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Introduction. After Hasse and Weil, we can attach a zeta-function to
every algebraic variety defined over an algebraic number field. In contrast
with its importance, our knowledge of the zeta-function of this kind is little.
At present, as far as I know, the zeta-function is determined only in the fol-
lowing two cases.

I) Abelian varieties with sufficiently many complex multiplications [30,
3, 27].

II) Algebraic curves uniformized by modular functions belonging to con-
gruence-subgroups $[6, 22]$ .

Here we note that the determination of the zeta-function of a curve is essen $\cdot$

tially the same as the determination of the zeta-function of its jacobian. Now,
in all these cases, the zeta-functions are meromorphic on the whole complex
plane and satisfy functional equations, as conjectured by Hasse.

The purpose of the present paper is to supply a new class of algebraic
curves, for which Hasse’s conjecture is true, and of which the curves of II)

are particular cases. Our principal result is as follows. Let $\Phi$ be an indefinite
quaternion algebra over the rational number field $Q$ , and $\mathfrak{o}$ a maximal order
in $\Phi$ . Take a positive integer $N$ which is prime to the discriminant of $\Phi$ and
denote by $\Gamma_{N}$ the group of units $\gamma$ of $0$ , with positive reduced norm, such
that $\gamma\equiv 1mod$ . No. As $\Phi$ has a faithful representation by real matrices of
degree 2, $\Gamma_{N}$ is considered as a Fuchsian group on the upper half plane $\mathfrak{H}$

If $\Phi$ has no zero-divisor, $\Gamma_{N}\backslash \mathfrak{H}$ is compact, while if $\Phi$ is the total matric
algebra of degree 2 over $Q,$ $\Gamma_{N}$ is nothing but the principal congruence-sub-
group of $SL(2, Z)$ of level $N$. Now, according to Eichler [7], we can develop
the theory of Hecke’s operators for cusp-forms with respect to $\Gamma_{N}$ . We obtain
then Dirichlet-series $D(s)$ , meromorphic on the whole plane, having Euler-
products, and sa isfying functional equations. Let $\beta\S_{N}$ be the field of automorphic
functions with respect to $\Gamma_{N}$ . We can find an algebraic curve $\mathfrak{C}_{N}$ , defined
over $Q$, whose function-field is identified with $f8_{N}$ . Our main theorem asserts
that the zeta-function of $\mathfrak{C}_{N}$ is determined by the Dirichlet-series $D(s)$ for
cusp-forms of degree 2.
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We shall now explain our method by giving a summary of the contents.1)

\S \S 1.1\sim 1.4 introduce the ring of modular correspondences for the group $\Gamma_{N}$ ;
in \S 1.5, we consider the representations of modular correspondences in the
vector spaces of cusp-forms. Each representation yields a Dirichlet series
$D(s)$ with an Euler-product. We can express $D(s)$ as a certain integral on the
id\‘ele-group of $\Phi$ ; then the Poisson summation formula on the ad\‘ele-space lead
to the functional equation for $D(s)$ (Theorem 1 of \S 1.6). Now we consider
the one-parameter system {A. $|z\in \mathfrak{H}$ } of polarized abelian varieties of dimension
2, whose endomorphism-rings are isomorphic to $0$ ; such a system has been
.constructed in a previous paper [23] (quoted hereafter as [AF]). We have
shown in [AF] that the moduli $f_{i}(z)$ of $A_{z}$ , considered as functions of $z$ , gen-
$e$rate the field of automorphic functions $R_{1}$ . We construct a quotient variety
$V_{z}$ of $A_{z}$ by the automorphisms $\pm 1$ , which is called the Kummer variety of

$A_{z}$, as well as a natural mapping $h_{z}$ of A. onto $V_{z}$ with a suitable property.
Then, $t_{z}$ being a point on A. of order $N$, the coordinates of $h_{z}(t_{z})$, regarded as
functions of $z$ , give automorphic functions $g_{j}(z)$ with respect to $\Gamma_{N}$ ; the func-
tions $f_{i}$ and $g_{j}$ generate over $C$ the field $f\S_{N}$ . These facts are proved in \S \S 2.1\sim
3.4. The field $Q(f_{i}, g_{j})$ is a Galois extension of $Q(f_{i})$ ; we determine in \S 4.1 the
Galois group. \S \S 4.2\sim 4.3 concern the relation of modular correspondences and
isogenies of A.. Taking a generic member A. of our system, we consider the
isogenies $\lambda_{\nu}$ of A. onto other members A.. whose kernels are isomorphic to $0/q$

for a given left $0$-ideal $\mathfrak{q}$ . Then the correspondence $(f_{i}(z), g_{j}(z))\rightarrow(f_{i}(z_{\nu}), g_{j}(Z_{\lrcorner}))$

determines an algebraic correspondence $X_{q}$ of the curve $\mathfrak{C}_{N}$ . If $0/q$ is of
order $p^{2}$ for a prime number $p$, and if $p$ does not divide the discriminant
of $\Phi$ , then, by the reduction modulo $p$ , we obtain from the $\lambda$ , one purely in-
separable isogeny and $p$ separable isogenies. This fact is the key to the con-
gruence-relations for $X_{q}$ , which are fundamental in our whole theory, and
whose proof is the object of \S \S 5,1\sim 5.5. Our principal result is then easily
derived from those relations. The idea is almost the same as [22], where the
author treated the one-parameter system of elliptic curves. The present situa-
tion is, however, more complicated than [22], since the abelian varieties $A_{z}$

are not necessarily defined over the field of moduli. We can overcome this
difficulty by the use of “ normalized Kummer variety ”.

The present investigation may be thus regarded as a continuation of [22]

and [AF]. It is also considered as an example of a more general theory, which
is definitely non-abelian in character, and which one may expect to be constructed
in future; but as for this, I have only mentioned some related problems at

1) Our results were partly announced in the memoir “ Fonctions automorphes et
correspondances modulaires “, Proc. Int. Cong. Math. 1958, 330-338. In the last half of
this article, the reader will also find a brief and easy account of the theory.
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the end of the paper.
Notation. We shall use the same notation as in [AF]. In particular, we

denote by $c(V)$ the Chow-point of an algebraic variety $V$. The notation con-
cerning abelian varieties will be the same as Weil [29]; so, if $\lambda$ is an isogeny
of an abelian variety $A$ , all being defined over a field $k$, we denote by $\nu_{i}(\lambda)$

and $\nu_{s}(\lambda)$ the inseparable and separable factors of the degree of $k(x)$ over $k(\lambda x)$ ,
respectively, where $x$ is a generic point of $A$ over $k$ .

\S 1. Analytic theory of modular correspondences.

1.1. Ring of transformations. We first recall the definition of ring of
transformations introduced in [24, \S 7]. Let $\mathfrak{G}$ be a group; two subgroups $G$

and $G^{\prime}$ of $\mathfrak{G}$ are called commensurable if the intersection $G\cap G^{\prime}$ is of finite
index in $G$ and in $G$ ‘. Fix a subgroup $G$ of $\mathfrak{G}$ ; let $\tilde{G}$ be the set of all ele-
ments $\alpha$ of $\mathfrak{G}$ such that $\alpha^{-1}G\alpha$ is commensurable with $G$ . It can be easily
verified that $\tilde{G}$ is a subgroup of $\mathfrak{G}$ containing $G$ . For every element $\alpha$ of $G$ ,
we see easily that

(1) $[G:G\cap\alpha^{-1}G\alpha]=[\alpha G\alpha^{-1} : \alpha G\alpha^{-} \cap G]$

$=the$ number of right cosets $ G\beta$ contained in $G\alpha G$ ;

and a similar equality holds for the left cosets in $G\alpha G$ .
LEMMA 1.1. If the number of right cosets in $G\alpha G$ is equal to the number

of left cosets in $G\alpha G$ , then there exists a common system of representatives for
right and left cosets in $G\alpha G$ .

PROOF. Let $ G\beta$ and $\gamma G$ be a right coset and a left coset contained in
$G\alpha G$ . As we have $G\beta G=G\alpha G=G\gamma G$ , the intersection $G\beta\cap\gamma G$ is not empty.
Taking an element $\delta$ in $G\beta\cap\gamma G$ , we get $ G\beta=G\delta$ and $\gamma G=\delta G$ ; our lemma
is a consequence of this fact.

Now fix a sub-semi-group $S$ of $\tilde{G}$ containing $G$ ; we can take for example
$\tilde{G}$ itself as S. Let $\Re$ denote the free Z-module generated by the $G\alpha G$ for
$\alpha\in S$. We shall now define a law of multiplication on the module $R$ . For
any two elements $\alpha$ and $\beta$ of $S$, let $\{G\alpha_{i}\}$ and $\{G\beta_{k}\}$ be the complete systems
of right cosets contained in $G\alpha G$ and in $G\beta G$ , respectively. $\gamma$ being an ele-
ment of $S$, we can easily verify that the number of $(i, k)$ such that $ G\alpha_{i}\beta_{k}=G\gamma$

depends only on $G\alpha G,$ $G\beta G,$ $G\gamma G$ , and is independent of the choice of $\{\alpha_{\dot{t}}\},$ $\{\beta_{k}\}$ ,
and $\gamma$ . Putting $\sigma=G\alpha G,$ $\tau=G\beta G,$ $\rho=G\gamma G$ , we denote this number by $\mu(\sigma\cdot\tau;\rho)$ .
Define the product $\sigma\cdot\tau$ by

$\sigma\cdot\tau=\Sigma\mu(\sigma\cdot\tau;\rho)\rho$ ,

where the sum is extended over all the $\rho=G\gamma G$ contained in $G\alpha G\beta G$ .
We extend this by linearity to a law of multiplication on Sl; the module Slr
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then becomes an associative ring; the identity element is the coset $G=G1G$ .
We denote this ring by $R(G, S)$ and call it the ring of transformations of $G$

with respect to S. For every $\sigma=G\alpha G$ , we denote by $\deg(\sigma)$ the number given
by (1) and put for $0.=Ga.G$ and for C. EZ,

$\deg(\sum_{\nu}c_{\nu}\sigma_{\nu})=\sum_{\nu}c_{v}\deg(\sigma_{\nu})$ .

By our definition, we see easily, for every $\xi,$ $\eta\in\Re$ ,

$\deg(\xi+\eta)=\deg(\xi)+\deg(\eta)$ ,

$\deg(\xi\cdot\eta)=\deg(\xi)\cdot\deg(\eta)$ ;

and, for $\sigma=G\alpha G=UG\alpha_{i},$ $\tau=G\beta G=\cup G\beta_{k},$ $\rho=G\gamma G$ ,

(2) $\deg(\rho)\mu(\sigma\cdot\tau;\rho)=the$ number of $(i, k)$ such that $G\alpha_{i}\beta_{k}G=G\gamma G$ .

PROPOSITION 1.2. If there exists an anti-automorphism $\alpha\rightarrow\alpha^{*}$ of the semi-
group $S$ which maps $G\alpha G$ onto $G\alpha G$ itself for every $\alpha\in S$, then the ring $9(G,$ $S\rangle$

is commutative.
PROOF. Considering the anti-automorphism on $G\alpha G$ , we see that the num-

ber of left cosets in $G\alpha G$ and the number of right cosets in $G\alpha G$ are the
same. Hence, by Lemma 1.1, for every $\alpha,$ $\beta\in S$, we can find sets of elements
$\{\alpha_{i}\}$ and $\{\beta_{k}\}$ such that $G\alpha G=\cup G\alpha_{i}=\cup\alpha_{i}G,$ $G\beta G=UG\beta_{h}=\cup\beta_{k}G$ are disjoint
sums. We have then $G\alpha G=UG\alpha_{i}^{*}$ and $G\beta G=\cup G\beta_{k}^{*}$ . Put $\sigma=G\alpha G,$ $\tau=G\beta G$ .
By the relation (2), we have, for every $\rho=G\gamma G$ contained in $G\alpha G\beta G$ ,

$\deg(\rho)\mu(\sigma\cdot\tau;\rho)=the$ number of $(i, k)$ such that $G\alpha_{i}\beta_{h}G=G\gamma G$ ,

$\deg(\rho)\mu(\tau\cdot\sigma;\rho)=the$ number of $(k, i)$ such that $G\beta_{k}^{*}\alpha_{i}^{*}G=G\gamma G$ .

Applying the anti-automorphism $\alpha\rightarrow\alpha^{*}$ to each double coset, we observe that
these two numbers coincide; so we have $\mu(\sigma\cdot\tau;\rho)=\mu(\tau\cdot\sigma;\rho)$ . This proves
our proposition.

1.2. Arithmetic of indefinite quaternion algebras. Let $\Phi$ be an indefinite
quaternion algebra over $Q$ (cf. [AF, \S 5, no. 14]). We denote by $\alpha\rightarrow\alpha^{\prime}$ the
canonical involution of $\Phi$ and put $N(\alpha)=\alpha\alpha^{\prime},$ $tr(\alpha)=\alpha+\alpha^{\prime}$ . Let $\mathfrak{d}$ be a maxi-
mal order in $\Phi$ ; put, for any base $\{u_{i}\}$ of $0$ over $Z$,

$ d(\Phi)=|\det$ (tr $(u_{i}u_{j})$) $|^{1/2}$ .
This number is independent of the choice of $0$ and $\{u_{i}\}$ ; it is a square-free
positive integer. Throughout the present paper, we shall use these notations
always in this sense.

Now we fix once for all a maximal order $0$ . For every integral right, left.
two-sided o-ideal $\mathfrak{a}$ , we denote by $N_{1}(\mathfrak{a})$ the number of elements in $0/a$ and put
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$N(t1)=N_{1}((\ddagger)^{1/2}$ ; we can define in a natural manner $N(\mathfrak{a})$ and $N_{1}(\mathfrak{a})$ for any o-ideal
which is not necessarily integral. $N(\mathfrak{a})$ is a positive integer for any integral
o-ideal $\mathfrak{a}$ ; and we have

$N(\alpha 0)=N(0\alpha)=|N(\alpha)|$ .
The two-sided o-ideals form a commutative group, which is a direct product
of the infinite cyclic groups generated by the prime ideals. Every prime
ideal $\mathfrak{p}$ divides one and only one rational prime $p$ ; and we have

$p=po$ if $pfd(\Phi)$ ,

$\mathfrak{p}^{2}=po$ if $p|d(\Phi)$ .
Therefore, every integral two-sided o-ideal $\mathfrak{a}$ is written in the form

(3) $t\ddagger=a_{0}\mathfrak{p}_{1}\cdots \mathfrak{p}_{s}$ ,

where $a_{0}$ is a rational integer and the $\mathfrak{p}_{i}$ are distinct prime ideals dividing
$d(\Phi)$ . By Eichler [5], every one-sided $0$-ideal is principal. For our later use,
we state here a lemma which is a particular case of Eichler [4, Satz 5].

LEMMA 1.3. Let $a$ be an integral two-sided o-ideal; let $\beta$ be an element of $0$

and $b$ an element of $Z$ such that $b\equiv N(\beta)mod$ . $\mathfrak{a}$ . $T/len$ there exists an element
$\beta_{0}$ of $0$ such that

$\beta_{0}\equiv\beta mod$ . $\mathfrak{a}$ , $N(\beta_{0})=b$ .
Taking $\mathfrak{a}$ to be $0$ , we obtain
LEMMA 1.4. For every rational integer $b$ , there exists an element $\beta$ of $0$ such

that $N(\beta)=b$ .

1.3. Ring of modular correspondences. We denote by $\Gamma$ the group of all
units $\gamma$ of $0$ such that $N(\gamma)=1$ . By Lemma 1.4, $0$ contains an element $\epsilon$ such
that $N(\epsilon)=-1$ ; for any such element $\epsilon,$

$\Gamma\cup\Gamma\epsilon$ is the group of all units in
0. Let $a=\alpha 0$ be an integral two-sided o-ideal; we denote by $\Gamma_{\mathfrak{n}}=\Gamma_{a}$ the sub-
group of $\Gamma$ consisting of the elements $\gamma$ such that $\gamma\equiv 1mod$ . $\mathfrak{a}$ .

PROPOSITION 1.5. Let $\alpha$ be an element of $\mathfrak{o}$ such that $N(\alpha)=m\neq 0$ . Then
$\alpha^{-1}\Gamma\alpha$ confains $\Gamma_{m}$ .

PROOF. If $\gamma$ is an element of $\Gamma_{m}$ , we have
$\alpha\gamma\alpha^{-1}=\alpha\gamma\alpha^{\prime}m^{-1}\equiv 1mod$ . $\alpha 0\alpha^{\prime}$

This shows that $\alpha\gamma\alpha^{-1}$ is contained in $0$ . As we have $N(\alpha\gamma\alpha^{-1})=1,$ $\alpha\gamma\alpha^{-1}$ is
contained in $\Gamma$ , so that $\gamma\in\alpha^{-1}\Gamma\alpha$ , Q. E. D.

It follows from Proposition 1.5 that, for every regular element $\alpha$ of $\Phi,$ $\Gamma$

and $\alpha^{-1}\Gamma\alpha$ are commensurable. Let $\Delta$ (resp. $\Delta_{0}$) be the set of all the elements
$\alpha$ of $\Phi$ (resp. o) such that $N(\alpha)>0$ . Now we shall consider the ring $\Re(\Gamma, \Delta)$ .

Our first task is to characterize the double cosets $\Gamma\alpha\Gamma$ by their “ele-
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mentary divisors ”. For every rational prime number $p$ , let $Q_{p}$ and $Z_{p}$ denote
respectively the field of $p$-adic numbers and the ring of $p$-adic integers; and
put

(4) $\Phi_{p}=\Phi\otimes_{Q}Q_{p}$ , $\mathfrak{o}_{p}=\mathfrak{o}\otimes_{Z}Z_{p}$ .
If $p$ I $d(\Phi),$ $\Phi_{p}$ is isomorphic to the total matric algebra $1\psi_{2}(Q_{p})$ over $Q_{p}$ of de-
gree 2; and for a suitable choice of isomorphism, $0_{p}$ corresponds to the ring
$M_{2}(Z_{p})$ of matrices with entries in $Z_{p}$ . If $p|d(\Phi),$ $\Phi_{p}$ is a division algebra over
$Q_{p}$ . For each prime factor $p$ of $d(\Phi)$ , we fix a prime element $\pi_{p}$ in $0_{p}$ , which
satisfies $N(\pi_{p})=p$ .

