary series. By
Corollary 2 of Theorem 3 (\S 4) it is easy to construct such examples. Some
of them are given in [2], \S 4.

Although Ramanujan’s conjecture for p-part of some modular cusp forms
(which belong to some congruence subgroups of the modular group) is equi-
valent with the statement that, for certain $\Gamma$ and $\rho,$ $Ind\rho\Gamma\uparrow G$ does not contain

supplementary series, such examples seem to diminish the hope of proving it
by group theoretical methods. As for corresponding polyno.nials (and $c:_{\vee}\prime am$ .
ples of analogue of Ramanujan’s conjectures) for discrete subgroups of $Sp(4, Q_{p})$ ,

cf. [4] (though stated in different formulations).

Finally put $G^{\prime}=\bigcup_{i=0}^{\infty}G_{2l}$ . By $(G, 1, I, II),$ $G^{\prime}$ forms a $norm3$ [ subgroup of $G$

with index two in $G$ . Put $\Gamma^{\prime}=G^{\prime}\cap\Gamma$ and define sgn by sgn $\gamma=1$ for
$\gamma\in\Gamma_{l}^{\prime}=-1$ for $\gamma\not\in\Gamma^{\prime}$ , Then we have:

PROPOSITION. If $\rho$ is unitary, then $|a_{i}|\leqq q+1(1\leqq i\leqq M)$ . If moreover $\rho$

is irreducible and not 1 or sgn, then $|a_{i}|<q+1$ . When $\rho=1$ (resp. sgn), $A_{1}^{x}$

has $q+1$ (resp. $-(q+1)$) as an eigenvalue with multiplicity one (when $\Gamma=\Gamma^{\prime}$ ,
both $\pm(q+1)$ are simple eigenvalues).

PROOF. First let us recall that $ S_{\beta(j)f}\neq\phi$ for any $j=2$ , $\cdot$ .. , $h$ . So, for any
two given indices $i,$ $j(1\leqq i\neq j\leqq h)$ we can find a sequence $i=i_{1},$ $i_{2}$ , $\cdot$ .. , $i_{r}=j$

of indices among $\{$ 1, 2, $\cdot$ .. , $h\}$ such that $ S_{\iota_{\nu}\iota_{\nu+1}}\neq\phi$ for $v=1,2$ , $\cdot$ .. , $r-1$ .
Let $\mathfrak{M}$ be the (unitary) representation space of $\rho$ . Let $x={}^{t}(x_{1}, x_{2}, \cdots , x_{h})$ ;

$x_{i}\in \mathfrak{M}(1\leqq i\leqq h)$ be an eigenvector of $A_{1}^{X}$ . Thus $A_{1}^{x}x=\lambda x$ with some real $\lambda$ .
We can assume that $\Vert x_{i_{0}}\Vert={\rm Max} 1\leqq i\leqq h\Vert x_{i}\Vert=1$ for some $i_{0}$ , where $\Vert\Vert$ denotes the

metric of $\mathfrak{M}$ . Thus we have $\Sigma^{h}$

$\Sigma\rho(\gamma)x_{j}=\lambda x_{i_{0}}$ . Since $\sum^{\hslash}|S_{i_{0}j}|=q+1$ , by
j-l $\gamma\in S_{i_{0^{j}}}$ $j-1$

taking $\Vert\Vert$ of both sides we obtain $|\lambda|\leqq q+1$ . If $\lambda=q+1$ we have $A_{l}^{x}x=(q^{\iota}+q^{l-1})x$
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for $l=1,2,$ $\cdots$ , and $\Vert x_{1}\Vert=$ $=\Vert x_{h}\Vert$ . Then it follows directly that for any
$\gamma\in S_{ij}^{(l)}$ we have $\rho(\gamma)x_{j}=x_{i}$ . Since any element $\gamma$ of $\Gamma$ is contained in $S$ SI)

for some $l$ , we have $\rho(\gamma)x_{1}=x_{1}$ for all $\gamma\in\Gamma$ , and so if $\rho$ is irreducible $\rho$

must be 1, and hence $x_{1}=x_{2}=\cdots=x_{h}$ . If $\lambda=-(q+1)$ we obtain $Alx$

$=(-1)^{l}(q^{l}+q^{\iota-1})x$, for $l=1,2$ , $\cdot$ .. , and $\rho(\gamma)x_{1}=sgn(\gamma)x_{1}$ for any $\gamma\in\Gamma$ . Hence,
by irreducibility we have $\rho(\gamma)=sgn(\gamma)$ , and the equation $\rho(\gamma)x_{i}=-x_{j}$ for all
$\gamma\in S_{jj}$ determines $x_{1}$ , $\cdot$ .. , $x_{n}$ up to a scalar multiple. Q. E. D.

\S 4. The construction of $\Gamma$ .
Our purpose in this section is to construct (all) $\Gamma$ satisfying $(\Gamma I)$ . For

the sake of simplicity we assume here that:
ASSUMPTION IN \S 4: $G_{1}$ consists of a single U-double-coset, or, what is

the same, $(G, 1)$ are those constructed in example 3 (\S 1 and \S 5, Supplement 1).

E. $g$ . $G=PL(2, k)$ satisfies this.
Let us first treat the simplest case where $h=|\Gamma\backslash G/U|=1$ , i. e. $ G=U\Gamma$ .

In this case $\Gamma$ is generated by $ G_{\uparrow\cap}\Gamma$ which can be expressed as $ G_{1}\cap\Gamma$

$=T\cup T^{-1},$ $T\cap T^{-1}=\phi,$
$G_{1}=\sum_{\gamma\subset T}U\gamma+\sum_{\gamma^{T}}U\gamma^{-1}$

(disjoint). So $q+1$ must be even
(and in this case it can be seen directly by Lemma 1 and corollary of Lemma
5 that $\Gamma$ is a free group over $T$ ). Conversely, suppose that $q+1$ is even. Let
$\sigma$ be any substitution on the set of indices $\{0,1,2, \cdots , q\}$ such that $\sigma^{2}=1$ and

that $\sigma(i)\neq i$ for all $i(0\leqq i\leqq q)$ . Let $G_{1}=\sum_{i=0}^{0}U\pi_{i}$ and choose any element $z_{i}$

from $U\pi_{i}\cap\pi_{\sigma(i)}^{-1}U$ ($0\leqq i\leqq q,$ $\neq\phi$ by our assumpticn) in such a way that $z_{\sigma(t)}$

$=z_{i}^{-1}$ for all $i$ . Then, if we put $\{z_{0}, \cdots , z_{q}\}=T\cup\tau-,$ $ T\cap T^{-1}=\phi$ , from Lem-
ma 1 and corcllary of Lemma 5, it follows that $T$ generates a (free) subgroup
$\Gamma$ of $G$ satisfying $(\Gamma I, II)$ with $h=1$ .

Now we shall briefly discuss the general case. Let $\pi_{0},$ $\pi_{1},$
$\cdots$ , $\pi_{q}$ be again

a set of representatives of $U\backslash G_{1}$ and let $\Pi_{l},$ $\Pi$ and its lexicographic orderings
be defined as before. For each $i=0,1,2,$ $\cdots$ , $q$ , put $U\pi_{i}^{-1}=U\pi_{\varphi(i)}$ , with $0\leqq\varphi(i)\leqq q$.

For any $ 1\leqq h\leqq\infty$ , assume that we are given some $h\times h$ matrix $A=((a_{ij}))$

satisfying the following properties (A1-3).
(A1) $a_{ij}(1\leqq i, j\leqq h)$ are non-negative rational integ $\epsilon$ rs, and $a_{ii}(1\leqq i\leqq h)$

are even.
(A2) $a_{ij}=a_{ji}(1\leqq i, j\leqq h)$ and $\sum_{i=1}^{h}a_{ij}=q+1$ for each $j(1\leqq j\leqq h)$ . (Hence

for each $i$ (resp. j) there exists only a finite number of $j$ (resp. i)
such that $a_{ij}\neq 0$).

(A3) For each $i>1$ let $j=\rho(i)$ be the minimum suffix $j$ such that $a_{ij}\neq 0$ .
Then $\rho(i)<i$ and $\rho(2)\leqq\rho(3)\leqq\ldots$

These properties are possessed by the matrix $A=((|x_{i}^{-1}G_{1}x_{j}\cap\Gamma|))$ where
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$\Gamma$ is a subgroup of $G$ satisfying $(\Gamma I)$ and where $\mathfrak{R}=\{1=\chi_{1}<x_{2}< \}\subset\Pi$ is
the set of “ smallest ‘’ representatives of $U\backslash G/\Gamma(i. e. x_{i}={\rm Min}(Ux_{i}\Gamma\cap\Pi))$ (cf.