Let $\alpha$ be an element of $\Delta_{0}$ . We now define the elementary divisors of $\alpha$ .
First consider a prime $p$ which does not divide $d(\Phi)$ . Then, regarding $\alpha$ as
an element of $M_{2}(Z_{p})$, we can find two units $\epsilon_{1}$ and $\epsilon_{2}$ of $M_{2}(Z_{p})$ so that $\epsilon_{1}\alpha\epsilon_{2}$

is of the following form:

$\epsilon_{1}\alpha\epsilon_{2}=(_{0p^{0_{c_{*}}}}^{p^{c_{1}}})$ ,

where $c_{1}$ and $c_{2}$ are non-negative integers such that $c_{1}\leqq c_{2}$ . When $p$ divides.
$d(\Phi),$ $0_{p}\alpha$ is a power $(0_{p}\pi_{p})^{c}$ . We call then

$\{ (p^{C_{1}},p^{c_{2}}), \cdots, \pi_{p}^{c}, \cdots\}$

the elementary divisors of $\alpha$ .
PROPOSITION 1.6. Let $\alpha$ and $\beta$ be two elements of $\Delta_{t)}$ . Then the following

four conditions are equivalent to each other.
i) $\Gamma\alpha\Gamma=\Gamma\beta\Gamma$ .
ii) $\alpha$ and $\beta$ have the same elementary divisors.
iii) $ 0/0\alpha$ and $ 0/0\beta$ are isomorphic as o-modules.
iv) There exists an element $\gamma$ of $\Gamma$ such that $ 0\alpha\gamma=0\beta$ .
PROOF. The equivalences $i$ ) $<>$ iv), $ii$) $\Leftrightarrow iii$ ) and the implication $i$ ) $\subset>$ ii) are

obvious. Therefore our proposition is proved if we show $ii$ ) $\subset\succ iv$). Suppose
the condition ii) holds. Then, for each prime $p$, we can find two units $\epsilon_{1}^{(p)},$ $\epsilon_{2}^{(p)}$

of $\mathfrak{o}_{p}$ such that $\epsilon_{1}^{(p)}\alpha\epsilon_{2^{1)}}^{()}=\beta$ . We may assume, without loss of generality, that
$N(\epsilon_{1}^{(p)})=N(\epsilon_{2}^{(p)})=1$ ; put $q=N(\alpha)$ ; we have clearly $N(\beta)=q$ . We can find two
elements $a_{1}$ and $a_{2}$ of $0$ such that, for every prime factor $p$ of $q$,

$a_{1}\equiv\epsilon_{1}^{(p)}$ , $a_{2}\equiv\epsilon_{2}^{(p)}$ $mod$ . $q0_{p}$ .
This relation holds for any $p$, since if $p$ does not divide $q$ , we have $qo_{p}=0_{p}r$

Hence we have
$N(a_{1})\equiv N(a_{2})\equiv 1mod.(q)$ .

Now by Lemma 1.3, there exist two elements $\gamma_{1}$ and $\gamma_{2}$ of $\iota$) such that
$N(\gamma_{1})=N(\gamma_{2})=1$ ,
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$\gamma_{1}\equiv a_{1}$ , $\gamma_{2}\equiv a_{2}$ $mod\mu qo$ .
We have then $\gamma_{1}\alpha\gamma_{2}\equiv\beta mod$ . $qo$ . It follows that $0\alpha\gamma_{2}=\mathfrak{o}\beta$ since both $ 0\alpha\gamma$ and
$ 0\beta$ contain $qo$ . We have thus proved $ii$) $\subset\succ iv$).

We call the elementary divisors of $\alpha$ also the elementary divisors of $\Gamma\alpha\Gamma$

or of the integral left o-ideal $\mathfrak{o}\alpha$ . It is easy to see that $\alpha$ and $\alpha^{\prime}$ have the
same elementary divisors; so by Proposition 1.6, we have $\Gamma\alpha\Gamma=\Gamma\alpha^{\prime}\Gamma$ ; this
holds not only for $\alpha\in\Delta_{0}$ but also for every $\alpha\in\Delta$ . Applying Proposition 1.2
to the present case, we obtain

PROPOSITION 1.7. The ring $R(\Gamma, \Delta)$ is commutative.
We shall now determime the structure of $9(\Gamma, \Delta_{0})$ . It is easy to see that

$\Gamma\alpha\rightarrow c\alpha$ gives a one-to-one correspondence between the right cosets contained
in $\Delta_{0}$ and the integral left o-ideals. By Proposition 1.6, $\Gamma\alpha$ and $\Gamma\beta$ belongs to
the same double coset $\Gamma\alpha\Gamma$ if and only if $\mathfrak{o}/0\alpha$ and $ 0/\mathfrak{d}\beta$ are isomorphic. Thus
we observe that $\deg(\Gamma\alpha\Gamma)$ is equal to the number of integral left o-ideals $\mathfrak{b}$

such that $0/b$ is isomorphic to $\zeta$) $/0\alpha$ . In particular, when $N(\alpha)=p$ is a prime
number, we have

$\deg(\Gamma\alpha\Gamma)=\{p+11$

if $p|d(\Phi)$ ,

if $p4^{\prime}d(\Phi)$ .
PROPOSITION 1.8. Put $\sigma=\Gamma\alpha\Gamma,$ $\tau=\Gamma\beta\Gamma,$ $\rho=\Gamma\gamma\Gamma$ . Then $\mu(\sigma\cdot\tau;\rho)$ is equal’

to the number of integral left o-ideals $\mathfrak{b}$ such that: i) $b\supset 0r$ ; ii) $0/b$ is isomor-
phic to $0/0\beta$ ; iii) $\mathfrak{b}/\mathfrak{o}\gamma$ is isomorphic to $ 0/0\alpha$ .

PROOF. Let $\Gamma\alpha\Gamma=\cup\Gamma\alpha_{i}$ and $\Gamma\beta\Gamma=\cup\Gamma\beta_{k}$ be disjoint sums. Then
$\mu(\sigma\cdot\tau;\rho)$ is the number of $(i, k)$ such that $\Gamma\alpha_{i}\beta_{k}=\Gamma\gamma$ . We note that, for each
$k$ , there exists only one or no $i$ such that $\Gamma\alpha_{i}\beta_{k}=\Gamma\gamma$ . Now if $\Gamma\alpha_{i}\beta_{k}=\Gamma\gamma$ holds,
we have $0\supset 0\beta_{k}\supset 0\alpha_{i}\beta_{k}=0\gamma$ ; and $0/0\beta_{h}$ is isomorphic to $\mathfrak{o}/0\beta$ , and $0\beta_{k}/\mathfrak{o}\gamma$ is
isomorphic to $ 0/0\alpha$ ; so the integral left o-ideal $0\beta_{k}$ satisfies the conditions $i$ , ii.
iii). Conversely, suppose that an integral left o-ideal $\mathfrak{b}$ satisfies $i$ , ii, iii). By
ii), we have $\mathfrak{b}=0\beta_{k}$ for some $k$ . Put $\gamma\beta_{k}^{-1}=\alpha_{0}$ ; we have then $\alpha_{0}\in\Delta_{0}$ , and, by
virtue of iii), $0/0\alpha_{0}$ is isomorphic to $0/\mathfrak{o}\alpha$ . We have therefore $\Gamma\alpha_{0}=\Gamma\alpha_{i}$ for
some $i$ . It follows that $\Gamma\alpha_{i}\beta_{k}=\Gamma\gamma$ . This proves our proposition.

PROPOSITION 1.9. If $N(\alpha)$ and $N(\beta)$ are relatively prime,

$(\Gamma\alpha\Gamma)(\Gamma\beta\Gamma)=\Gamma\alpha\beta\Gamma$ .

PROOF. Using the same notation as in the preceding proposition, assume
that $N(\alpha)$ and $N(\beta)$ are relatively prime. Let $\mathfrak{b}_{1}$ and $\mathfrak{b}_{2}$ be integral left o-ideals
satisfying the conditions $i$ , ii, iii). By ii), $b_{1}+\mathfrak{b}_{2}/b_{2}$ is isomorphic to a submo-
dule of $ 0/0\beta$ . On the other hand, $\mathfrak{b}_{1}/\mathfrak{b}_{1}\cap \mathfrak{b}_{2}$ is isomorphic to a submodule of
$\ddagger\}/\mathfrak{o}\alpha$ . Hence we must have $\mathfrak{b}_{1}+\mathfrak{b}_{2}=f)_{2}b_{1}=b_{1}\cap \mathfrak{b}_{2}$ , namely, $\mathfrak{b}_{1}=\mathfrak{b}_{2}$ . This proves
$\mu(\sigma\cdot\tau;\rho)=1$ by virtue of Proposition 1.8. It is easy to see that, for every
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$\alpha_{1}\in\Gamma\alpha\Gamma$ and $\beta_{1}\in\Gamma\beta\Gamma$ , the element $\alpha_{1}\beta_{1}$ have the same elementary divisors
as $\alpha\beta$ . Hence $(\Gamma\alpha\Gamma)(\Gamma\beta\Gamma)$ has the only component $\Gamma\alpha\beta\Gamma$ ; this proves our pro-
position.

Now fix our attention to one prime number $p$ . We observe that the $\Gamma\alpha\Gamma$ ,
for which $N(\alpha)$ is a power of $p$, generate a subring of $9\mathfrak{i}(\Gamma, \Delta_{0})$ , which we denote
by $R_{p}$ . Let $T(p^{m})$ be the sum of $\Gamma\alpha\Gamma$ such that $N(\alpha)=p^{m}$ . If $p$ is a factor
of $d(\Phi)$ , we have $T(p^{m})=\tau(p)^{m}$, so that the ring $9_{p}$ is the polynomial ring
$Z[T(p)]$ . Now suppose that $p$ does not divide $d(\Phi)$ . Let $T(p^{\lambda}, p^{l1})$ denote the
element $\Gamma\alpha\Gamma$ of $9i_{p}$ whose elementary divisors are $(p^{\lambda},p^{\prime J})$ .

PROPOSITION 1.10. If $p4^{\prime}d(\Phi)$ , the following relations hold.

(5) $T(p,p)T(p^{\lambda},p^{\mu})=T(p^{\lambda+1},p^{\prime J+1})$ .

(6) $T(p)T(p^{m})=T(1,p^{m+1})+(p+1)T(p,p)T(p^{m-1})$ for $m\geqq 1$ .

PROOF. The first equality is obvious. Let $c_{\lambda\mu}$ be the multiplicity of
$ T(p^{\lambda},p^{\prime}\gamma$ in the product $T(1,p)T(p^{m})$ . Fix an element $\alpha_{\lambda\mu}$ of $0$ whose elementary
divisors are $(p^{\lambda}, p^{l^{l}})$ . Then, by Proposition 1.8, $C_{I\mu}$ is the number of integral
left o-ideals l) such that: i) $\mathfrak{b}j\supset 0\alpha_{\lambda\mu}$ ; ii) $r$} $/$ [) is isomorphic to $0/\mathfrak{o}\alpha_{01}$ . If
$1\leqq\lambda\leqq\mu,$

$0\alpha_{\lambda u}$ is contained in $po$ ; so in this case, the condition i) is a conse-
quence of ii), so that we have $c_{\lambda\mu}=p+1$ . If $\lambda=0$ , we have $\mu=m+1$ ; in this
case, $\mathfrak{o}\alpha_{0\mu}$ is not contained in $po$ ; hence we must have $\mathfrak{b}=0\alpha_{0\mu}+po$ . This im-
plies $c_{0\mu}=1$ . The relation (6) follows from these facts.

We can also verify that

$T(1,p)T(1,p^{m})=T(1,p^{m+1})+\left\{\begin{array}{l}p\tau(p,p^{m}) (m>1),\\(p+1)T(p,p)\end{array}\right.$

$(m=1)$ ,

$\deg(T(1,p^{m}))=p^{m-1}(p+1)$ $(m\geqq 1)$ ;

and the ring $9_{p}$ is the polynomial ring $Z[T(1, p), T(p, p)]$ . It follows that the
ring $\Re(\Gamma, \Delta)$ is an integral domain.

PROPOSITON 1.11. Let $T(n)$ be the sum of $\Gamma\alpha\Gamma$ for $\alpha\in\Delta_{0},$ $N(\alpha)=pf$ . Then,

the formal Dirichlet-series $\sum_{n=1}^{\infty}T(n)n^{-s}$ is decomposed into an Euler-product:

$\sum_{n=1}^{\infty}T(n)n^{-s}=\prod_{\rho|cl_{1}\phi)}[1-T(p)p^{-s}]^{-1}\prod_{\downarrow p(l(\Phi)}[1-T(p)p^{-S}+T(p,p)p^{1-\underline{)}}s]^{-1}$ .

PROOF. By Proposition 1.9, we have $\sum_{n=1}^{\infty}T(n)n^{-}’=\prod_{p}(\sum_{m\Leftarrow 0}^{\infty}T(p^{m})p^{-ms})$ . If $p$ is

a factor of $d(\Phi)$ , we have

$\vec{\sum_{7;\iota=0}}T(p^{m})p^{-ms}=\sum_{m=0}^{\infty}(T(p)p^{-s})^{m}=[1-T(p)p^{-s}]^{-1}$ .

Now suppose that $p$ does not divide $d(\Phi)$ ; putting $x=p^{-s}$ , we observe
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$\overline{\sum_{m=0}}T(p^{m})X^{m}=1+\sum_{m=1}^{\infty}T(1,p^{m})X^{m}+T(p,p)X^{2}\sum_{\nu=0}^{\infty}T(p^{\nu})X^{\nu}$

Then, by Proposition 1.10, we can easily verify

$[1-T(1,p)X+pT(p,p)X^{2}]\sum_{m=0}^{\infty}T(p^{m})X^{m}=1$ .

Our proposition is thereby proved.
By Proposition 1.11, we see easily

\langle 7) $\deg T(n)=\Sigma^{\prime}d$ ,

where the sum is extended over all positive divisors $d$ of $n$ which are prime
to $d(\Phi)$ .

1.4. Congruence-subgroups of $\Gamma$ . We begin with
PROPOSITION 1.12. Let $\mathfrak{a}$ and $\mathfrak{b}$ be integral two-sided o-ideals which are rela-

tively prime. Then we have $\Gamma=\Gamma_{Q}\Gamma_{b}$ .
PROOF. Let $\alpha$ be an element of $\Gamma$ . We can find an element $\beta$ of $0$ such

that $\beta\equiv 1mod.\mathfrak{b}$ and $\beta\equiv\alpha mod$ . $a$ . We have then $N(\beta)\equiv 1mod$ . $\mathfrak{a}\mathfrak{b}$ . By Lemma
1.3, there exists an element $r$ of $\Gamma$ such that $N(\gamma)=1$ and $\gamma\equiv\beta mod$ . $\mathfrak{a}\mathfrak{b}$ . As
$\gamma\equiv\beta\equiv 1mod$ . $\mathfrak{b},$

$\gamma$ is contained in $\Gamma_{b}$ ; and as $\gamma\equiv\alpha mod$ . $a,$ $\alpha\gamma^{-1}$ is contained in
$\Gamma_{\mathfrak{a}}$ . We have therefore $\alpha=\alpha\gamma^{-1}\cdot\gamma\in\Gamma_{a}\Gamma_{b}$ ; this proves our proposition.

Now we fix an integral two-sided o-ideal $\mathfrak{a}$ .
PROPOSITION 1.13. Let $\alpha$ and $\beta$ be two elements of $\Delta_{0}$ whose norms are

prime to $\mathfrak{a}$ . Then we have $\Gamma_{\mathfrak{a}}\alpha=\Gamma_{a}\beta$ if and only if $\Gamma\alpha=\Gamma\beta$ and $\alpha\equiv\beta mod$ . $a$ .
This is an easy consequence of the definition of $\Gamma_{\mathfrak{a}}$ .
PROPOSITION 1.14. Let $\alpha$ be an element of $\Delta_{0}$ such that $N(\alpha)$ is prime to $a$ .

Then the following assertions hold.
i) $\Gamma\alpha\Gamma=\Gamma\alpha\Gamma_{a}=\Gamma_{a}\alpha\Gamma$ .
ii) $\Gamma_{0}\alpha\Gamma_{\alpha}=\{\beta|\beta\in\Gamma\alpha\Gamma, \beta\equiv\alpha mod. (1\}$ .
iii) If $\Gamma_{\alpha}\alpha\Gamma_{\mathfrak{a}}=\bigcup_{\nu}\Gamma_{\mathfrak{a}}\alpha_{\nu}$ is a disjoint sum, then $\Gamma\alpha\Gamma=\bigcup_{\nu}\Gamma$ cc. is a disjoint

sum.
PROOF. By Propositions1.5and1.12we have $\Gamma=(\Gamma\cap\alpha^{-1}\Gamma\alpha)\Gamma_{\mathfrak{a}}$ . Multiply-

ing by $\alpha^{-1}\Gamma\alpha$ , we obtain $\alpha^{-1}\Gamma\alpha\Gamma=\alpha^{-1}\Gamma\alpha\Gamma_{\alpha}$ , so that $\Gamma\alpha\Gamma=\Gamma\alpha\Gamma_{0}$ ; the relation
$\Gamma\alpha\Gamma=\Gamma_{\mathfrak{a}}\alpha\Gamma$ is similarly proved. The assertions ii, iii) follow from this and
Proposition 1.13.

Now let $\Delta_{\mathfrak{a}}$ be the subset of $\Delta_{0}$ consisting of the elements whose norms
are prime to $\mathfrak{a}$ . Assume that $a$ is prime to $d(\Phi)$ . Then we have $c\iota=ao$ for a
positive integer $a$ ; and $0/\mathfrak{a}$ is isomorphic to the total matric ring of degree 2
over $Z/aZ$. Identifying $0/(\ddagger$ with the matric ring, let $\Delta_{\mathfrak{a}}^{*}$ be the set of elements

$\alpha$ in $\Delta_{a}$ such that
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(8) $\alpha\equiv\left(\begin{array}{ll}1 & 0\\0 & c\end{array}\right)$ $mod$ . $\mathfrak{a}$ .