\S 2). Our problem here is, conversely, for given $A$ satisfying (A1-3), to con-
struct (all) $\Gamma$ satisfying $(\Gamma I)$ such that $A=((|x_{i}^{-1}G_{1}x_{j}\cap\Gamma|))$ .

Put $Q=\{0,1,2, \cdots , q\}$ . For any $(i, j)1\leqq i,$ $j\leqq h$ , we choose a subset $P_{tj}$

of $Q$ satisfying the following conditions.
(P1) $|P_{i_{J}}|=a_{ij}(1\leqq i, j\leqq h)$ .

(P2) For each $j(1\leqq i\leqq h),$ $Q=\sum_{i=1}^{h}P_{ij}$ (disjoint).

(P3) For each $i>1$ , let $\mu_{i}$ be the minimum element of $P_{i\rho(i)}$ .
Then $\varphi(\mu_{i})\in P_{\rho(i)i}$ ; and for each given $j\geqq 1$ and $i,$ $i^{\prime}>1$ such that $\rho(i)=\rho(i^{\prime})=j$ ,

we assume $\mu_{i}>\mu_{i^{\prime}}$ if and only if $i>i^{\prime}$ .
Since $\rho(i)<i$, and since we can start choosing $P_{ij}$ from smaller $j’ s$ , it is

clear that it is possible to choose such $\{P_{ij} ; 1\leqq i, j\leqq h\}$ . Now for each
$i,$ $j(1\leqq i, j\leqq h)$ , we choose a bijection $\sigma_{ij}$ of $P_{ij}$ on $P_{ji}$ such that $\sigma_{ij}\sigma_{ji}=1$ ,
$\sigma_{t\rho(i)}(\mu_{i})=\varphi(\mu_{i})$ for $i>1$ , and $\sigma_{ii}(\nu)\neq\nu$ for each $\nu\in P_{ii}$ . (This is possible since
$|P_{ii}|=a_{ii}$ is even.) For each $i,$ $j$ and $\nu\in P_{ij}$ choose any element $x_{ij}^{(\nu)}$ out of
$U\pi_{\nu}\cap\pi_{\overline{\sigma}_{ij^{\mu}}}^{1}U$( $\neq\phi$ by our assumption on $(G,$ $l)$) in such a way that $x_{ji}^{(\sigma_{ij}(\nu))}=x_{ij}^{(\nu)-1}$

holds for each $i,$ $j,$ $\nu$ and that $x_{i\rho(i)}^{(\mu i)}=\pi_{\mu i}$ (hence $x_{\rho(i)i}^{\varphi(\mu i)}=\pi_{u_{i}}^{-1}$) for each $i>1$ .
Define $x_{1},$ $x_{2},$

$\cdots$ inductively by $x_{1}=1,$ $\chi_{i}=\pi_{J}x_{\beta(i)}i$ for each $i>1$ . (Thus $ x_{i}\in\Pi$

for all $i=1,2,$ $\cdots$ , and by (P3), $1=x_{1}<x_{2}<$ ) Put $P_{ij}=\{x_{ij}^{(\nu)}|\nu\in P_{ij}\}\subset G_{1}$ ,
$S_{if}=x_{i}^{-1}P_{ij}x_{j}(1\leqq i, j\leqq h)$ . Thus $S_{i\beta(i)}\ni 1$ for $i>1$ . Then we have:

THEOREM 3. The notations being as above, the subgroup $\Gamma$ of $G$ generated
by all $S_{ij}(1\leqq i, j\leqq h)$ satisfies $(\Gamma I)$ . Moreover $\mathfrak{R}=\{1=\chi_{1}<x_{2}< \}$ constitutes
a complete set of representatives of $ U\backslash G/\Gamma$ with $x_{i}={\rm Min}(Ux_{i}\Gamma\cap^{\Pi)}(i=1,2, \cdots)$ ;
and $x_{i}^{-1}G_{1}x_{j}\cap\Gamma=S_{ij}$ (hence $G_{1}\cap x_{i}\Gamma x_{j}^{-1}=P_{ij}$ , and $A=((|x_{i}^{-1}G_{1}x_{j}\cap\Gamma|))$ holds
for each $i,$ $j(1\leqq i, j\leqq h))$ .

Conversely every subgroup $\Gamma$ of $G$ satisfying $(\Gamma I)$ is constructed in this
manner.

SKETCH OF PROOF. Converse part is essentially proved in \S 2.
Now, by our construction, the family of subsets $P_{ij}(1\leqq i, j\leqq h)$ of $G_{1}$ has

the following properties $(i)-(v)$ .
(i) $x\in P_{ij}$ $y\in P_{kj}$ $x\neq y\rightarrow Ux\neq Uy$ .

$x\in P_{ij}$ $y\in P_{ik}$ $x\neq y\rightarrow xU\neq yU$ .
(ii) $P_{ij}^{-1}=P_{ji}$ $x\in P_{ii}\rightarrow Ux\neq Ux^{-1}$ .

(iii) $\sum_{i=1}^{h}|P_{ij}|=q+1$ $\forall j=1,2,$ $\cdots$ , $h$ .
(iv) $\chi\in P_{ij}\rightarrow ux^{-1}x_{i}\geqq x_{j},$ $u^{\prime}xx_{j}\geqq x_{i}$ where $u,$ $u^{\prime}\in U$ are so chosen that

$ux^{-1}x_{i},$ $ u^{\prime}xx_{j}\in\Pi$ . Equalities hold if and only if $j=\rho(i),$ $x=\pi_{\mu t}$ ,
$u=u^{\prime}=1$ or $i=\rho(j)x=\pi_{\mu_{j}}^{-1},$ $u=u^{\prime}=1$ .

(v) For any $i>1,$ $P_{i\beta(i)}\ni\pi_{\mu i}$ .
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(All except (iv) are direct consequences of our construction. As for (iv),
since $P_{ij}=P_{ji}^{-1}$ we need only check $u^{\prime}xx_{j}\geqq x_{i}$ . First, assume that $l(x_{j})\geqq l(x_{i})$ .
Since $x_{j}=\pi_{\mu j}x_{\rho(j)}$ , we have $l(u^{\prime}xx_{j})=1+l(x_{j})>l(x_{i})$ ; hence $u^{\prime}xx_{j}>x_{i}$ unless
$x\pi_{l^{1}j}\in U$ . But $P_{\beta(j)j}\ni\pi_{\mu_{j}}^{-1}$ by (v); hence if $Ux=U\pi_{\alpha_{j}}^{-1},$ $(i)$ shows that $i=\rho(j)$ ,
$x=\pi_{\ell l}^{-1}j$ must be the case. In this case $u=1,$ $xx_{j}=x_{i}$ . Secondly assume that
$l(x_{j})<l(x_{i})$ , Since we assume that $ P_{ij}\neq\phi$ we have $j\geqq\rho(i)$ and hence $x_{j}\geqq x_{\rho(t)}$ ,

If $j>\rho(i)$ then by our definition of ordering we have $u^{\prime}xx_{j}>\pi_{\mu_{i}}x_{\beta(i)}=x_{i}$ . If
$j=\rho(i)$ , by our choice of $\mu_{i}$ (minimum element of $P_{i\rho(i)}$) we have $u^{\prime}xx_{j}\geqq x_{i}$ ,

the equality being valid if and only if $x=\pi_{\alpha_{i},}$ (and hence $u^{\prime}=1$); hence (iv)

is verified.)

By using $(i)-(v)$ we can prove the theorem without any difficulties. Let
$\Gamma$ be the subgroup of $G$ generated by all $S_{ij}(1\leqq i, j\leqq h)$ . First, we can verify
that if $\chi\in\Pi$ is not contained in $\mathfrak{R}$ then $U(UxS_{ij})\cap^{\Pi}\subset Ux\Gamma\cap^{\Pi}$ contains

$i,j$

an element which is smaller than $x$ . (In fact put $x=\pi_{t_{l}}\cdots\pi_{i_{1}}y_{m}=\pi_{i_{m 1}}\cdots\pi_{i_{1}}$

$(0\leqq m\leqq l, y_{0}=1)$ and let $m=m_{0}$ be the maximum suffix for which $y_{m}\in \mathfrak{R}$ .
Put $y_{mo}=x_{k}$ . Let $j$ be the suffix for which $P_{jk}\ni i_{m_{0}}$ . Then $x_{j}<y_{m_{0+1}}=\pi_{im_{0}}x_{k}$

by (iv), and hence if we put $\gamma=x_{k}^{-1}\pi_{im_{0}}^{-1}x_{j}\in S_{kj}$ , we have $x\gamma<x.$) Since, by
the property of our ordering, $Ux\Gamma\cap^{\Pi}$ must have the minimum element, we
have $ G=\bigcup_{i=1}^{h}Ux_{i}\Gamma$ .