If the relation (8) holds, we have clearly $N(\alpha)\equiv cmod$ . $\mathfrak{a}$ .
PROPOSITION 1.15. Notations and assumptions being as above, the corres-

pondence $\Gamma_{\mathfrak{a}}\alpha\Gamma_{\mathfrak{a}}\rightarrow\Gamma\alpha\Gamma$ gives a surjective isomorphism of $9t(\Gamma_{a}, \Delta_{\alpha}^{*})$ onto $9(\Gamma, \Delta_{\mathfrak{a}})$

PROOF. Denote by $\varphi$ the linear mapping of $9(\Gamma_{a}, \Delta_{\alpha}^{*})$ into $\Re(\Gamma, \Delta)$ given
by the correspondence. First we prove that $\varphi$ is surjective. Let $\alpha$ be an
element of $\Delta_{\alpha}$ ; put $N(\alpha)=c$ . As $c$ is prime to $\mathfrak{a}$ , there exists an integer $b$

such that $bc\equiv 1mod$ . $\mathfrak{a}$ . Let $\beta$ be an element of $0$ such that $\beta\equiv\left(\begin{array}{ll}1 & 0\\0 & b\end{array}\right)mod$ . $t\ddagger$ .
Then we have $N(\alpha\beta)\equiv 1mod$ . $\mathfrak{a}$ . By Lemma 1.3, there exists an elemet $\gamma$

of $\Gamma$ such that $\gamma\equiv\alpha\beta mod$ . $\mathfrak{a}$ . We have then $\gamma^{-1}\alpha\equiv\left(\begin{array}{ll}1 & 0\\0 & c\end{array}\right)mod$ . $\mathfrak{a}$ , so that

$\gamma^{-1}\alpha$ is contained in $\Delta_{\mathfrak{a}}^{*}$ . This proves that $\varphi$ is surjective. Suppose that
$\Gamma\alpha\Gamma=\Gamma\beta\Gamma$ for two elements $\alpha,$ $\beta$ of $\Delta_{a}^{*}$ . Since $N(\alpha)$ is equal to $N(\beta)$ , we get
$\alpha\equiv\beta mod$ . $\mathfrak{a}$ , so that by ii) of Proposition 1.14, we obtain $\Gamma_{a}\alpha\Gamma_{a}=\Gamma_{0}\beta\Gamma_{a}$ ; this
proves that $\varphi$ is one-to-one. Now let $\Gamma_{\mathfrak{a}}\alpha\Gamma_{\mathfrak{a}}=\cup\Gamma_{\alpha}\alpha_{i}$ and $\Gamma_{\alpha}\beta\Gamma_{a}=\bigcup_{k}\Gamma_{\mathfrak{a}}\beta_{k}$ be

disjoint sums for $\alpha,$ $\beta\in\Delta_{a}^{*}$ . We have then $\Gamma\alpha\Gamma=\cup\Gamma\alpha_{i}$ and $\Gamma\beta\Gamma=\cup\Gamma\beta_{k}$ ; and
these are disjoint sums by virtue of iii) of Proposition 1.14. The product
$(\Gamma\alpha\Gamma)(\Gamma\beta\Gamma)$ in the ring $\Re(\Gamma, \Delta_{a})$ is a linear combination of the $\Gamma\alpha_{i}\beta_{k}\Gamma$ . Fix
a pair $(\lambda, \nu)$ and put $\gamma=\alpha_{\lambda}\beta_{\nu}$ . If we have $\Gamma_{\alpha}\alpha_{i}\beta_{k}=\Gamma_{\mathfrak{a}}\gamma$ , then obviously
$\Gamma\alpha_{i}\beta_{k}=\Gamma\gamma$ . Conversely, suppose that $\Gamma\alpha_{i}\beta_{k}=\Gamma\gamma$ . As $\alpha_{i}\equiv\alpha_{\lambda}$ and $\beta_{h}\equiv\beta_{v}mod$ . $\mathfrak{a}_{r}$

we have $\alpha_{i}\beta_{k}\equiv\gamma mod$ . $a$ . Hence by Proposition 1.13, we obtain $\Gamma_{a}\alpha_{i}\beta_{k}\equiv\Gamma_{a}\gamma$ .
This proves that $\varphi$ is an isomorphism.

The ring $g(\Gamma, \Delta)$ was first introduced by Hecke [12] in the case where $\Phi$

is the total matric ring $M_{2}(Q)$ ; this is generalized by Eichler [7] to the case
of quaternion algebra. Recently, Tamagawa [26] has given a theory for arbi-
trary division algebras over $Q$ . The result of \S \S 1.3-4 is essentially contained
in these works. Hecke considered, in the case $\Phi=M_{2}(Q)$, the representation
of $T(n)$ by modular forms and constructed Dirichlet-series whose coefficients
are those representations of $T(n)$ ; the series have Euler-products and satisfy
functional equations; this work was completed by Petersson [17]. Eichler [7]

and Selberg (unpublished ?) considered a similar problem in the case of qua-
ternion algebras. Tamagawa treated the case of general division algebras;
his work is, however, concerned with automorphic ” functiOns” but not with
“ forms ”. On the other hand, Godement [10] gave a fairly general theory of
zeta-functions attached to division algebras, which is applicable to both the
cases ” functions ” and ” forms ” ; but in this work, there remain unexplained
some essential aspects in the case of automorphic forms. Therefore, we shall
now give a treatment in the case of automorphic forms attached to quaternion
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algebras.
REMARK. Prof. Eichler kindly communicated to the author that tr $(T(n))$

in the case of division quaternion algebra is a linear combination of similar
traces in the classical case; this would be another way to Theorem 1 of \S 1.6.

1.5. Cusp-forms. Let $\mathfrak{H}$ denote the upper half-plane. For every matrix
$x=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$ with real entries and for $z\in C$, we shall put

$j(x, z)=cz+d$ .
And when $\det x\neq 0$ , we put

$x[z]=\frac{az+b}{cz+d}$ ;

we have then, if $\det x\neq 0$ and $\det y\neq 0$ ,

$j(xy, z)=j(x,y[z])j(y, z)$ .
If $\det x>0,$ $z\rightarrow x[z]$ gives an analytic automorphism of $\mathfrak{H}$ .

Fix once for all a faithful representation $\chi$ of $\Phi$ by real matrices of de-
gree 2. We identify every element $\xi$ of $\Phi$ with the matrix $\chi(\xi)$ ; then the
notation $\xi[z]$ does not contradict the one introduced in [AF, no. 21].

$\Gamma_{a}$ being as in \S 1.2, we call as usual a function $f(z)$ on $\mathfrak{H}$ a cusp-form of
degree $\kappa$ with respect to $\Gamma_{a}$, where $\kappa$ is a positive integer, if:

i) $f(z)$ is holomorphic on $\mathfrak{H}$ ;
ii) $f(\sigma[z])j(\sigma, z)^{-\kappa}=f(z)$ for every $\sigma\in\Gamma_{\mathfrak{a}}$ ;
iii) $f(z)$ vanishes at every cusp of $\Gamma_{a}$ .

We denote by $S_{\kappa}(\Gamma_{0})$ the set of such $f(z)$ . Let $\Gamma_{\mathfrak{a}}\alpha\Gamma_{a}=\cup\Gamma_{Q}\alpha_{\nu}$ be a disjoint
expression of an element of $\ovalbox{\tt\small REJECT}(\Gamma_{0}, \Delta)$ . For every $f\in S_{\kappa}(\Gamma_{\mathfrak{a}})$ , we define a func-
tion $g$ by

$g(z)=N(\alpha)^{\kappa-1}\sum_{\nu}f(\alpha_{\nu}[z])j(\alpha_{\nu}, z)^{-\kappa}$ .

It can be easily verified that $g$ is an element of $S_{\kappa}(\Gamma_{\mathfrak{a}})$ and does not depend
on the choice of $\{\alpha_{\nu}\}$ . We denote by $(\Gamma_{\alpha}\alpha\Gamma_{\mathfrak{a}})_{r_{\iota}}$ the linear mapping $f\rightarrow g$ of
$S_{\kappa}(\Gamma_{a})$ into itself thus obtained, and write $g=f|(\Gamma_{\alpha}\alpha\Gamma_{\alpha})_{\kappa}$ . By our definition of
$9(\Gamma_{\mathfrak{a}}, \Delta)$ we can conclude that $\Gamma_{\alpha}\alpha\Gamma_{a}\rightarrow(\Gamma_{\alpha}\alpha\Gamma_{\alpha})_{\kappa}$ is a representation of the ring
$R(\Gamma_{a}, \Delta)$ in the vector space $S_{r}(\Gamma_{a})$ . We shall give another expression for
$(\Gamma_{a}\alpha\Gamma_{a})_{K}$ . Put $\alpha_{\nu}^{\prime}=\beta_{v}$ for each $\nu$ . We have then $\Gamma_{\mathfrak{a}}\alpha^{\prime}\Gamma_{\mathfrak{a}}=\bigcup_{\nu}\beta_{\nu}\Gamma_{a}$

; and as
$\alpha_{v}=N(\alpha)\beta_{\overline{\nu}}^{1}$ , we get $f(\alpha_{\nu}[z])=f(\beta_{\nu}^{-1}[z])$ and $j(\alpha_{\nu}, z)=N(\alpha)j(\beta_{\nu}^{-1}, z)$ . Hence,

(9) $f|(\Gamma_{a}\alpha\Gamma_{\alpha})_{\kappa}=N(\alpha)^{-1}\sum_{\nu}f(\beta_{\nu}^{-1}[z])j(\beta_{\nu}^{-1}, z)^{-\kappa}$ .

If $b$ is a positive integer, we see easily

(10) $f|(\Gamma_{a}b\Gamma_{Q})_{\kappa}=b^{\kappa-2}f$ .
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Let $\{f_{1}, f_{m}\}$ be a base of $S_{\kappa}(\Gamma_{a})$ over $C$ and $f$ be the column-vector
whose components are $f_{1},$ $\cdots$ , $f_{m}$ . Then, for every element $\Gamma_{\alpha}\alpha\Gamma_{\alpha}$ of $\Re(\Gamma_{\mathfrak{a}}, \Delta)$,
we obtain a matrix $\mathfrak{T}_{\kappa}(\Gamma_{\mathfrak{a}}\alpha\Gamma_{a})$ with entries in $C$ such that

(11) $f|(\Gamma_{\alpha}\alpha\Gamma_{a})_{\kappa}=\mathfrak{T}_{\kappa}(\Gamma_{\alpha}\alpha\Gamma_{a})f$ .
Restricting $\alpha$ to $\Gamma$ , we observe that $\alpha\rightarrow \mathfrak{T}_{\kappa}(\Gamma_{a}\alpha\Gamma_{a})$ gives a representation of
$\Gamma$ , whose kernel contains $\Gamma_{a}$ ; we denote $\mathfrak{T}_{\kappa}(\Gamma_{a}\alpha\Gamma_{a})$ simly by $L(\alpha)$ for every
$\alpha\in\Gamma$ .

Now suppose that $\mathfrak{a}$ is prime to $d(\Phi)$ . For every integer $b$ which is prime

to $a$ , we can find, by Lemma 1.3, an element $r$ of $\Gamma$ such that $\gamma\equiv\left(\begin{array}{ll}b^{-1} & 0\\0 & b\end{array}\right)mod.t1$ ;
and $L(\gamma)$ is determined only by $b$ ; so we put

(12) $R_{\kappa}(b;\mathfrak{a})=L(\gamma)$ .
$T(n)$ and $T(p,p)$ being as in \S 1.3, let $T(n;a)$ and $T(p,p;\mathfrak{a})$ be the elements of

$R(\Gamma_{a}, \Delta_{a}^{*})$ corresponding to $T(n)$ and $T(p,p)$ by the isomorphism of Proposition
1.15. Denote by $\mathfrak{T}_{\kappa}(n;\mathfrak{a})$ and $\mathfrak{T}_{\kappa}(p,p;\mathfrak{a})$ the matrices determined for $T(n;\mathfrak{a})$

and $T(p, p;\mathfrak{a})$ as in (11). If $\gamma$ is an element of $\Gamma$ such that $\gamma\equiv\left(\begin{array}{ll}p^{-1} & 0\\0 & p\end{array}\right)mod$ . $\mathfrak{a}$ ,

we have $p\gamma=\left(\begin{array}{ll}1 & 0\\0 & p^{2}\end{array}\right)mod.$ (\ddagger so that $T(p,p;a)=\Gamma_{\alpha}p\gamma\Gamma_{a}$ . Using the relations

(10) and (12), we obtain $\mathfrak{T}_{K}(p,p;a)=p^{\mathfrak{r}-2}R_{\kappa}(p;a)$ . Therefore, by Propositions
1.11 and 1.15, we get (formally for the moment)

(13)
$\Sigma^{\prime}\mathfrak{T},.(\Gamma_{a}\alpha\Gamma_{\mathfrak{a}})N(\alpha)^{-s}=\sum_{(n,\mathfrak{a})=1}\mathfrak{T}_{\kappa}(n;\mathfrak{a})n^{-s}$

$=\prod_{pla}[1-\mathfrak{T}_{\kappa}(p;a)p^{-s}]^{-1}\prod_{p*d\mathfrak{a}}[1-\mathfrak{T}_{\kappa}(p;\mathfrak{a})p^{-s}+R_{\Lambda}(p;\mathfrak{a})p^{\kappa-1-2s}]^{-1}$ ,

where $d=d(\Phi)$ , and the first sum is extended over all $\Gamma_{\alpha}\alpha\Gamma_{a}$ with $\alpha\in\Delta_{\alpha}^{*}$ . In
order to examine the collvergence, define, for every $f\in S_{\kappa}(\Gamma_{\alpha})$ , a function $f^{*}$

on $G_{0}=SL(2, R)$ by $f^{*}(u)=f(u[i])j(u, i)^{-\kappa}$, where $i=\sqrt{-1}$ Then, we can
easily verify $f^{*}(\gamma u)=f^{*}(u)$ for every $\gamma\in\Gamma_{a}$ ; and if $g=f|(\Gamma_{\mathfrak{a}}\alpha\Gamma_{\mathfrak{a}})_{\Lambda}$ , we have

(14) $g^{*}(u)=N(\alpha)^{\kappa-1}\sum_{\nu}f^{*}\backslash (\alpha_{\vee}u)$ ,

the $\alpha_{\nu}$ being as above. We may consider $f^{*}$ as function on $\Gamma_{\mathfrak{a}}\backslash G_{0}$ . Since $\Gamma_{\mathfrak{a}}\backslash G_{0}$

is compact, $f^{*}$ attains its maximum at some point of $G_{0}$ . Hence, using the
relation (14), we observe that the absolute values of the characteristic roots
of $\mathfrak{T}_{\iota}(\Gamma_{\alpha}\alpha\Gamma_{\mathfrak{a}})$ do not exceed $N(\alpha)^{\kappa-1}\deg(\Gamma_{\mathfrak{a}}\alpha\Gamma_{\mathfrak{a}})$ . As we shall see a little later,

for a suitable base of $S_{\kappa}(\Gamma_{0})$ , the $\mathfrak{T}_{K}(\Gamma_{\alpha}\alpha\Gamma_{\mathfrak{a}})$ become diagonal matrices. Therefore,

on account of (7), the Dirichlet-series (13) converges absolutely for ${\rm Re}(s)>\kappa+1$ .
For our later use, it is necessary to consider an operator defined by an

element with negative norm. Let $\epsilon$ be a unit of $0$ such that $N(\epsilon)=-1$ . For
every $f\in S_{\kappa}(\Gamma_{\mathfrak{a}})$ , define $g=f|T(\epsilon)_{\kappa}$ by

(15) $g(z)=\overline{f(\epsilon[\overline{z}}\overline{])}j(\epsilon, z)^{-\kappa}$ ,
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where bars indicate the complex conjugate. It can be easily verified that
$T(\epsilon)_{\kappa}$ is an R-linear mapping of $S_{\kappa}(\Gamma_{a})$ onto itself satisfying $(af)|T(\epsilon)_{\kappa}=$

$\overline{a}(f|T(\epsilon)_{r})$ for $a\in C$. When $\mathfrak{a}$ is prime to $d(\Phi)$ , we can take $\epsilon$ so that $\epsilon\equiv$

$\left(\begin{array}{ll}-1 & 0\\0 & 1\end{array}\right)mod$ . $\mathfrak{a}$ . Then we have $e^{2}\in\Gamma_{a},$ $\epsilon^{-1}\alpha\epsilon\equiv\alpha$ mod. a for every $\alpha\in\Delta_{\alpha-}^{*}$

Therefore, $T(\epsilon)_{\kappa}^{2}=1$ and $T(\epsilon)_{h}$ commutes with $(\Gamma_{a}\alpha\Gamma_{\alpha})_{\kappa}$ for every $\alpha\in\Delta_{\alpha}^{*}$ .
After Petersson [17], we define the inner product of the elements $f$ and

$g$ of $S.(\Gamma_{a})$ by
$(f,g)=\int_{D}f(z)\overline{g(z)}{\rm Im}(z)^{\kappa-2}|dzd\overline{z}|$ ,

where $D$ is a fundamental domain for $\Gamma_{a}$ . Then, by Proposition 2 of [24],
$T^{*}=(\Gamma_{\mathfrak{a}}\alpha^{\prime}\Gamma_{a}),$. is the adjoint of $T=(\Gamma_{\alpha}\alpha\Gamma_{a}),\overline{.}$ ; namely, we have $(f|T, g)=$

$(f, g|T^{*})$ . Let $\alpha$ be an element of $\Delta_{a^{\backslash }}^{*};$ put $N(\alpha)=b$ . Let $\gamma$ be an element of
$\Gamma$ such that $\gamma\equiv\left(\begin{array}{ll}b^{-1} & 0\\0 & b\end{array}\right)mod$ . $\mathfrak{a}$ . We have then $\alpha^{\prime}\gamma\equiv\gamma\alpha^{\prime}\equiv\alpha$ mod. a, so that

(16) $\mathfrak{T}_{\Lambda}(\Gamma_{\alpha}\alpha\Gamma_{\mathfrak{a}})=R_{\kappa}(N(\alpha);\mathfrak{a})\mathfrak{T}_{\kappa}(I_{\alpha}^{1}\alpha^{\prime}\Gamma_{\alpha})=\mathfrak{T}_{h}(\Gamma_{a}\alpha^{\prime}\Gamma_{a})R_{\kappa}(N(\alpha);\mathfrak{a})$ .

If follows that $(\Gamma_{a}\alpha\Gamma_{\mathfrak{a}})_{\kappa}$ commutes with its adjoint. Therefore, the operators
$(\Gamma_{a}\alpha\Gamma_{a})_{\kappa}$ for $\alpha\in\Delta_{a}^{x}$ form a commutative ring of normal operators. Therefore,
we can find a base of $S_{\kappa}(\Gamma_{a})$ with respect to which $(\Gamma_{\alpha}\alpha\Gamma_{\alpha})_{\kappa}$ is represented by
a diagonal matrix for every $\alpha\in\Delta_{\alpha}^{*}$ . By Theorem 3 of [24], the characteristic
roots of $(\Gamma_{\alpha}\alpha\Gamma_{\mathfrak{a}})_{\kappa}$ are algebraic integers for every even $\kappa$ and every $\alpha\in\Delta_{0}$ ;
they are totally real if $\mathfrak{a}=0$ . Furthermore, we can find a base $\{f_{1}, \cdots ,f_{m}\}$ of
$S_{\kappa}(\Gamma_{\alpha})$ whose members are invariant under $T(\epsilon)_{\kappa}$ . With respect to this base,
the $(\Gamma_{a}\alpha\Gamma_{\mathfrak{a}})_{\kappa}$ are represented by real matrices for all $\alpha\in\Delta_{\mathfrak{a}}^{*}$ .

1.6. Functional equations for Dirichlet-series. Our method is the one due
to Iwasawa-Tate; besides we shall use the ideas of Pujisaki [9], Godement
[10] and Tamagawa [26].

We assume, until the end of this \S , that $\Phi$ is a division algebra. Let $\mathfrak{A}$

and $\mathfrak{J}$ denote respectively the ad\‘ele-ring and the id\‘ele-group of the quaternion
algebra $\Phi$ ; we identify, in the usual manner, $\Phi$ with a subring of $\mathfrak{A}$ and the
multiplicative group $\Phi^{*}$ of $\Phi$ with a subgroup of $s^{\alpha}$ For every $x\in \mathfrak{A}$, we
denote by $x_{p}$ the $p$-component of $x$ ; in particular, $x_{\infty}$ will denote the com-
ponent at the infinite prime. Let $\mathfrak{d}_{p}$ be the different of $\mathfrak{o}_{p}$ with respect to $Z_{p}$ .
Define a Haar measure $dm_{p}$ of the additive group $\Phi_{p}$ by the condition
$m_{p}(0_{p})=N_{1}(\mathfrak{d}_{p})^{-T}1$ for each finite prime $p$, where $N_{1}(\mathfrak{d}_{p})$ denotes the number of
elements in $0_{p}/b_{p}$ ; and define a Haar measure $ dm\infty$ of $\Phi_{\infty}=M_{2}(R)$ by the
usual Euclidean volume element. Then the product $dm(x)=\Pi_{p}dm_{p}(x)$ gives
a Haar measure on $\mathfrak{A}$ satisfying $m(?1/\Phi)=1$ . For every element $a$ of $s^{\infty}$ , we
define a positive number $|a|$ by

$dm(ax)=|a|^{2}dm(x)$ .
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$|a|$ is also given by $|a|=\Pi_{p}|N(a_{p})|_{p}$ , where $N$ denotes as before the reduced
norm. Let $U_{p}$ be the group of units of $\mathfrak{o}_{p}$ ; define a Haar measure $dm_{p}^{*}$ of
the multiplicative group $\Phi_{p}^{*}$ by $m_{p}^{*}(U_{p})=1$ . Take and fix any Haar measure
$dm_{\infty}^{*}$ on $\Phi_{\infty}^{*}=GL(2, R)$ ; then the product $dm^{*}(x)=\Pi_{p}dm_{p}^{*}(x_{p})$ gives a Haar
measure on $ s\circ$ and we have $dm^{*}(x)=c|x|^{-2}dm(x)$ for a suitable constant $c$ . We
shall write

$G=GL(2, R)$ ,

$G_{+}=\{x|x\in GL(2, R), \det x>0\}$ ,

$K=SO(2, R)$ ,

$U=U_{0}\times G$ ; $U_{0}=_{p}.$ $f_{inite}U_{p}$ .

We want to express the Dirichlet-series (13) by an integral on the id\‘ele-
group $s^{\alpha}$ . Let $\mathfrak{a}$ be an integral two-sided o-ideal which is prime to $d(\Phi)$ . We
denote by $\mathfrak{G}_{\alpha}$ the group of regular elements of the ring $0/\mathfrak{a}$ and by $\mathfrak{S}_{a}$ the
subgroup of $\mathfrak{G}_{\mathfrak{a}}$ consisting of the residue-classes of the elements $\alpha$ such that
$N(\alpha)\equiv 1mod$ . $\mathfrak{a}$ . Let $U_{a}$ be the subgroup of $U$ consisting of the elements $u$

such that $u_{p}\equiv 1mod$ . $\mathfrak{a}_{p}$ , where $\mathfrak{a}_{p}=0_{p}\mathfrak{a}$ . Then, $U/U_{a}$ is canonically isomorphic
to $\mathfrak{G}_{\alpha}$ ; and as $\mathfrak{a}$ is prime to $d(\Phi)$ , G. is isomorphic to the group of matrices
with entries in $Z/(Z\cap a)$ . Fixing such an isomorphism, let ff denote the sub-

group of $\mathfrak{G}_{\alpha}$ consisting of the elements of the form $\left(\begin{array}{ll}c & 0\\0 & 1\end{array}\right)$ . Then every ele-

ment $x$ of $\mathfrak{G}_{a}$ is written uniquely in the following form:

(17) $x=x_{1}x_{2}$ , $x_{1}\in \mathfrak{S}_{a}$ , $x_{2}\in ff$ .

Fix a unit $\epsilon$ of $0$ such that $N(\epsilon)=-1$ and $\epsilon\equiv\left(\begin{array}{ll}-1 & 0\\0 & 1\end{array}\right)mod$ . $\mathfrak{a}$ . Let
$\{f_{1}, \cdots ,f_{m}\}$ be a base of $S_{\kappa}(\Gamma_{\alpha})$ over $C$ whose members are invariant under
$T(\epsilon)_{\kappa}$ ; and denote by $f$ the column-vector with the components $f_{1},$ $\cdots,f_{m}$ .
Then, as is seen in the preceding section, we obtain a representation $L(\gamma)$ of
$\Gamma$ by $f(\gamma[z])j(\gamma, z)^{-\kappa}=L(\gamma)f$ ; and $L(\gamma)=1$ for $\gamma\in\Gamma_{a}$ . Now by Lemma 1.3,
$\Gamma/\Gamma_{a}$ is canonically isomorphic to $S_{a}$ . Hence we can consider $L$ as a repre-
sentation of $\mathfrak{S}_{\alpha}$ ; so, for every element $x$ of $\mathfrak{G}_{a}$ of the form (17), we define
$L^{*}(x)$ by

$L^{*}(x)=L(x_{1})^{-1}$ .
Furthermore, using the isomorphism $u\rightarrow x$ of $U/U_{a}$ onto $\mathfrak{G}_{\mathfrak{a}}$ , we define

$L^{*}(u)=L^{*}(x)$ .
$L^{*}(u)$ is not necessarily a representation of $U$ ; only we have

(18) $L^{*}(\gamma u)=L^{*}(u)L(\gamma)^{-1}$

for every $\gamma\in\Gamma$ . Define a column-vector function $f_{0}$ on $U$ by
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$f_{0}(u)=\{L_{*}^{*}(u)f(u[i])j(u_{\infty},i)^{-K}L(\epsilon u)f(\epsilon^{\infty}u_{\infty}[i])j(\epsilon u_{\infty},i)^{-\kappa}$

if $\det(u_{x})>0$ ,

if $\det(u_{\infty})<0$ .

Then, on account of (18), we have, for every unit $\gamma$ of $0$ ,

(19) $f_{0}(\gamma u)=f_{0}(u)$ .
As every right o-ideal is principal, we have

(20) $s^{\alpha}=\Phi^{*}U$ .
Therefore, on account of (19), we can define a function $F(x)$ on $s^{\infty}$ by

$F(au)=f_{0}(u)$ for $\alpha\in\Phi^{*}$ , $u\in U$ .
We have then, for every $\alpha\in\Phi^{*}$ ,

(21) $F(\alpha x)=F(x)$ .
Define a function $\varphi(x)=\Pi_{p}\varphi_{p}(x)$ on $\mathfrak{A}$ as follows.
i) For every finite prime $p$,

$\varphi_{p}(x_{p})=\dagger 10’,$
$ifx\in \mathfrak{o}andothe^{p}rwis^{p}e.x_{p}\equiv\left(\begin{array}{ll}c & 0\\0 & 1\end{array}\right)mod$

. $\mathfrak{a}_{p},$
$(c, \mathfrak{a}_{p})=1$ ,

ii) $\varphi_{\infty}(w)=j(w, i)^{\kappa}\exp$ { $-\pi$ tr $(w^{t}w)$ }, where $\iota_{w}$ denotes the transpose of $\iota v$ .
We need furthermore a function $\psi_{k}(x)$ on $s^{\alpha}$, for any integer $k$ , defined by

$\psi_{k}(x)=(x_{\infty}[i])^{k}$ .
Now consider the integral

$\zeta(s, f, \varphi, k,y)=\int_{\Im}F(yx)\psi_{k}(x)\varphi(x)|x|^{s}dm^{*}(x)$ ,

where $y$ is an element of $ s\circ$ such that $y_{p}=1$ for all finite $p$ and $\det(y_{\infty})>0$ .
As $F(x)=O(|x|^{-\kappa/2})$ , we observe that this integral converges absolutely for
large ${\rm Re}(s)$ ; first we transform it as follows.

$\zeta(s, f, \varphi, k,y)=\int_{\Im}F(x)\psi_{k}(y^{-1}x)\varphi(y^{-1}x)|y^{-1}x|^{s}dm^{*}(x)$

$=\sum_{\{\alpha\}}\int_{aU}$ ,

where the sum is extended over the representatives $\alpha$ for $\Phi^{*}/(\Gamma U\Gamma\epsilon)$ ; we
may take $\alpha$ so that $N(\alpha)>0$ . By the relation (21),

$\int_{aU}=\int_{U}F(x)\psi_{k}(y^{-1}\alpha x)\varphi(y^{-1}\alpha x)|y^{-1}x|^{s}dm^{*}(x)$

$=B(\alpha)\int_{G_{+}}+B^{\prime}(\alpha)\int_{e^{-1}G_{+}}$

where

$B(\alpha)=\Pi_{p}\int_{U_{p}}\varphi_{p}(\alpha x_{p})L^{*}(x_{p})dm^{*}(x_{p}),$ $B^{\prime}(\alpha)=\Pi_{p}\int_{U_{p}}\varphi_{p}(\alpha x_{p})L^{*}(ex_{p})dm^{*}(x_{p})$ .
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By our definition of $\varphi_{p},$
$B(\alpha)$ does not vanish only when $\alpha\in 0$ and $\alpha$ is prime

to $\mathfrak{a}$ . If that is so, we can find an element $\gamma$ of $\Gamma$ so that $\alpha\gamma\equiv\left(\begin{array}{ll}c & 0\\0 & 1\end{array}\right)mod$ . $\mathfrak{a}$ .
Therefore, taking $\alpha r$ in place of $\alpha$ , we have only to consider $B(\alpha)$ and
$B^{\prime}(\alpha)$ for the elements $\alpha$ satisfying $\alpha\equiv(_{0}^{c}$ $0\perp)mod$ . $a$ . Then, recalling the

definition of $L^{*}$ and our choice of $\epsilon$ , we get

$B(\alpha)=B^{\prime}(\alpha)=e(\mathfrak{a})1_{m}\backslash $ ,

where $e(\mathfrak{a})$ is a positive number depending only on $\mathfrak{a}$ .
Now the integral on $G_{+}$ is equal to

$ N(\alpha)^{-s}\int_{G_{\dashv}}f(w[i])j(y^{-1}\alpha, w[i])^{r}(y^{-1}\alpha w[i])^{k}\times$

$\exp$ { $-\pi$ tr $({}^{t}(y^{-1}\alpha)(y^{-1}\alpha)w^{t}w)$ } $\cdot\det(y^{-1}\alpha w)^{s}dm^{*}(w)$ .
We observe that the integrand is invariant under the right multiplication of
the elements of $K$ ; so it is considered as a function on $G_{+}/K$. By the cor-
respondence $w\rightarrow w^{t}w,$ $G_{+}/K$ is identified with the space $P$ of positive symmetric
matrices of degree 2. Let $g(Y)$ be a function on $P$ defined by

$g(w^{t}w)=f(u[i])j(y^{-1}\alpha, w[i])^{t}(y^{-1}\alpha w[i])^{k}$ for $w\in G_{+}$ .

Then the above integral is equal to

(22) $ N(\alpha)^{-s}\int_{P}g(Y)\exp$ { $-\pi$ tr $(A^{-1}Y)$ } $\det(A^{-1}Y)^{s/2}dY$ ,

where $A=(\alpha^{-1}y)^{r}(\alpha^{-1}y)$ . We have $Dg=0$ for any invariant differential operator
$D$ on $P=G/K$, so that by virtue of the result of Selberg [18, pp. 58-59], (20)

is equal to

$c_{1}N(\alpha)^{-s}\pi^{-s}\Gamma(\frac{s}{2})\Gamma(\underline{s}_{2}^{-\underline{1}})g(A)$

$=c_{1}\pi^{-s}\Gamma\left(\begin{array}{l}s\\-2^{-}\end{array}\right)\Gamma\left(\begin{array}{l}s-1\\--2\end{array}\right)N(\alpha)^{-s}i^{k}f(\alpha^{-1}y[i])j(\alpha^{-1}, y[i])^{-\kappa}j(y, i)^{-\kappa}$ ,

where $c_{1}$ is a constant depending only upon our choice of invariant measure
of $P=G/K$. The integral on $\epsilon^{-1}G_{+}$ is transformed by $w\rightarrow\epsilon^{-1}w$ to the integral

(23) $\int_{o_{+}}f(w[i])j(y^{-1}\alpha\epsilon^{-1}, w[i])^{\kappa}(y^{-1}\alpha\epsilon^{-1}w[i])^{k}\times$

$\exp$ { $-\pi$ tr $({}^{t}(y^{-1}\alpha\epsilon^{-1})(y^{-1}\alpha\epsilon^{-1})w^{t}w)$ } $\det(y^{-1}w)^{s}dm^{*}(w)$ .
We note that $\det(y^{-1}\alpha\epsilon^{-1})<0$ ; so take an element $u$ such that $u^{t}u=1$ ,
$\det u=-1$ . Let $g^{\prime}(Y)$ be a function on $P$ defined by

$g^{\prime}(\ell u^{t}w)=f(w[i])j(y^{-1}\alpha\epsilon^{-1}, w[i])^{\kappa}(y^{-1}\alpha\epsilon^{-1}n[i])^{k}$ for $w\in G_{+}$

Then the integral (23) is equal to
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$ N(\alpha)^{-s}\int_{P}g^{\prime}(Y)\exp$ { $-\pi$ tr $(B^{-1}Y)$ } $\det(B^{-1}Y)^{s/2}dY$ ,

where $B=(\epsilon\alpha^{-1}yu)^{t}(\epsilon\alpha^{-1}yu)$ . Then, by the same reason as above, this is equal
to

$c_{1}\pi^{-s}\Gamma\left(\begin{array}{l}s\\-2^{-}\end{array}\right)\Gamma(\underline{s}-2\underline{1})N(\alpha)^{-s}g^{\prime}(B)$

$=c_{1}\pi^{-S}\Gamma(\frac{s}{2})\Gamma(\underline{s}-2\underline{1})N(\alpha)^{-S}(-i)^{k}f(\epsilon\alpha^{-1}y[-i])j(\epsilon\alpha^{-1}, y[-i])^{-\kappa}j(y, -i)^{-\kappa}$.
Put now

$\xi(s)=(2\pi)^{-s}\Gamma(s)$ , $c_{2}=2\sqrt{\pi}c_{1}e(\mathfrak{a})$ .
For any point $z$ on the upper half plane $\mathfrak{H}$ , we can find an element $y\in G_{+}$

such that $y[i]=z$ and $j(y, i)=1$ . For such $y$ , the above calculation shows that
$\zeta(s, f, \varphi, k, y)$

$=c_{2}\xi(s-1)\sum_{ta\}}N(\alpha)^{-s}\{i^{k}f(\alpha^{-1}[z])j(\alpha^{-1}, z)^{-\kappa}+(-i)^{k}f(\epsilon\alpha^{-1}[\overline{z}])j(e\alpha^{-1},\overline{z})^{-\kappa}\}$ .

Define the matrix $\mathfrak{T}_{\kappa}(\Gamma_{a}\alpha\Gamma_{a})$ as in (11) of \S 1.5. By our choice of $f$, the
$\mathfrak{T}_{\kappa}(\Gamma_{\alpha}\alpha\Gamma_{a})$ are real matrices for every $\alpha\in\Delta_{\mathfrak{a}^{1^{\prime}}}^{\backslash }’$ . Hence, using the relation (9) of
\S 1.5, we obtain

(24)
$\zeta(s, f, \varphi, k, y)=c_{2}\xi(s-1)\sum_{\alpha\in\Delta_{\mathfrak{a}^{*}}}\mathfrak{T}_{\kappa}(\Gamma_{\mathfrak{a}}\alpha\Gamma_{a})N(\alpha)^{1-S}{\rm Re}(i^{k}f(z))$ .

We shall now consider the functional equation. Let $\hat{\varphi}(x)=\Pi_{p}\hat{\varphi}_{p}(x)$ be the
Fourier-transform of $\varphi$ . We can easily verify that: i) the support of $\hat{\varphi}_{p}$ is
contained in $(\mathfrak{d}_{p}\mathfrak{a}_{p})^{-1}$ ; ii) $\hat{\varphi}_{\infty}(w)=i^{\kappa}\varphi_{\infty}({}^{t}w)$ . Hence, if $\det(w)\neq 0$ , we get

(25) $\hat{\varphi}_{\infty}(w^{\prime})=(w[i])^{\kappa}\varphi_{\infty}(w)$ ,

where $w^{\prime}$ denotes as before the transform of $w$ by the canonical involution.
Now by the Poisson summation formula, we get, for every $x$ and $y$ of $ s\circ$ ,

$\sum_{\alpha\in\Phi}\varphi(y^{-1}\alpha x)=|yx^{-1}|^{2}\sum_{a\in\Phi}\hat{\varphi}(x^{-1}\alpha y)$ .

As we have $\varphi(0)=\hat{\varphi}(0)=0$ and as $\Phi$ is a division algebra,

(26) $\sum_{\alpha\in\Phi^{\sim}}\varphi(y^{-1}\alpha x)=|yx^{-1}|^{2}\sum_{\alpha\subset\Phi^{*}}\hat{\varphi}(x^{-1}\alpha y)$ .

By virtue of (21), we have

$\zeta(s, f, \varphi_{f}0,y)=\int_{\omega*\backslash \mathfrak{J}}F(x)|y^{-1}x|^{s}\sum_{\alpha\in\Phi^{*}}\varphi(y^{-1}\alpha x)dm^{*}(x)$ .

Then, the usual technique decomposing this into two parts for $|x|\geqq 1$ and
$\ovalbox{\tt\small REJECT} x|\leqq 1$ , together with the formula (26), shows that the function $\zeta(s, f, \varphi, 0,y)$

can be holomorphically prolongated on the whole s-plane and is equal to

$\int_{\Im}F(x^{-1})|yx|^{2-S}\hat{\varphi}(xy)dm^{*}(x)$ .
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Now $y$ being such that $y_{p}=1$ and $\det(y_{\infty})>0$ , transform this by the canonical
involution $x\rightarrow x^{\prime}$ . By our definition of $F$, we have

$F(x^{\prime-1})=|x|^{\kappa}F(x)$ ,

and by (25),
$\hat{\varphi}_{\infty}(x^{\prime}y)=(y^{\prime}x[i])^{\kappa}\varphi_{\infty}(y^{\prime}x)$ ,

so that

$\zeta(s, f, \varphi, 0, y)=\int_{\Im}F(x)|x|^{2+\kappa-s}|y|^{2-s}\psi_{\kappa}(y^{\prime}x)\varphi_{1}(y^{\prime}x)dm^{*}(x)$ ,

where $\varphi_{1}(x)=\Pi_{p}\varphi_{1p}(x_{p})$ is defined by: i) $\varphi_{1p}=\hat{\varphi}_{p}$ for every finite $p$ ; ii) $\varphi_{1^{\infty}}=$

$\varphi_{\infty}$ . Transform $x$ into $y^{\prime-1}x$ and observe that
$F(y^{\prime-1}x)=|y|^{\kappa}F(yx)$ .

We obtain then

\langle 27) $\zeta(s, f, \varphi, 0, y)=\zeta(2+\kappa-s, f, \varphi_{1}, \kappa,y)$ ,

which is the functional equation for the Dirichlet-series (13).