By (i), (ii), (v) and corollary of Lemma 5 in \S 2 it is easy to see that
$S_{if}(1\leqq j<i\leqq hj\neq\rho(i)),$ $S_{i\rho(i)}(2\leqq i\leqq h),$ $T_{i}(1\leqq i\leqq h)$ ; where $S_{ii}=T_{i}UT_{i^{-1}},$ $T_{i}$

$\cap T_{i}^{1}=\phi$ , are mutually disjoint and their union $S$ is a set of free generators
of $\Gamma,$ $i$ . $e$ . $\Gamma$ is a free group over $S$ . In particular $\Gamma$ is torsion-free. To
verify $\Gamma\cap x^{-1}Ux=\{1\}$ for all $x\in G$ , it is enough to see $\Gamma\cap x_{i}^{-1}Ux_{l}=\{1\}$ for
$i=1,2,$ $\cdots$ , which can be verified in the same manner. The disjointness of
$Ux_{i}\Gamma(1\leqq i\leqq h)$ is as follows. Let us suppose that $x_{i}=ux_{j}\gamma_{1}\cdots\gamma_{t}$ for some
$i\neq j$ , where $u\in U$ and $\gamma_{\nu}\in S_{t_{\nu}j_{\nu}}$ for some $i_{\nu},j_{\nu}$ , and let $\gamma_{1}\cdots\gamma_{t}$ be the reduced
expression. Put $\gamma_{t}=x_{t_{t}}^{-1}\pi x_{j_{t}}$ . Then in the factorization of $x_{i},$ $\pi x_{J_{t}}$ must appear
on the right side, $i$ . $e$ . $\chi_{i}=z\cdot(\pi x_{j_{l}})$ (free product) with some $z\in G$ . Then
$\pi x_{j_{t}}=u^{\prime}x_{k}$ with some $u^{\prime}\in U$ and $k$ , which is impossible by (i) and (v). Now

if we put $S_{ij}^{\prime}=x_{i}^{-1}\Gamma x_{j}\cap G_{1}\supset S_{ij},\sum_{i-I}^{h}|S_{ij}^{\prime}|=q+1=\sum_{i=1}^{\hslash}|S_{ij}|$ must hold; hence $S_{if}^{\prime}$

$=S_{if}$ . Q. E. D.
COROLLARY 1. Assume that $G$ satisfies the assumption of \S 4 and let $\Gamma$ be

a subgroup of $G$ satisfying $(\Gamma I, II)$ . Then there exists a subgroup $U^{\prime}=U^{\prime}(\Gamma)$

of $U$ with finite index in $U$ such that if $S=\{z_{1}, \cdot , z_{t}\}$ is a set of free genera-
tors of $\Gamma$ and if $u_{1}$ , , $u_{t}\in U^{\prime}$ , then $S^{\prime}=\{u_{1}z_{1}, \cdot.., u_{t}z_{t}\}$ also generates a free
group $\Gamma^{\prime}$ over $S^{\prime}$ which satisfies $(\Gamma I, II)$ with $|U\backslash G/\Gamma^{J}|=|U\backslash G/\Gamma|$ .

COROLLARY 2. Let $G$ be as above, let $h$ be a positive integer and let $A$ be
an $h\times h$ matrix whose entries are non-negative integers. Then $A$ can be ex-
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pressed as $A=((|\Gamma\cap x_{i}^{-1}G_{1}x_{j}|))$ by some subgroup $\Gamma$ of $G$ satisfying $(\Gamma I, II)$

and by some set of representatives $x_{1},$ $\cdots$ , $x_{h}$ of $ U\backslash G/\Gamma$ if and only if there exists
a substitution matrix $T$ such that $T^{-1}AT$ satisfies (A1-3).

\S 5. Supplements.

1. On example 3 of \S 1. (Construction cf $(G, l)$ satisfying $(G, l, I, II)$ such
that $G_{1}$ consists of only one U-double-coset.)

Let $U$ be a group with a proper subgroup $H_{1}$ such that $(U:H_{1})<\infty$ and
let $H$ be another group which has a subgroup $H_{2}$ with $(H:H_{2})=2$ . Assume
that there exists an isomorphism $\theta$ of $H_{1}$ onto $H_{2}$ . Let $G$ be the free product
of $U,$ $H$ with amalgamated subgroups $H_{i}(i=1,2),$ $i$ . $e$ . the free product of $U,$ $H$

modulo all relations which arise by identification of elements of $H_{1}$ and $H_{2}$

by $\theta$ . If $1=M_{1}$ . $\cdot$ .. , $M_{n}(n=(U:H_{j}))$ are the set of representatives of $H_{1}\backslash U$

and if $\sigma$ is any element of $H$ not contained in $H_{2}$ , then every element of $G$

can be expressed uniquely (cf. $e.g$ . A. G. Kurosh [5]) in the form

$ x=hM_{i}\sigma M_{j}\sigma\cdots$

or
$=h\sigma M_{i}\sigma M_{j}\cdots$

where $h\in H_{1}$ (identified by $\theta$ with $H_{2}$), $i,$ $j$ , $\neq 1$ . Let $l(x)$ be the number of
$\sigma^{\prime}s$ in the above expression. Then $(G, 1)$ satisfies $(G, l, I, II)$ with $U=G_{0},$ $q+1$

$=(U:H_{1})$ and $G_{1}$ consists of a single U-double-coset. Conversely every such
$(G, 1)$ can be defined in this way. In fact if $x\in G_{1}$ by our assumption we
have $ xU\cap Ux^{-1}\neq\phi$ . Let $\sigma$ be any element of $xU\cap Ux^{-1}$ , and so $\sigma^{-1}\in U\sigma\cap\sigma U$.
Put $H_{2}=\sigma^{\sim 1}U\sigma\cap U$. Then it is easy to see (e. g. by Lemma 1) that $G$ is the
free product of $U$ and $ H_{2}\sigma$ with an amalgamated subgroup $H_{2}$ .

2. “ p-unit groups “ of totally definite quaternion algebras.
Let $D$ be a totally definite quaternion algebra over a totally real algebraic

number field $F$. Let $\mathfrak{p}$ be a finite prime of $F$ which does not divide the dis-
criminant of $D$ . Let $\mathfrak{g}$ be the maximal order of $F$ and let $0$ be a $\mathfrak{g}$-order of
$D$ such that $\mathfrak{o}\bigotimes_{u}$

gp is maximal. Put
$\tilde{\Gamma}=$ { $a\in D|a\in \mathfrak{p}^{\lambda}\mathfrak{o}$ for some $\lambda\in Z$ and $(Na)=\mathfrak{p}^{\prime t}$ for some $\mu\in Z$ }
$\Gamma=\tilde{\Gamma}/\tilde{\Gamma}\cap F^{x}$ .

Then, by the isomorphism
$D\bigotimes_{F}F_{\mathfrak{p}}\cong M(2, F_{\mathfrak{p}})$ , where $F_{\mathfrak{p}}$ denotes the p-adic completion of $F,$ $\Gamma$ can be

regarded as a discrete subgroup of $G=PL(2, F_{\mathfrak{p}})$ with compact quotient space
(finiteness of group index between unit groups of $0$ and that of $F$, and finite-
ness of class number of $\mathfrak{o}$). Thus if $\Gamma$ is torsion-free (of course if we take a
suitable suborder $0^{\prime}$ of $0,$

$\Gamma^{\prime}$ defined from $0^{\prime}$ will be so), then it is free group
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with $-2-(q-1)h+11$ generators, where $q=Np$ , and $h=|U\backslash G/\Gamma|,$ $U=PL(2, \mathfrak{g}_{\mathfrak{p}})$ .
Now, $h$ is the number of such left o-ideal classes (we only consider such
ideals $w\cdot hose$ left orders are o) that are represented by some ideals which
coincide with $0$ except at $\mathfrak{p}$ ; and by Eichler-Kneser’s (generalized) approxima-
tion theorem on quaternion algebra, if $0$ is maximal it is equal to the quotient
of the class number of $D$ by the class number of $F$ with respect to the ideal
group generated by $\mathfrak{p}$ and all ideals of the form $(a),$ $a$ : totally positive.
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