In order to find a more explicit form, we restrict ourselves to the case
{$\ddagger=\mathfrak{o}$ . Since the group $\Gamma$ contains $-1$ , the vector space $S_{\kappa}(\Gamma)$ reduces to $\{0\}$

if $\kappa$ is odd; so we assume henceforth $\kappa$ is even. Put $D(s)=\sum_{n=1}^{\infty}\mathfrak{T}_{\kappa}(n;a)n^{-s}$.
By (24),

$\zeta(s, f, \varphi, 0, y)=c_{2}\xi(s-1)D(s-1){\rm Re}(f(z))$ .
As $\varphi_{p}$ is a characteristic function of $0_{p}$ , we have

$\varphi_{1p}(x_{p})=\hat{\varphi}_{p}(x_{p})=\left\{\begin{array}{l}N_{1}(\mathfrak{d}_{p})^{-1/2} if x_{p}\in \mathfrak{d}_{p}^{-1},\\0 if x_{p}\not\in \mathfrak{d}_{p}^{-1}.\end{array}\right.$

Hence we obtain

(28) $\zeta(s, f, \varphi_{1}, \kappa,y)=c_{2}(-1)^{\kappa/2}N_{1}(\mathfrak{d})^{-1/2}\xi(s-1)\Sigma \mathfrak{T}_{\kappa}(\Gamma\alpha\Gamma)N(\alpha)^{1-s}{\rm Re}(f(z))$ ,

where the sum is extended over all the $\Gamma\alpha\Gamma$ such that $\alpha\in \mathfrak{d}^{-1},$ $N(\alpha)>0$ . Let
$\delta$ be an element of $0$ such that $0\delta=\mathfrak{d}$ and $N(\delta)>0$ . Then,

$N(\delta)^{2}=N_{1}(\mathfrak{d})=d(\Phi)^{2}=\prod_{p|a(\Phi)}p^{2}$ ,

$\mathfrak{T}_{\kappa}(\Gamma\delta\Gamma)=\prod_{p1a(\Phi)}$ EJ $(p;0)$ .

If $p$ is a prime factor of $d(\Phi)$ , we have
$\mathfrak{T}_{\kappa}(p;0)^{2}=\mathfrak{T}_{K}(\Gamma p\Gamma)=p^{\mathcal{K}-2}1_{m}$ .

Therefore $\mathfrak{T}_{\kappa}(\Gamma\delta\Gamma)$ is invertible; and (28) is equal to
$c_{2}(-1)^{\kappa/2}N_{1}(\mathfrak{d})^{=1/2}\xi(s-1)N(\delta)^{s=1}\mathfrak{T}_{\kappa}(\Gamma\delta\Gamma)^{-1}D(s-1){\rm Re}(f(z))$ .

Putting
$\Lambda_{\kappa}=d(\Phi)^{\kappa/2=J}Z_{\kappa}(\Gamma\delta\Gamma)^{-1}$ ,
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the functional equation (27) is now written in the following form.
$d(\Phi)^{s/2}\xi(s)D(s)=(-1)^{\kappa/2}d(\Phi)^{(\iota i-s)/2}\xi(\kappa-s)\Lambda_{A}D(\kappa-s)$ .

We state the result as
THEOREM 1. Let $\mathfrak{a}$ be an integral two-sided $\mathfrak{o}$-ideal which is prime to $d(\Phi)$ .

Let $\mathfrak{T}_{\kappa}(n;\mathfrak{a})$ be the representation of the operators $T(n;a)$ in the veclor space
$S_{\kappa}(\Gamma_{a})$ of cusp-forms of degree rc with respect to $\Gamma_{a}$ (cf. \S 1.5). Then the Dirichlet
series $\sum_{(n.n)=1}\mathfrak{T}_{\kappa}(n;\mathfrak{a})n^{-s}$

converges absolutely for ${\rm Re}(s)>\kappa+1$ and has an Euler-

product:

$\sum_{(n,a)=1}\mathfrak{T}_{\tilde{\iota}}(n;a)n^{-s}=\prod_{p|d}[1-\mathfrak{T}_{h}(p;\mathfrak{a})p^{-s}]^{-1}\prod_{p\gamma aa}[1-\mathfrak{T}_{\kappa}(p;\mathfrak{a})p^{-s}+R_{\kappa}(p;\mathfrak{a})p^{\kappa-1-2s}]^{-l}$

where $d=d(\Phi)$ . Put

$H_{\kappa}(s;\mathfrak{a})=d(\Phi)^{s/2}(2\pi)^{-s}\Gamma(s)\sum_{(n,a)1}.\mathfrak{T}_{\hslash}(n;\mathfrak{a})n^{-s}$ .

Then, $H_{\kappa}(s;\mathfrak{a})$ is a holomorphic function on the whole s-plane, and satisfies the
functional equation (27). When $a=0$ , the functional equation is writfen in the
form

$H_{\Lambda}(s;\mathfrak{o})=\Lambda H_{\kappa}(\kappa-s;0)$ ,
where

$\Lambda=(-1)^{\kappa/2}\prod_{p\rceil a(\phi)}p^{\kappa/2-1}\mathfrak{T}_{h}(p;\mathfrak{o})$ .

We note that $\Lambda^{2}=1$ . If we transform the $\mathfrak{T}_{\kappa}(n;0)$ into diagonal matrices,

then the diagonal elements of $\sum_{n\approx 1}^{\infty}\mathfrak{T}_{\kappa}(n;0)n^{-s}$ are Dirichlet series which belong

to the type $\{\lambda, k, \gamma\}$ of Hecke [11] for $\lambda=d(\Phi)^{1/2},$ $ k=\kappa$ .
As in the classical case, we may conjecture that the absolute values of

the characteristic roots of $\mathfrak{T}_{\kappa}(p;\mathfrak{a})$ do not exceed $2p^{(\kappa-1)/2}$ . We shall show in
\S 6.2 that, if $\kappa=2$, this is true for almost all $p$ .

\S 2. Kummer varieties.

2.1. Quotient of an abelian variety. Let $A$ be an abelian variety and $G$

a finite group of automorphisms of $A$ ; let $k$ be a field of definition for $A$ and
for the elements of $G$ . Then, we can construct a couple (V, h) formed by a
projective variety $V$ and a rational mapping $h$ of $A$ onto $V$, both defined over
$k$, satisfying the following conditions.

(Q1) $h$ is everywhere defined on $A$ .
(Q2) $h(u)=h(v)$ if and only if there exists an element $\gamma\in G$ such that

$\gamma(u)=v$ .
(Q3) If $h^{\prime}$ is a rational mapping of $A$ into a variety $V^{\prime}$ satisfying $h^{\gamma_{o}}\gamma=$

$h^{\prime}$ for every $\gamma\in G$ , then there exists a rational mapping $g$ of $V$ into $V^{\prime}$ such
that $h^{\prime}=g\circ h$ and $g$ is defined at a point $h(x)$ whenever $h^{\prime}$ is defined at a point
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$x\in A$ .
A proof following Serre’s idea is given in [25] (cf. also Matsusaka [15],

Serre [20], Weil [31]). $(V, h)$ is uniquely determined by these conditions up
to biregular birational mappings; we call (V, h) a quotient of $A$ by $G$ , defined
over $k$ . We note that in the condition (Q3), if $k^{\prime}$ is a field of definition for
$V^{\prime}$ and $h$ ‘ containing $k$ , then $g$ is defined over $k^{\prime}$ .

2.2. Normalized Kummer varieties. Let $\mathfrak{r}$ be a ring having a finite basis
over $Z$ and $9=(A, C, \theta)$ a polarized abelian variety of type $\iota$ (cf. [AF, no. 3]).

For the sake of simplicity, we assume always that the ring $\mathfrak{r}$ has an identity
element 1 and $\theta(1)$ is the identity element of $d(A)$ . Let $\Omega$ denote the group
of automorphisms of $\mathscr{D}$ ; then $\Omega$ is a subgroup of the group of automorphisms
of $(A, C)$ . Hence by [15] and [31], $\Omega$ is a finite group. We can therefore
construct a quotient of $A$ by $\Omega$ . Let $K$ be the field of moduli of 9. We call
a qu’otient $(V_{0}, h_{0})$ of $A$ by $\Omega$ a normalized Kummer variety of $\mathscr{L}$ if it satisfies
the following conditions.

(K1) $V_{0}$ is defined over $K$.
(K2) If $k$ is a field of definition for 9 containing $K,$ $h_{0}$ is defined over $k$ .
(K3) $k$ being as in (K2), if $\sigma$ is an isomorphism of $k$ into the universal

domain leaving invariant the elements of $K$, then we have
$h_{0}^{\sigma}\circ\xi=h_{0}$

for every isomorphism $\xi$ of $\mathscr{L}$ onto $\Psi$ .
Remark that if $\sigma$ is the identity on $K$, there always exists an isomorphism

of 9 onto $\mathscr{L}$ (cf. Proposition 5 of [AF]). We shall now show the existence
of normalized Kummer variety. For this purpose we need a result due to
W. L. Chow [1], which we state as

LEMMA 2.1. Let $A$ and $B$ be two abelian varieties and $\lambda$ a homomorphism

of $A$ into $B$ ; let $k$ be a field of definition forA and B. Then $\lambda$ is defined over
a separably algebraic extension of $k$ .

PROPOSITION 2.2. Let $9^{)}=(A, C, \theta)$ and $9_{1}=(A_{1}, C_{1}, \theta_{1})$ be two polarized abelian
varieties of type $\mathfrak{r}$ , and $\eta$ an isomorphism of 9) onto $\mathscr{L}_{1}$ . Let $K$ be the field of
moduli of $9_{1}$ , and (V, h) a quotient of $A_{1}$ by the group of automorphisms of $9_{1)}$

such that $V$ is defined over K. Suppose that there exists a separably generated
extension $M$ of $K$ satisfying the following conditions:

i) $A_{1}$ and $h$ are defined over $M$ ;
ii) if $\sigma$ is an isomorphism of $M$ into the universal domain leaving invariant

the elements of $K$, then we have $h^{\sigma}\circ\xi=h$ for every isomorphism $\xi$ of $9_{1}^{)}$ onto $ 9_{1}^{)}\sigma$

Then (V, $ h\circ\eta$) is a normalized Kummer variety of 9; in particular, $(V/\iota)$ is ev
normalized Kummer variety of $9_{1}$ .

PROOF. Since $gj$ is isomorphic to $\rho_{1},$ $K$ is also the field of moduli of $\mathscr{L}$.
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It is easy to verify that (V, $ h\circ\eta$) is a quotient of $A$ by the group of automor-
phisms of 9. Let $k$ be a field of definition for $\mathscr{L}$ containing $K$, and $\tau$ an iso-
morphism of $k$ into the universal domain leaving invariant the elements of
$K$. By Lemma 2.1, there exists a separably algebraic extension $k_{1}$ of $kM$ over
which $\eta$ is defined. We take an extension $k_{2}$ of $k_{1}$ over which $9_{1}$ is defined,
and extend $\tau$ to an isomorphism of $k_{2}$ which we denote by $\sigma$ . Then, for every
isomorphism $\xi$ of $\mathscr{D}$ onto $9^{\sigma},$ $\eta^{\sigma}\circ\xi\circ\eta^{-1}$ is an isomorphism of $9_{1}^{)}$ onto $9_{1}^{\sigma}$ . By
our assumption ii), we have $h^{\sigma}\circ\eta^{\sigma}\circ\xi\circ\eta^{-1}=h$ , so that $(h\circ\eta)^{\sigma}\circ\xi=h\circ\eta$ . If
we assume that $\sigma$ is the identity on $k$ , we have $9=9^{\sigma}$ , so that we can take
$\xi$ to be the identity mapping of $\mathscr{L}$ onto itself. We have then $(h\circ\eta)^{\sigma}=h\circ\eta$ .
This shows that $ h\circ\eta$ is defined over $k$, since $ h\circ\eta$ is defined over a separably
generated extension $k_{1}$ of $k$ . Therefore (V, $ ho\eta$) satisfies the conditions (Kl,
2, 3).

Let $\mathscr{L}=(A, C, \theta)$ be a polarized abelian variety of type $\mathfrak{r}$ and $K$ the field
of moduli of $\mathscr{Z}$ By the definition of field of moduli, there exists an ample
divisor $X$ in $C$ such that the field of moduli $K$ is the smallest field of defini-
tion for the variety $q(A, X, \theta)$ (cf. no. 5 of [AF]). By Proposition 4 of [AF],

there exist a regular extension $M$ of $K$, an abelian variety $A_{1}$ in a projective
space $P^{n}$ , a hyperplane section $X_{1}$ of $A_{1}$ and an isomorphism $\eta$ of $A$ onto $A_{1}$

satisfying the following conditions:
$(A^{\prime}1)$ $\eta(X)$ is algebraically equivalent to $X_{1}$ ;
$(A^{\prime}2)$ $A_{1}$ and $\eta\theta(r)\eta^{-1}$ for $ r\in\iota$ are all defined over $M$, and $X_{1}$ is rational

over $M$.
Put $\theta_{1}(r)=\eta\theta(r)\eta^{-1}$ for $\gamma\in \mathfrak{r},$ $C_{1}=C(X_{1})$ , and $9_{1}=(A_{1}, C_{1}, \theta_{1})$ . Then $\eta$ is an iso-
morphism of 9 onto $9_{1}^{)}$ . Denote by $\Omega_{1}$ the group of automorphisms of $9_{1}$ .
By virtue of Proposition 2.2, if we construct a quotient (V, h) of $A_{1}$ by $\Omega_{1}$ ,

satisfying the conditions i) and ii) of the proposition for the present $9_{1}$ and
$ j\psi$, then (V, $ h\circ\eta$) gives a normalized Kummer variety of 9. Therefore we
shall now proceed in the construction of such a quotient. By Lemma 2.1, we
can find a finite Galois extension $M_{1}$ of $M$ such that every element of $\Omega_{1}$ is
defined over $M_{1}$ ; let $\mathcal{G}$ denote the Galois group of $M_{1}$ over $M$. Take any
quotient (V, h) of $A_{1}$ by $\Omega_{1}$ defined over $M_{1}$ . We see easily that for every
$\gamma\in\Omega_{1}$ and for every $\sigma\in \mathcal{G},$ $\gamma^{\sigma}$ is an automorphism of $\mathscr{Z}_{1}$ , so that $\gamma^{d}\in\Omega_{1}$ . Hence,
for every $\sigma\in \mathcal{G},$ $(V^{\sigma}, h^{\sigma})$ is a quotient of $A_{1}$ by $\Omega_{1}$ , defined over $M_{1}$ . On account
of (Q3), there exist rational mappings $g_{\sigma}$ and $g_{\acute{\sigma}}$ , of $V$ into $V^{\sigma}$ and of $V^{\sigma}$ into
$V$, such that $g_{\sigma^{o}}h=h^{\sigma},g_{\sigma}^{\prime}\circ h^{\sigma}=h$ , and, $g_{\sigma}$ is everywhere defined on $V$ and $g_{\sigma}^{\prime}$

is everywhere defined on $V^{\sigma}$ . We see then that $g_{\sigma}$ is a birational mapping
of $V$ onto $V^{\sigma}$ which is everywhere biregular on $V$ and $g_{\acute{\sigma}}=(g_{\sigma})^{-1}$ . By the
remark of \S 2.1, $g_{\sigma}$ is defined over $M_{1}$ . Put $f_{\tau,\sigma}=g_{\tau}\circ(g_{\sigma})^{-1}$ for $\sigma,$

$\tau\in \mathcal{G}$. Then
we have
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$f_{\tau,\sigma}\circ f_{\sigma,\rho}=f_{\tau.\rho}$ .

Morever, if $\omega\in \mathcal{G}$, we have
$g_{\sigma}^{\omega}\circ g_{\omega}\circ h=g_{\sigma}^{\omega}\circ h^{\omega}=(g_{\sigma}\circ h)^{\omega}=h^{\sigma\omega}=g_{\sigma\omega}\circ h$ ,

so that $g_{\sigma}^{\omega}\circ g_{\omega}=g_{a\omega}$ ; hence we have

$f_{\tau\omega,\sigma\omega}=g_{\tau\omega^{o}}(g_{\sigma\omega})^{-1}=g_{\tau}^{\omega}\circ g_{\omega^{o}}(g_{\sigma}^{\omega}\circ g_{\omega})^{-1}=g_{\tau}^{\omega_{o}}(g_{\sigma}^{\omega})^{-1}=(f_{\tau,\sigma})^{\omega}$

Thus the mappings $f_{\tau,\sigma}$ satisfy the conditions of Theorem 1 of Weil [32].

Therefore, by the result of [32], there exist a projective variety $V_{1}$ , defined
over $M$, and a birational mapping $f$ of $V$ onto $V_{1}$ , defined over $M_{1}$ , such that
$f$ is everywhere biregular and $f_{\tau,\sigma}=(f^{\tau})^{-1}\circ f^{\sigma}$ for $\tau,$

$0\in \mathcal{G}$. Put $h_{1}=f\circ h$ ; then
we see that $h_{1}$ is defined over $M_{1}$ . Moreover, for every $\rho\in \mathcal{G}$, we have

$h_{1}^{\rho}=f^{\rho}\circ h^{0}=f\circ f_{1.\rho}\circ h^{0}=f\circ(g_{\rho})^{-1}\circ h^{\rho}=f\circ h=h_{1}$ ;

this shows that $h_{1}$ is defined over $M$. We can easily verify that $(V_{1}, h_{1})$ satisfies
(Ql, 2, 3) for $A_{1}$ and $\Omega_{1}$ , so that $(V_{1}, h_{1})$ is a quotient of $A_{1}$ by $42_{1}$ , defined
over $M$.

Now let $t$ be a point in an affine space such that $M=K(t)$ . As $M$ is a
regular extension of $K,$ $t$ has a locus over $K$, which we denote by $T$. For
every generic point $u$ of $T$ over $K$, we consider the isomorphism of $K(t)$ onto
$K(u)$ over $K$ which maps $t$ onto $u$ , and denote by $\mathscr{L}_{u},$ $A_{u},$ $f2_{u},$ $V_{u},$ $h_{u}$ the trans-
form of $\Omega_{1}^{)},$ $A_{1},$ $\Omega_{1},$ $V_{1},$ $h_{1}$ by the isomorphism. It is clear that $\Omega_{u}$ is the group
of automorphisms of $9_{u}$ and $(V_{u}, h_{u})$ is a quotient of $A_{u}$ by $\Omega_{u}$ , defined over
$K(u)$ . Let $u$ and $v$ be two generic points of $T$ over $K$ As $K$ is the fieid of
moduli of $\mathscr{L}_{1}$ , we see that, by Proposition 5 of [AF], both $9_{u}$ and 9. are iso-
morphic to $9_{1}$ . Hence there exists an isomorphism $\lambda$ of $2_{u}$ onto $9_{v}$ ; and so we
can find a birational mapping $\varphi$ of $V_{u}$ onto $V_{v}$ , everywhere biregular on $V_{u}$ ,

such that
$\varphi\circ/\iota_{u}=h_{\nu}\circ\lambda$ .

If $\lambda^{\prime}$ is another isomorphism of $9_{u}$ onto $\mathscr{Z}_{v},$
$\lambda^{\prime}\circ\lambda^{-1}$ is contained in $\Omega_{v}$ ; we have

therefore $h_{v}=h_{v}\circ(\lambda^{\prime}\circ\lambda^{-1})$ and hence
$\varphi\circ h_{u}=h_{v}\circ\lambda=h_{v}\circ(\lambda^{\prime}\circ\lambda^{-1})\circ\lambda=h_{v}\circ\lambda^{\prime}$

This shows that the mapping $\varphi$ does not depend on the choice of $\lambda$ ; so we
write $\varphi=\varphi_{v,u}$ . We shall now prove that $\varphi_{v,u}$ is defined over $K(u, v)$ . As $A_{u}$

and A. are defined over $K(u, v)$, we can find, on account of Lemma 2.1, a finite
separably algebraic extension $L$ of $K(u, v)$ over which $\lambda$ is defined. Then, by
the remark in \S 2.1, $\varphi_{v,u}$ is defined over $L$ . Let $\sigma$ be an isomorphism of $L$

over $K(u, v)$ into the algebraic closure of $K(u, v)$ . Then $\lambda^{\sigma}$ is an isomorphism
of $9_{u}^{)}$ onto $SR_{v}$ , so that we have

$(\varphi_{v,u})^{\sigma}\circ h_{u}=(\varphi_{c,u}\circ h_{u})^{\sigma}=(h_{v}\circ\lambda)^{\sigma}=h_{v}\circ\lambda^{\sigma}=\varphi_{v,u}\circ h_{u}$ .
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Hence we have $\varphi_{v,u}^{\sigma}=\varphi_{v,u}$ ; this shows that $\varphi_{v,u}$ is defined over $K(u, v)$ . Now,.
$u,$ $v,$ $w$ being three generic points of $T$ over $K$, we have

(1) $\varphi_{w,v}\circ\varphi_{v,u}=\varphi_{w,u}$ .
In fact, if $\lambda$ is an isomorphism of $\mathscr{L}_{u}$ onto $9_{v}^{)}$ and $\mu$ is an isomorphism of $9_{v}$

)

onto $9_{w},$ $\mu\circ\lambda$ is an isomorphism of $9_{u}$ onto $9_{w}$ , so that $\varphi_{u}\circ h_{u}=h_{w}\circ\mu 0\lambda=$

$\varphi_{tl,v}\circ f_{h}\circ\lambda=\varphi_{w,v}\circ\varphi_{v,u}\circ h_{u}$ ; this proves the relation (1). Applying the result
of [32] to $V_{u}$ and $\varphi_{v,u}$ , we obtain a projective variety $V_{0}$ , defined over $K$ and
a birational mapping $\varphi_{t}$ of $V_{0}$ onto $V_{t}$ , which is biregular on $V_{0}$ and defined
over $K(t)$, such that

(2) $\varphi_{v,u}=\varphi_{v}\circ(\varphi_{u})^{-1}$ ,

where $\varphi_{w}$ denotes, for any generic point $w$ of $T$ over $K$, the transform of $\varphi_{r}$

by the isomorphism of $K(t)$ onto $K(w)$ over $K$ which maps $t$ onto $w$ . In [32].

only independent generic points are considered; but once we obtain the rela-
tion (2) for independent generic points, we have the same formula for any
two generic points by virtue of the relation (1), since (1) holds for any three
generic points. Put now

$h_{0}=(\varphi_{t})^{-1}\circ h_{t}$ .
We note that $\mathscr{D}_{1}=9_{t},$ $V_{1}=V_{t},$ $h_{1}=h_{t}$ . It is easy to see that $(V_{0}, h_{0})$ is a quotient
of $A_{1}$ by $2_{1}$ , and $h_{0}$ is defined over $M$. Let $\sigma$ be an isomorphism of $M$ into
the universal domain leaving invariant the elements of $K$, and $\xi$ an isomor-
phism of $9_{1}$ onto $9_{1}^{\sigma}$ . Putting $t^{\sigma}=u$ , we have $9_{1}^{\sigma}=9_{u}$

) $h_{t}^{\sigma}=h_{u},$ $\varphi_{t}^{\sigma}=\varphi_{u}$ ; ancl
by the property of $\varphi_{u,v}$ , we have $\varphi_{u,t}\circ h_{t}=h_{u}\circ\xi$ . Hence,

$h_{0}^{\sigma}\circ\xi=(\varphi_{t}^{-1}\circ h_{t})^{\sigma}\circ\xi=\varphi_{u}^{-\iota}\circ h_{u}\circ\xi=\varphi_{u}^{-1_{O}}\varphi_{u.t}\circ h_{t}=\varphi_{t}^{-1}\circ h_{t}=h_{0}$ .
Thus we have proved that $\{\mathscr{L}_{1}, M, (V_{0}, h_{0})\}$ satisfies the conditions i), ii) of
Proposition 2.2. Therefore, by that proposition, $(V_{0}, h_{0}\circ\eta)$ is a normalized
Kummer variety of $\mathscr{D}$.

Now we consider about the uniqueness of normalized Kummer variety.
PROPOSITION 2.3. Let $\Omega^{)}=(A, C, \theta)$ be a polarized abelian variety of type $\mathfrak{r}$,

(V, h) and $(V_{1}, h_{1})$ two normalized Kummer variely of 9, and $K$ the field of moduli
of 9. Then, there exists a biregular birational mapping $\alpha$ of $V$ onto $V_{1}$ such
that $h_{1}=\alpha\circ h$ ; the mapping $\alpha$ is defined over a purely inseparable extension of
K. Moreover, if $A$ is defined over a separably generated extension of $K,$ $\alpha$ is
defined over $K$

PROOF. The existence of a biregular birational mapping $\alpha$ such that
$h_{1}=\alpha\circ h$ follows directly from the property (Q3) of quotient. Let $k$ be a field
of definition for 9 containing $K$. Then, $h$ and $h_{1}$ are defined over $k$, so that
$\alpha$ is defined over $k$ . Let $\sigma$ be an isomorphism of $k$ into the universal domain
leaving invariant the elements of $K$. Then, for any isomorphism $\xi$ of 9 onto
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$9^{\sigma}$, we have $h=h^{\sigma}\circ\xi,$ $ h_{1}=h_{1}^{\sigma}\circ\xi$ , and hence $\alpha\circ h=h_{1}=h_{1}^{\sigma}\circ\xi=\alpha^{\sigma}\circ h^{\sigma}\circ\xi=\alpha^{\sigma}\circ h$ ;
so we have $\alpha^{\sigma}=\alpha$ . This proves the first assertion of our proposition. If $k$

is separably generated over $K$, the relation $\alpha^{\sigma}=\alpha$ shows that $\alpha$ is defined
over $K$ ; this proves the last assertion.

2.3. Homomorphisms of polarized abelian varieties. Let $9=(A, C, \theta)$ and
$9^{\prime}=(A^{\prime}, C^{\prime}, \theta^{\prime})$ be two polarized abelian varieties of type $r$ , of the same dimen-
sion, and $\lambda$ a homomorphism of $A$ onto $A^{\prime}$ . We call $\lambda$ a homomorphism of 9
onto $9^{\prime}$ if we have $\lambda^{-1}(X^{\prime})\in C$ for every $X^{\prime}\in C^{\prime}$ and $\lambda\theta(r)=\theta^{\prime}(r)\lambda$ for every
$t^{\prime}\in \mathfrak{r}$ . The following proposition is an easy consequence of this definition.

$PROPOSITION2.4$ . $Let9=(A, C, \theta),$ $9_{1}=(A_{1}, C_{1}, \theta_{1}),$ $9_{2}=(A_{2}, C_{2}, \theta_{2})bethreepo-$

larized abelian varieties of type $\mathfrak{r}$ , of the same dimension; let $\lambda_{1},$ $\lambda_{2},$ $\mu$ be respectively
homomorphisms of $A$ onto $A_{1}$ , of $A$ onto $A_{2}$ , of $A_{1}$ onto $A_{2}$ such that $l\ell\circ\lambda_{1}=\lambda_{2}$ .
If any two of $\lambda_{1},$ $\lambda_{2},$ $\mu$ are homomorphisms ofpolarized abelian varieties of type $\mathfrak{r}$ ,

then so is the remaining one.
PROPOSITION 2.5. Let $9=(A, C, \theta),$ $\mathscr{D}_{1}=(A_{1}, C_{1}, \theta_{1}),$ $9_{2}=(A_{2}, C_{2}, \theta_{2})$ be three

polarized abelian varieties of type $\mathfrak{r}$ , of the same dimension; let $\lambda_{i}$ , for $i=1,2$ , be
a separable homomorphism of 9 onto $\mathscr{L}P_{i}$ and $\mathfrak{g}_{i}$ the kernel of $\lambda_{i}$ . Then the fol-
lowing two assertions hold.

i) If $\mathfrak{g}_{1}=\mathfrak{g}_{2}$ , then there exists an isomorphism $\eta$ of $9_{1}^{)}$ onto $9_{2}^{)}$ such that
$\eta 0\lambda_{1}=\lambda_{2}$ .

ii) Suppose that $\nu(\lambda_{1})=\nu(\lambda_{2})$ and there exists an element $a$ in $\mathfrak{r}$ for which we
kave, for each $i$ ,

$\beta\in A(A)$ , $\beta(\mathfrak{g}_{i})=\{0\}\Leftrightarrow\beta\in\theta(a\mathfrak{r})$ .
Under these assumptions, if $\mathscr{Z}_{1}$ is isomorphic to $9_{2}$ , then we have $\mathfrak{g}_{1}=\mathfrak{g}_{2}$ .

PROOF. The assertion i) is an immediate consequence of Proposition 2.4;
so we shall prove ii). Assumptions being as in ii), let $\epsilon$ be an isomorphism
of $9_{2}$ onto $9_{1}$ . Since $\theta(a)(\mathfrak{g}_{1})=\{0\}$ , there exists a homomorphism $\mu$ of $A_{1}$ into
$A$ such that $\mu\circ\lambda_{1}=\theta(a)$ . As $\nu(\lambda_{1})1_{A}$ is contained in 0(at), we have $\nu(\theta(a))\neq 0$,

so that $\mu$ is an isogeny. We see that $\mu\circ\epsilon\circ\lambda_{2}\in\leftrightarrow q(A)$ and $\mu\circ\epsilon\circ\lambda_{2}(\mathfrak{g}_{2})=\{0\}$ .
Hence there exists an element $r\in \mathfrak{r}$ such that $\mu\circ\epsilon\circ\lambda_{2}=\theta(ar)$ ; we obtain then
$\mu\circ\epsilon\circ\lambda_{2}=\mu\circ\lambda_{1}\circ\theta(r)$ , so that $\epsilon\circ\lambda_{2}=\lambda_{1}\circ\theta(r)$ . From this and the assumption
$\nu(\lambda_{1})=\nu(\lambda_{2})$, it follows that $\nu(\theta(r))=1$ ; this shows that $\theta(r)$ is an automorphism
of $A$ . As $\lambda_{1}$ commutes with the operation of $r$ , we have $\epsilon\circ\lambda_{2}=\theta_{1}(r)\circ\lambda_{1}$ ; this
implies $\mathfrak{g}_{1}=\mathfrak{g}_{2}$ , since $\epsilon$ and $\theta_{1}(r)$ are isomorphisms.

2.4. Fields obtained from the points of finite order.
PROPOSITION 2.6. Let $9=(A, C, \theta)$ be an abelian variety of type $\mathfrak{r}$ and (V, h)

a normalized Kummer variety of 9. Let $\mathfrak{a}$ be a subset of $\mathfrak{r}$ such that $\theta(\mathfrak{a})$ con-
tains a regular element of $d_{0}(A)$ ; denote by $\mathfrak{g}(\mathfrak{a}, A)$ the set of points $t$ on $A$ such
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that $\theta(a)t=0$ for every $a\in a$ . Let $K$ be the field of moduli of 9 and $K_{a}$ the
field generated over $K$ by the points $h(t)$ for $t\in \mathfrak{g}(\mathfrak{a}, A)$ . Then, K. is a normal
algebraic extension of $K$.

PROOF. As $\theta(\mathfrak{a})$ contains a regular element of $A_{0}(A)$ , the field $K_{\mathfrak{a}}$ is alge-
braic over $K$. Let $\sigma$ be an isomorphism of the universal domain into itself,
which leaves invariant the elements of $K$ Then, there exists an isomorphism
$\epsilon$ of 9 onto $9^{\sigma}$ , for which we have $h^{\sigma}\circ\epsilon=h$ . Denote by $\mathfrak{g}(a, A^{\sigma})$ the set of
points $u$ on $A^{\sigma}$ such that $\theta^{\sigma}(a)u=0$ for every $a\in \mathfrak{a}$ . It is easy to see that
$t\rightarrow t^{\sigma}$ gives an isomorphism of $\mathfrak{g}(\mathfrak{a}, A)$ onto $\mathfrak{g}(\mathfrak{a}, A^{\sigma})$ and $u\rightarrow\epsilon^{-1}u$ gives an iso-
morphism of $\mathfrak{g}(\mathfrak{a}, A^{\sigma})$ onto $\mathfrak{g}(\mathfrak{a}, A)$ ; hence $t\rightarrow\epsilon^{=1}t^{\sigma}$ gives an automorphism of
$\mathfrak{g}(\mathfrak{a}, A)$ . By the relation $h^{\sigma}\circ\epsilon=h$ , we have $h(t)^{\sigma}=h(\epsilon^{-1}t^{\sigma})$ . Therefore, $ h(t)\rightarrow$

$h(t)^{\sigma}$ is a permutation of the points $\{h(t)|t\in tJ(\mathfrak{a}, A)\}$ . This proves our propo-
sition.

PROPOSITION 2.7. Let $9=(A, C, \theta)$ and $\mathscr{D}^{\prime}=(A^{\prime}, C^{\prime}, \theta^{\prime})$ be two polarized abelian
varieties of type $\mathfrak{r}$ , of the same dimension, defined over a field of characteristic
$0$ ; let (V, h) be a normahzed Kummer variety of 9. Let $\lambda$ be a homomorphism
of 9? onto $9^{\prime}$ and $\mathfrak{g}$ the kernel of $\lambda$ . Suppose that every automorphism of 9 leaves
invariant $\mathfrak{g}$ as a whole. Let $K$ and $K^{\prime}$ be respectively the fields of moduli of 9
and 9’. Then $K^{\prime}$ is contained in the field $K(h(t)|t\in \mathfrak{g})$ .

PROOF. Let $\sigma$ be an isomorphism of the universal domain into itself,
which is the identity on $K(/\iota(t)|t\in \mathfrak{g})$ . There exists an isomorphism $\epsilon$ of 9 onto
$9^{\sigma}$, for which we have $h^{\sigma}\circ\epsilon=h$ . For every $t\in \mathfrak{g}$ , we have $h(t)=h(t)^{\sigma}=h(\epsilon^{-1}t^{\sigma})$ ,

so that by the property (Q2) of quotient, there exists an automorphism $\eta$ of
9 such that $\epsilon^{-1}t^{\sigma}=\eta t$ . By our assumption, this shows that $\epsilon^{-1}t^{\sigma}$ is contained
in $\mathfrak{g}$ . Hence $\mathfrak{g}$ is the kernel of $\lambda^{\sigma}\circ\epsilon$ . By i) of Proposition 2.5, $9^{\prime\sigma}$ is isomor-
phic to $9^{\prime}$ ; so $\sigma$ must be the identity on $K^{\prime}$ . This proves that $K^{\prime}$ is con-
tained in $K(h(t)|t\in \mathfrak{g})$ .

PROPOSITION 2.8. Notations and assumptions being as in Proposition 2.7, let
(V’, $h^{\prime}$ ) be a normalized Kummer variety of 9’ ; and put $K_{1}=K(h(t)|t\in \mathfrak{g})$ . Then,

for every point $u$ on $A,$ $K_{1}(h(u))$ contains $K^{\prime}(h^{\prime}(\lambda(u)))$ .
PROOF. Let $\sigma$ be an isomorphism of the universal domain into itself leav-

ing invariant the elements of $K_{1}(h(u))$ . $\epsilon$ being as in the proof of Proposition
2.7, we have $h(u)=l\iota(u)^{\sigma}=h(\epsilon^{-1}u^{\sigma})$ , so that there exists an automorphism $\xi$ of
9 such that $\epsilon^{-1}u^{\sigma}=\xi u$ . Put $\epsilon_{0}=\epsilon\xi$ . Then $\epsilon_{0}$ is also an isomorphism of 9 onto
$\mathscr{L}^{\prime}$ . Applying the argument of the proof of Proposition 2.7 to $e_{0}$ , we observe
that $\lambda^{\sigma}\circ\epsilon_{0}$ has the same kernel as $\lambda$ . Hence, by i) of Proposition 2.5, there
exists an isomorphism $\alpha$ of 9’ onto $9^{\prime\sigma}$ such that $\lambda^{\sigma}\circ\epsilon_{0}=\alpha\circ\lambda$ . We have
then

$h^{\prime}(\lambda(u))^{\sigma}=h^{\gamma\sigma}(\lambda^{\sigma}(u^{\sigma}))=h^{\prime\sigma}(\lambda^{\sigma}(\epsilon_{0}(u)))=h^{\prime}(\lambda(u))$ .
On account of Proposition 2.7, it follows that $0$ is the identity on $K^{\prime}(h^{\prime}(\lambda(u)))$ ;
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this proves our proposition.

\S 3. Automorphic functions attached to an indefinite
quaternion algebra.

We shall now consider the functions obtained from the points of finite
order on the abelian varieties belonging to an analytic system. We shall only
deal with the system attached to an indefinite quaternion algebra ([AF, \S 5]),
though our method is applicable to a more general case.

3.1. The analytic system $S=\{9(z)|z\in \mathfrak{H}\}$ . First we recall the results of
[AF, \S 5] with a few changes of notations. Let $\Phi$ be an indefinite quaternion
algebra over $Q$ . We fix once for all a faithful representation $\chi$ of $\Phi$ by real
matrices of degree 2. Let $\mathfrak{H}$ denote the upper half complex plane defined by

${\rm Im}(z)>0$ . For every $z\in \mathfrak{H}$ , we denote by $e(z)$ the column-vector $\left(\begin{array}{l}z\\1\end{array}\right)$ . Let $\mathfrak{o}$

be an order in $\Phi$ ; for every $z\in \mathfrak{H}$ , put

$D(z)=\chi(\mathfrak{o})e(z)=\{\chi(\alpha)e(z)|\alpha\in 0\}$ .
Then, $D(z)$ is a lattice in $C^{2}$ and $C^{2}/D(z)$ has a structure of abelian variety.
This was shown by constructing a Riemann form on $C^{2}/D(z)$ as follows (cf.

[AF, no. 18]) : Let $\rho$ be an element of $\Phi$ such that $\rho^{2}$ is a negative rational
number. Put, for every $\alpha\in\Phi$ ,

$ q^{*}=\rho^{-1}\alpha^{\prime}\rho$ .
Then $\alpha\rightarrow\alpha^{*}$ gives an involution of $\Phi$ ; and we have tr $(\alpha\alpha^{*})>0$ for every
$\alpha\neq 0$ of $\Phi$ . Define an R-bilinear form $E(x, y)$ on $C^{2}$ in such a way that

$E(\chi(\alpha)e(z), \chi(\beta)e(z))=tr(\rho\alpha\beta^{\prime})$

holds for every $\alpha\in\Phi$ and $\beta\in\Phi$ . Then, for a suitable integer $c\neq 0,$ $cE$ defines
a non-degenerate Riemann form on the complex torus $C^{2}/D(z)$ .

Now we can construct (cf. [AF, no. 19]) a system of polarized abelian
varieties $\{9(z)|z\in \mathfrak{H}\}$ of type $0$ parametrized by an analytic mapping $\Lambda(x, z)$

of $C^{2}\times \mathfrak{H}$ into a projective space $P^{N}$ . The polarized abelian variety $g(z)=$

$(A(z), C_{z}, \theta_{z})$ of type $0$ is defined as follows.
i) For every $z\in \mathfrak{H},$ $x\rightarrow\Lambda(x, z)$ is an analytic isomorphism of $C^{2}/D(z)$ onto

the abelian variety $A(z)$ .
ii) $C_{z}$ is the polarization of $A(z)$ determined by the hyperplane sections;

and it corresponds to the Riemann form $cE(x, y)$ .
iii) For every $\alpha\in 0,$ $\theta_{z}(\alpha)$ is the endomorphism of $A(z)$ corresponding to

$\chi(\alpha)$ ; namely, we have
$\theta_{z}(\alpha)\Lambda(x, z)=\Lambda(\chi(\alpha)x, z)$ .

We shall denote the system $\{f(z)|z\in \mathfrak{H}\}$ by $S(0, *)$ or simply by $s$ . For
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every $z\in \mathfrak{H}$ , we put
$\mathscr{Z}(z)=9^{i}(A(z), \theta_{z})$ .

The definition of $\Xi(A, \theta)$ is given in [AF, no. 4] or \S 3.4 of the present paper.
If we denote by $c(\mathscr{Z}(z))$ the Chow-point of the variety $\mathscr{Z}(z)$ , the field $Q(c(g(z)))$

is the field of moduli of $9$)$(z)$ . Now, there exist a discrete subset $\mathfrak{W}$ of $\mathfrak{H}$ and
a set of meromorphic functions $\{f_{1}, \cdots ,f_{m}\}$ on $\mathfrak{H}$ such that

(3) $c(\mathscr{Z}(z))=(1,f_{1}(z),$ $\cdots,f_{m}(z))$

for every $z\in \mathfrak{H}-\mathfrak{W}$ . Denote by $\Gamma=\Gamma(0)$ the group composed of all units $\gamma$ of
$0$ such that $N(\gamma)=1$ . Then, $\Gamma$ is a Fuchsian group on $\mathfrak{H}$ Let St(c) denote
the field of automorphic functions on $\mathfrak{H}$ with respect to $\Gamma$ . Then, Theorem 6
of [AF] asserts that the meromorphic functions $f_{i}$ determined by (3) generate
the function-field $\theta(0)$ ; namely, we have

$\theta(0)=C(f_{1}, \cdots,f_{m})$ .
Furthermore, (3) implies that, for every $z\in \mathfrak{H}-\mathfrak{W},$ $Q(f_{1}(z), \cdots ,f_{m}(z))$ is the field
of moduli of $9(z)$ .

PROPOSITION 3.1. If $Q(c(g(z)))$ is not algebraic over $Q$ , we have $d_{0}(A(z))=$

$\theta_{z}(\Phi),$ $d(A(z))=\theta_{z}(0)$ ; and the automorphisms of $\mathscr{L}(z)$ are $\pm 1_{z}$ , where $1_{z}$ denotes
the identity element of $d(A(z))$ .

PROOF. Suppose first that $A(z)$ is simple; then $A_{0}(A(z))$ is a division
algebra. Since $d_{0}(A(z))$ has a rational representation of degree 4, we must
have $[A_{0}(A(z)):Q]\leqq 4$ ; this shows $d_{0}(A(z))=\theta_{z}(\Phi)$ . Now consider the case
where $A(z)$ is not simple; $A(z)$ is then isogenous to a product $E_{1}\times E_{2}$ of two
elliptic curves $E_{1}$ and $E_{2}$ . If $E_{1}$ is not isogenous to $E_{2},$ $cfl_{0}(A(z))$ is isomorphic
to the direct sum of $A_{0}(E_{1})$ and $d_{0}(E_{2})$ ; this is impossible since $A_{0}(A(z))$ con-
tains a central simple algebra $\theta_{z}(\Phi)$ of degree 2 over $Q$ . Hence $A(z)$ must be
isogenous to the product $E_{1}\times E_{1}$ ; and so $A_{0}(A(z))$ is isomorphic to the total
matrix ring of degree 2 over $d_{0}(E_{1})$ . By the same argument as in the proof
of Theorem 6 of [AF], we can show that $Q(c(g(z)))$ is algebraic over $Q(j(E_{1}))$ ,

where $j(E)$ denotes the birational invariant $0^{c}$ an elliptic curve $E$. Since
$Q(c(\mathscr{Z}(z)))$ is not algebraic over $Q,$ $j(E_{1})$ can not be algebraic over $Q$ , so that
$d_{0}(E_{1})$ is isomorphic to $Q$ . If follows from this that $d_{0}(A(z))=\theta_{z}(\Phi)$ . Recall
that $A(z)$ is isomorphic to $C^{2}/D(z)$ and $D(z)=\chi(0)e(z)$ . Then the equality
$d_{0}(A(z))=\theta_{z}(\Phi)$ implies $d(A(z))=\theta_{z}(0)$ . Now let $\alpha$ be an automorphism of
$9(z)$ ; since $\alpha$ commutes with every element of $\theta_{z}(\Phi),$ $\alpha$ is contained in the
center $Q$ of $\theta_{z}(\Phi)$ . Hence $\alpha$ must be equal to $1_{z}$ or $-1_{z}$ . Our proposition is
thereby proved.

3.2. Functions obtained from the points of finite order. We shall now
make use of the mapping $\Psi(z)$ attached to the analytic system $s$ , whose de-
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finition is given in [AF, no. 12]. This mapping has the following properties.
$(\Psi 1)$ $\Psi(z)$ is an analytic mapping of $\mathfrak{H}$ into a projective space.
$(\Psi 2)$ For every $z\in \mathfrak{H},$ $9(z)$ is defined over $Q(\Psi(z))$ .
$(\Psi 3)$ If $z_{1}$ and $z_{2}$ are two points of $\mathfrak{H}$ and if $\mathfrak{p}$ is a place of $Q(\Psi(z_{1}))$ tak-

ing values in $C$ such that $\mathfrak{p}(\Psi(z_{1}))=\Psi(z_{2})$, then we have
$\mathfrak{p}(A(z_{1}))=A(z_{2})$ , $\mathfrak{p}(T(z_{1}))=T(z_{2})$ , $\mathfrak{p}(U(\alpha, z_{1}))=U(\alpha, z_{2})$ ,

where $T(z)$ denotes the graph of the law of composition on $A(z)$ , and $U(\alpha, z)$

denotes the graph of $\theta_{z}(\alpha)$ . (For the definition of places and the notation
$0(V)$ , see Appendix of [AF] and [25 Chap. III].)

Let $\mathfrak{H}_{1}$ be the set of all generic points of $\mathfrak{H}-\mathfrak{W}$ for $\Psi$ over $Q$ . Take and
fix a point $z_{0}$ of $\mathfrak{H}_{1}$ . Let $(V_{0}, h_{0})$ be a normalized Kummer variety of $9(z_{0})$.
If $z$ is a point of $\mathfrak{H}_{1}$ , there exists an isomorphism $\sigma$ of $Q(\Psi(z_{0}))$ onto $Q(\Psi(z))$

such that $\Psi(z_{0})^{\sigma}=\Psi(z)$ ; we have then $\mathscr{L}(z_{0})^{\sigma}=\mathscr{L}(z)$ . Put
$V(z)=V_{0}^{\sigma}$ , $h_{z}=h_{0}^{\sigma}$ .

(V,, $h_{z}$) is obviously a normalized Kummer variety of $9(z)$ . Now let $z\rightarrow u(z)$

be an analytic mapping of $\mathfrak{H}$ into $C^{2}$ . Put

$\Theta_{u}(z)=\Lambda(u(z), z)$ ,

and consider, for every $z\in \mathfrak{H}_{1}$ , the point $h_{z}(\Theta_{u}(z))$ lying on the variety $V(z)$ .
As $h_{t}$ is defined over $Q(\Psi(z))$ , the quotients of the coordinates of this point
are contained in $Q(\Psi(z), \Theta_{u}(z))$. Let $\mathfrak{H}_{1}(u)$ be the set of all generic points of
$\mathfrak{H}-\mathfrak{W}$ for $\Psi$ and $\Theta_{u}$ over $Q$ . Take and fix a point $z_{1}$ of $\mathfrak{H}_{1}(u)$ . Then there
exist elements $y_{1},$

$\cdots$ , $y_{M}$ of $Q(\Psi(z_{1}), \Theta_{u}(z_{1}))$ such that

$h_{z_{1}}(\Theta_{u}(z_{1}))=(1,y_{1}, \cdots, y_{M})$ .
Let $g_{1},$ $\cdots$ , $g_{M}$ be the elements of $Q(\Psi, \Theta_{u})$ corresponding to $y_{1},$

$\cdots$ , $y_{M}$ by the
canonical isomorphism of $Q(\Psi, \Theta_{u})$ onto $Q(\Psi(z_{1}), \Theta_{u}(z_{1}))$ . Then $g_{1},$

$\cdots$ , $g_{M}$ are mero-
morphic functions on $\mathfrak{H}$ ; and for every $z\in \mathfrak{H}_{1}(u)$ , we have

$h_{z}(\Lambda(u(z), z))=(1,g_{1}(z),$ $\cdots,g_{M}(z))$ .
Now consider the case where $u(z)$ is defined by

$u(z)=\chi(\xi)e(z)$ ,

where $\xi$ is an element of $\Phi$ . In this case we denote by $g_{\nu}(\xi, z)$ the meromor-
phic function $g.(z)$ and put $\mathfrak{H}_{1}(\xi)=\mathfrak{H}_{1}(u)$ . Then, for every $z\in \mathfrak{H}_{1}(\xi)$ , we have

(4) $h_{z}(\Lambda(\chi(\xi)e(z), z))=(1,g_{1}(\xi, z), \cdots,g_{M}(\xi, z))$ .
PROPOSITION 3.2. Notations being as above, for every $\xi\in\Phi$ and $\gamma\in\Gamma(0)$ ,

we have
$g_{\nu}(\xi\gamma, z)=g_{\nu}(\xi, \gamma[z])$ $(1\leqq\nu\leqq M)$ .

PROOF. Let $z$ be a point of $\mathfrak{H}_{1}\cap r^{-1}(\mathfrak{H}_{1})$ . Putting
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$z^{\prime}=\gamma[z]$ , $\chi(\gamma)=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$ , $s=cz+d$ ,

we get $s\cdot e(z^{\prime})=\chi(\gamma)e(z)$ . We can find an isomorphism $\eta$ of $9(z)$ onto $ 9^{)}(z^{\prime}\rangle$

such that $\eta\Lambda(sx, z)=\Lambda(x, z^{\prime})$ (cf. the proof of Proposition 15 of [AF]). As $z$

and $z^{\prime}$ are generic for $\Psi$ over $Q$ , there exists an isomorphism $\sigma$ of $Q(\Psi(z))$ onto
$Q(\Psi(z^{\prime}))$ such that $\Psi(z)^{\sigma}=\Psi(z^{\prime})$ ; we have then $9$) $(z)^{\sigma}=9(z^{\prime})$ . Since $9(z)$ is
isomorphic to $9(z^{\gamma}),$ $\sigma$ must leave invariant the elements of the field of moduli
of $9$)$(z)$ . Therefore, by the property (K3) of normalized Kummer variety, the
equality $h_{z}^{\sigma}\circ\eta=h_{z}$ holds. By our construction of $h_{z}$ , we have $h_{z}^{\sigma}=h_{z},$ , so that

$h_{z}(\Lambda(sx, z))=h_{z},(\eta\Lambda(sx, z))=h_{z^{l}}(\Lambda(x, z^{\prime}))$ .
Substituting $\chi(\xi)e(z^{\prime})$ for $x$, we obtain

$h_{z}(\Lambda(\chi(\xi r)e(z), z))=h_{z},(\Lambda(\chi(\xi)e(z^{\prime}), z^{\prime}))$ .
If we take $z$ sufficiently generic, this proves the relation of our proposition.

PROPOSITION 3.3. Let $\xi$ and $\xi_{1}$ be two elements of $\Phi$ . Then
$g_{\nu}(\xi, z)=g_{\nu}(\xi_{1}, z)$

holds for every $\nu$ if and only if
$\xi\equiv\pm\xi_{1}$ $mod.\mathfrak{o}$ .

PROOF. If $\xi\equiv\pm\xi_{1}mod.0$ , we have
$\chi(\xi)e(z)\equiv\pm\chi(\xi_{1})e(z)$ $mod$ . $D(z)$ .

This implies $\Lambda(\chi(\xi)e(z), z)=\pm\Lambda(\chi(\xi_{1})e(z), z)$ . Since $h_{z}(\pm x)=h_{z}(x)$ , we obtain

(5) $h_{z}(\Lambda(\chi(\xi)e(z), z))=h_{z}(\Lambda(\chi(\xi_{1})e(z), z))$ .
This proves the ” if ” part of our proposition. Conversely, suppose that
$g_{\nu}(\xi, z)=g_{\nu}(\xi_{1}, z)$ holds for every $\nu$ . Then, for every $z\in \mathfrak{H}_{1}(\xi)_{\cap}\mathfrak{H}_{1}(\xi_{1})$ , the
equality (5) holds. By Proposition 3.1, we have $\Lambda(\chi(\xi)e(z), z)=\pm\Lambda(\chi(\xi_{1})e(z), z)$ .
Hence, we must have $\chi(\xi)e(z)\equiv\pm\chi(\xi_{1})e(z)mod$ . $D(z)$, and so $\xi\equiv\pm\xi_{1}mod$ . $0$ .
This completes our proof.

3.3. Automorphic functions belonging to congruence-subgroups. Let $\mathfrak{a}$ be
an integral right o-ideal. We denote by $\Gamma_{a}^{*}$ the subgroup of $\Gamma(0)$ composed
of the elements $\gamma$ such that $r\equiv\pm 1mod$ . $a$ . Then $\Gamma_{a}^{*}$ is of finite index in $\Gamma(0)$ .
We denote by $\theta(\mathfrak{a})$ the field of automorphic functions on $\mathfrak{H}$ with respect to $\Gamma_{\alpha}^{*}$ .

PROPOSITION 3.4. Let $a=\alpha 0$ be an integral right o-ideal. Then we have

$P(0;\mathfrak{a})=C(f_{i}(z),g_{j}(\alpha^{-1}, z)|1\leqq i\leqq m, 1\leqq i\leqq M)$ ,

where the $f_{i}$ and the $g_{j}$ are the meromorphic functions defined by (3) and (4) of
\S 3.2.

PROOF. Let $\gamma$ be an element of $\Gamma(0)$ . By Propositions 3.2 and 3.3,
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$g_{j}(\alpha^{-1}, \gamma[z])=g_{j}(\alpha^{-1}, z)$ holds for every $j$ if and only if $\gamma\equiv\pm 1mod$ . $a$ , On the
other hand, we have obviously

$\theta_{z}(\alpha)\Lambda(\chi(\alpha^{-1})e(z), z)=0$ ;

hence, by Proposition 2.6, for every $z\in \mathfrak{H}_{1}(\alpha^{-1})$ , the coordinates $g_{j}(\alpha^{-1}, z)$ of
the point $h_{z}(\Lambda(\chi(\alpha^{-1})e(z), z))$ are algebraic over the field of moduli $Q(f_{i}(z))$ of
$9(z)$ . If follows that the functions $g_{j}(\alpha^{-1}, z)$ are algebraic over the function-
field $Q(f_{i})$ . This proves our proposition, since the equality $ff(0)=C(f_{i})$ holds.

REMARK. Suppose that $\mathfrak{a}=\alpha 0$ is an integral two-sided o-ideal. Then, we
see that, for every $\beta\in 0,g_{j}(\beta\alpha^{-1}, z)$ 1SJ invariant under $\Gamma(0;\mathfrak{a})$ and algebraic
over $Q(f_{i})$ . Hence we can write also

$R(\mathfrak{o} ; \mathfrak{a})=C(f_{i}(z),g_{j}(\beta a^{-1}, z)|1\leqq i\leqq m, 1\leqq j\leqq M, \beta\in 0)$ .

3.4. Generic members of the system $S$ . In order to make our later dis-
cussion easy, we recall here the definition of the variety $q(A, \theta)$ introducing
some new notations. Let $9=(A, C, \theta)$ be a polarized abelian variety of type

$\mathfrak{r}$ . We assume that $A$ is a variety in a projective space $P^{N}$ of dimension $N$

and $C$ is the polarization determined by the hyperplane sections. Fix a basis
$\{r_{1}, \cdots , r_{a}\}$ of $\mathfrak{r}$ over $Z$. Let $\varphi$ be a non-degenerate projective transformation
in $P^{N}$ and $v_{1}$ , $\cdot$ .. , $v_{a}$ be $d$ points on $A$ . Let W. be the graph of the rational
mapping

$x\rightarrow\varphi[\theta(r_{J})\varphi^{-1}(x)+v_{\nu}]$

of $A$ into itself. Put

$T(\varphi, v_{1}, \cdots , v_{d})=c(\varphi(A))\times c(W_{1})\times\cdots\times c(W_{a})$

and $M=(N+1)^{2}-1$ . We can regard $\varphi$ as a point in the projective space $P^{M}$ ;
then $T$ defines a rational mapping of $ P^{M}\times A\times$ – $\times A$ into a certain product
of projective spaces. The image $T(P^{M}\times A\times\cdots\times A)$ is nothing but the variety
$S^{7}(A, \theta)$ ; we call it the projective family of $(A, \theta)$ with respect to $\{r_{1}, \cdots , r_{a}\}$ .
Let $U$ be the set of the elements in $P^{M}$ which are non-degenerate as projec-
tive transformations of $P^{N}$ . Then $U$ is an open subset of $P^{M}$ in the sense of
Zariski-topology. We observe that $T$ is defined at every point on $U\times A\times\cdots\times A$ .
Denote by $S^{i^{*}}(A, \theta)$ the set-theoretical image $T(U\times A\times\cdots\times A)$ . By Lemma
8 of [AF], we have $\dim \mathcal{G}(A, \theta)=\dim(P_{M}\times A\times\cdots\times A)$ , so that $9^{i^{*}}(A, \theta)$ con-
tains an open subset of $\mathscr{Z}(A, \theta)$ in the sense of Zariski-topology.

PROPOSITION 3.5. Let $k$ be a subfield of $C$ composed of countably infinite
elements. $9(z),$ $\mathscr{Z}(z),$ $\Psi(z)$ being as in \S 3.1 and \S 3.2, let $z_{0}$ be a generic point for
$\Psi$ over $k$ and $y$ an arbitrary point on $\mathfrak{H}$ Then we have $\dim_{k}c(\Psi(z_{0})\geqq\dim_{k}c(X(y))$ .
Suppose that
(6) $\dim_{k}c(g(z_{0}))=\dim_{k}c(S^{i}(y))$ .
Then, there exists an isomorphism $\sigma$ of the universal domain over $k$ such that
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$9(z_{0})^{\sigma}$ is isomorphic to $9(y)$ .
PROOF. Take a place $\mathfrak{p}$ of the field $k(\Psi(z_{0}))$ such that, for every function

$f$ in $k(\Psi(z))$ holomorphic at $y,$ $\mathfrak{p}(f(z_{0}))=f(y)$ . The existence of such a place $\mathfrak{p}$

is shown in the proof of Theorem 1 of [AF]. We have then $\mathfrak{p}(\underline{\subseteq}\gamma(z_{0}))\supset S^{7}(y)$ .
Put

$K_{0}=k(c(\mathcal{G}(z_{0})))$, $K=k(c(\xi p(y)))$ .
Then, the varieties $\mathcal{G}(z_{0})$ and $S^{i}(y)$ are respectively defined over $K_{0}$ and $K$

We can find a point $a$ on $\mathcal{G}(z_{0})$ and a point $b$ on $\mathcal{G}(y)$ such that $a\rightarrow bref$ . $\mathfrak{p}$ ,

and, $a$ is algebraic over $K_{0}$ and $b$ is algebraic over $K$. Moreover, we can take
$a$ and $b$ so that $a\in 9^{*}(A_{z_{0}}, \theta_{z_{0}}),$ $b\in S^{\gamma*}(A_{y}, \theta_{y})$ . Then, by the definition of $S^{i^{*}}$ ,

there exist non-degenerate projective transformations $\varphi,$
$\psi$ and points $u_{1},$

$\cdots$ , $u_{f}$

on $A(z_{0}),$ $v_{1},$ $\cdots$ , $v_{a}$ on $A(y)$ such that

$T(\varphi, u_{1}, \cdots, u_{a})=a$, $T(\psi, v_{1}, \cdots, v_{a})=b$ .
Put $B_{1}=\varphi(A(z_{0})),$ $B_{2}=\psi(A(y))$ . As $B_{1}$ is defined over $k(a)$ , we can put into $B_{1}$

a structure of abelian variety defind over an algebraic extension $L_{1}$ of $h(a)$ ;
we can then define easily a polarized abelian variety $9_{1}=(B_{1}, C_{1}, \theta_{1})$ of type $0$ ,

defined over $L_{1}$ , such that $\varphi$ defines, up to a constant, an isomorphism of $9(z_{0})$

onto $\Omega_{1}^{)}$ . We can find similarly an algebraic extension $L_{2}$ of $k(b)$ and a polar-
ized abelian variety $9_{2}=(B_{2}, C_{2}, \theta_{2})$ , defined over $L_{2}$ , such that $\psi$ defines, up to
a constant, an isomorphism of $9(y)$ onto $9_{2}$ . We have clearly

$S^{i}(A_{z_{0}}, \theta_{z_{0}})=q(B_{1}, \theta_{1})$, $9i(A_{y}, \theta_{y})=F(B_{2}, \theta_{2})$ .
It follows that $K_{0}\subset L_{1},$ $K\subset L_{2}$ . We have therefore $\dim_{k}a=\dim_{k}K_{0},$ $\dim_{k}b=$

$\dim_{k}K$ ; as $b$ is a specialization of $a$ over $k$ , we have $\dim_{k}K_{0}\geqq\dim_{k}K$ ; this
proves our first assertion. Now the assumption (6) implies

$\dim_{k}a=\dim_{k}b$ .
Hence $b$ must be a generic specialization of $a$ over $k$ ; so there exists an iso-
morphism $\sigma$ of $k(a)$ onto $k(b)$ such that $a^{\sigma}=b$ . Extend this isomorphism to an
isomorphism of the universal domain and denote it again by $\sigma$ . On account
of the definition of $T,$ $a^{\sigma}=b$ implies $B_{1}^{\sigma}=B_{2}$ . We may assume, without any
loss of generality, that $\sigma$ maps the origin of $B_{1}$ onto the origin of $B_{2}$ . Then,
again by the definition of $T$ and by the equality $a^{\sigma}=b$ , we see that $9_{1}^{\sigma}=$

$(B^{\sigma}{}_{1}C_{1}^{\sigma}, \theta_{1}^{\sigma})$ coincides with $9_{2}=(B_{2}, C_{2}, \theta_{2})$ . This proves our proposition.
REMARK. Proposition 3.5 holds for a more general system of polarized

abelian varieties constructed in [AF, no. 11]; in the above proof, we have
only to substitute $0$ and $\mathfrak{H}$ for $\mathfrak{r}$ and $\mathfrak{Z}$ We also note that in the present case
of quaternion algebra, we have

$\dim_{k}c(S^{i}(z_{0}))=1$ ,

on account of Theorem 6 of [AF].
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\S 4. Algebro-geometric theory of modular correspondences.

4.1. Determination of Galois groups. $0$ being as before an order in $\Phi$ ,
we assume henceforth that $0$ is maximal. Let $\mathfrak{a}$ be an integral two-sided 0-

ideal; in this \S we denote by $G_{\mathfrak{a}}=G(\mathfrak{a})$ the multiplicative group of regular
elements of the ring $\mathfrak{o}/\mathfrak{a}$ and by $S_{a}=S(\mathfrak{a})$ the subgroup of $G_{\alpha}$ consisting of the
residue-classes of the elements $\alpha$ such that $N(\alpha)\equiv 1mod$ . $\mathfrak{a}\cap Z$. It is clear
that S. is a normal subgroup of $G_{a}$ . By Lemma 1.4, the mapping $\beta\rightarrow N(\beta)$

is an isomorphism of $G_{a}/S_{a}$ onto the multiplicative group of regular elements
of $Z/(Z\cap \mathfrak{a})$ . We note that if $\mathfrak{a}$ is of the form (3) of \S 1.2, we have $Z\cap \mathfrak{a}=$

$(a_{0}N(\mathfrak{p}_{1}\cdots \mathfrak{p}_{s}))$ . As before let $\Gamma$ denote the group of units $\gamma$ in $0$ such that
$N(\gamma)=1$ , and $\Gamma_{\alpha}^{*}$ the subgroup of $\Gamma$ consisting of the elements $\gamma$ such that
$\gamma\equiv\pm 1mod$ . $\mathfrak{a}$ . Applying Lemma 1.3 to the case $b=1$ , we observe that every
element of $S_{\mathfrak{a}}$ has a representative in $\Gamma$ . It follows that $\Gamma/\Gamma_{\alpha}^{*}$ is canonically
isomorphic to $S_{\mathfrak{a}}/\{\pm 1\}$ .

Let $9(z)$ be a member of our system $S$ and $K_{1}=K_{1,g}$ the field of moduli
of $9(z)$ . By Proposition 3.5, we have $\dim_{Q}K_{1}=0$ or 1. Let (V, h) be a nor-
malized Kummer variety of $9(z)$ . For every integral two-sided o-ideal $a$ , we
put

$\mathfrak{g}(\mathfrak{a}, A_{z})=$ { $t\in A_{z}|\theta_{z}(\alpha)t=0$ for every $\alpha\in \mathfrak{a}$ },

and denote by $K_{\alpha}=K_{\mathfrak{a}.\epsilon}$ the field generated over $K_{1}$ by the points $h(t)$ for $ t\in$

$\mathfrak{g}(\mathfrak{a}, A_{z})$ . By Proposition 2.3, $K_{\alpha}$ does not depend on the choice of (V, $h$); and
by Proposition 2.6, K. is a Galois extension of $K_{1}$ . Our purpose in this \S is
to determine the Galois group of $K_{\mathfrak{a}}$ over $K_{1}$ in the case $\dim_{Q}K_{1}=1$ .

PROPOSITION 4.1. Notations being as above, there exists an element $t$ of
$\mathfrak{g}(\mathfrak{a}, A_{z})$ satisfying the following conditions:

i) $\mathfrak{g}(()A_{z})=\theta_{z}(0)t$ ;
ii) $\theta_{z}(\alpha)t=00\alpha\in a$ .
PROOF. As every o-ideal is a principal ideal, there exists an element $\alpha_{0}$

such that $\mathfrak{a}=0\alpha_{0}$ . We have then also $\mathfrak{a}=\alpha_{0}0$ , since $\mathfrak{a}$ is a two-sided o-ideal
and $0$ is maximal. Put $t=\Lambda(\chi(\alpha_{0}^{-1})e(z), z)$ . It is easy to verify this point
satisfies the conditions.

If $t_{0}$ is a point of $\mathfrak{g}(\mathfrak{a}, A_{z})$ satisfying the conditions i) and ii), we observe
that the mapping $\alpha\rightarrow\theta_{z}(\alpha)t_{0}$ gives an isomorphism of $0/\mathfrak{a}$ onto $\mathfrak{g}(\mathfrak{a}, A_{z})$ . It
follows from this fact that the conditions i) and ii) of the above proposition
are equivalent to each other. We call an element $t$ of $\mathfrak{g}(\mathfrak{a}, A_{z})$ satisfying these
conditions a primitive element of $\mathfrak{g}(\mathfrak{a}, A_{z})$ .

Now let $\mathcal{G}_{a}$ denote the Galois group of $K_{a}$ over $K_{1}$ .
PROPOSITION 4.2. $Lelt_{0}$ be a primitive element of $\mathfrak{g}(\mathfrak{a}, A_{z})$ . Then, for every

element $\sigma$ of $\mathcal{G}_{\alpha}$ , there exists an element $\alpha_{\sigma}\in 0$ such that
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(1) $h(\theta_{z}(\beta)l_{0})^{\sigma}=h(\theta_{z}(\beta\alpha_{\sigma})t_{0})$

for every $\beta\in 0$ . If $K_{1}$ is not algebraic over $Q$ , such an element $\alpha_{\sigma}$ is uniquely
determined modulo $a$ up to the factors $\pm 1$ .

PROOF. Let $\sigma$ be an element of $\leftarrow c_{\alpha}^{\backslash }$ ; extend $\sigma$ to an isomorphism of the
universal domain into itself and denote it again by $0$ . Since $\sigma$ leaves invari-
ant the elements of $K_{1}$ , there exists an isomorphism $\eta$ of $\mathscr{L}$ onto $\mathscr{L}^{\sigma}$ ; by the
property (K3) of normalized Kummer variety, we have $h^{\sigma}\circ\eta=h$ . We see
easily that $\eta^{-1}t_{0}^{\sigma}$ is contained in $\mathfrak{g}(\mathfrak{a}, A_{z})$ . Hence, by the property i) of Proposi-
tion 4.1, there exists an element $\alpha_{\sigma}\in 0$ such that $\eta^{-1}l_{0}^{\sigma}=\theta_{z}(\alpha_{\sigma})t_{0}$ . We have
then, for every $\beta\in \mathfrak{o}$ ,

$h(\theta_{z}(\beta)t_{0})^{\sigma}=h^{\sigma}(\theta_{z}^{\sigma}(\beta)t_{0}^{\sigma})=h(\eta^{-1}\theta_{z}^{\sigma}(\beta)l_{0}^{\sigma})=h(\theta_{z}(\beta)\eta^{-1}t_{0}^{0})=h(\theta_{z}(\beta\alpha_{\sigma})t_{0})$ .
This proves the first assertion. Suppose that $K_{1}$ is not algebraic over $Q$ and
we have $h(t_{0})^{\sigma}=h(\theta_{z}(\gamma)t_{0})$ for an element $\gamma\in 0$ ; we have then, by Proposition
3.1, $\theta_{z}(\alpha_{\sigma})t_{0}=\pm\theta_{z}(\gamma)t_{0}$ . As $t_{0}$ is a primitive element of $\mathfrak{g}(\mathfrak{a}, A_{z})$, we have
$\alpha_{\sigma}\equiv\pm\gamma mod$ . $\mathfrak{a}$ ; this completes the proof.

If $K_{1}$ is not algebraic over $Q$ , we observe that the mapping $\sigma\rightarrow\alpha_{\sigma}$ gives
an isomorphism of $\mathcal{G}_{\mathfrak{a}}$ into $G_{\alpha}/\{\pm 1\}$ ; this isomorphism depends on the choice
of a primitive element $t_{0}$ of $\mathfrak{g}(\mathfrak{a}, A_{z})$ . If we choose another primitive element
of $q(a, A_{z})$ , the isomorphism is transformed by an inner automorphism of
$G_{\alpha}/\{\pm 1\}$ .

THEOREM 2. Suppose that the field of moduli $K_{1}$ of $\mathscr{L}(z)$ is not algebraic
over Q. Then the following assertions hold.

i) The Galois group $\mathcal{G}_{a}$ of $K_{a}$ over $K_{1}$ is isomorphic to $G_{\alpha}/\{\pm 1\}$ by the cor-
respondence $\sigma\rightarrow\alpha_{\sigma}$ defined by the relation (1) of Proposition 4.2.

ii) Let $a$ be the smallest positive integer divisible by $\mathfrak{a}$ and $\zeta_{a}$ a $primiti\iota’ e$ a-
th root of unity. Then, $K_{1}(\zeta_{\alpha})$ is the subfield of $K_{\mathfrak{a}}$ corresponding to the subgroup
$S_{\alpha}/\{\pm 1\}$ of $G_{a}/\{\pm 1\}$ .

iii) $Q(\zeta_{a})$ is algebraically closed in $K_{\mathfrak{a}}$ .
iv) If $\alpha_{\sigma}$ is a representative of the element of $G_{\mathfrak{a}}/\{\pm 1\}$ corresponding to an

element $0$ of $\mathcal{G}_{a}$ , we have $\zeta_{a}^{\sigma}=\zeta_{a}^{N(\alpha_{\sigma})}$ .
PROOF. By virtue of Proposition 3.5, our theorem is established if we

prove the assertions i-iv) for any one of the points $z$ of $\mathfrak{H}$ such that
$\dim_{Q}c(g(z))=1$ . Therefore, in the course of our proof, we may assume, as occa-
sion demands, the points $z$ to be sufficiently generic. For convenience’ sake,
we use the letter $y$ instead of $z$ for a sufficiently generic point of $\mathfrak{H},$ reserv $\cdot$

ing the letter $z$ for the variable. Now the $f_{i}$ being as in (3) of \S 3.1, we have
$K_{1}=Q(f_{1}(y), \cdots,f_{m}(y))$ .

Let $a$ be an element of $0$ such that $\mathfrak{a}=\alpha 0$ ; put $t_{0}=\Lambda(\chi(\alpha^{-1})e(y),y)$ . Then $t_{0}$

is a primitive element of $\mathfrak{g}(\mathfrak{a}, A_{y})$ ; and we have $h_{y}(\theta_{y}(\beta)t_{0})=h_{y}(\Lambda(\chi(\beta\alpha^{-1})e(y),y))$,
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so that
$K_{a}=K_{1}(g_{j}(\beta\alpha^{-1},y)|1\leqq j\leqq\wedge M,$ $\beta\in 0$),

where the $g_{j}$ are the functions determined by (4) of \S 3.2. Let $\gamma=$ be an ele-
ment of $S_{a}$ . By Lemma 1.3, there exists an element $\gamma$ of $0$ such that $N(\gamma)=1$

and $\overline{\gamma}$ is the class of $\gamma$ modulo $\mathfrak{a}$ . If $y$ is sufficiently generic, $K_{a}$ is isomorphic
to the function-field
$’(2)$ $Q(f_{i}(z),g_{j}(\beta\alpha^{-1}, z)|1\leqq i\leqq m, 1\leqq j\leqq M, \beta\in 0)$ ,

and $K_{1}$ corresponds to $Q(f_{i}(z))$ . As $\mathfrak{a}$ is a two-sided o-ideal and $0$ is maximal,
we have $\alpha 0\alpha^{-1}=0$, so that $\alpha\gamma\alpha^{-1}$ is a unit of $0$ . Put $r_{1}=\alpha\gamma\alpha^{-1}$ . By proposi-
tion 3.2, we have

$g_{j}(\beta\alpha^{=1}, \gamma_{1}[z])=g_{j}(\beta\gamma\alpha^{-1}, z)$ .
Therefore, the mapping $F(z)\rightarrow F(\gamma_{1}[z])$ gives an automorphism of the field (2)
$overQ(f_{i}(z))$ . If we transform this onto $K./K_{1}$ , we observe that $ h_{y}(\theta_{y}(\beta)t_{0})\rightarrow$

$h_{y}(\theta_{y}(\beta\gamma)t_{0})$ gives an element of $\mathcal{G}_{\alpha}$ . In other words, $S_{\alpha}/\{\pm 1\}$ is contained in
the image of the isomorphism $\sigma\rightarrow\alpha_{\sigma}$ .

Let $Y$ be a divisor contained in the polarization $c_{y}$ . Then $Y$ corresponds
to a Riemann form $E_{1}$ on $C^{2}/D(y)$ defined by

$E_{1}(\chi(\xi)e(y), \chi(\eta)e(y))=tr(\rho_{1}\xi\eta^{\prime})$ ,

where $\rho_{1}$ is an element of $\Phi$ . As $E_{1}(u, v)$ is an integer for every $u,$ $v$ in $D(y)=$

$\chi(0)e(y),$ $tr(\rho_{1}0)$ is an ideal of $Z$. Let $q$ be a positive integer such that
tr $(\rho_{1}0)=qZ$. Then $q^{-1}E_{1}$ is also a Riemann form. Let $X$ be a divisor on $A_{y}$

corresponding to $q^{=1}E_{1}$ . Then $qX$ is algebraically equivalent to $Y$, so that
$X\in c_{y}$ . Put $q^{-1}\rho_{1}=\rho,$ $q^{-1}E_{1}=E$. Then there exists an element $\xi_{0}\in \mathfrak{o}$ such

$r_{L}^{\backslash }$ that tr $(\rho\xi_{0})=1$ . Now, $a$ being as in ii) of our theorem, consider the symbol
$e_{X,a}$ defined in Weil [29, no. 75]. By the formula (7) of [25, p. 25], we have

$e_{X.a}(t_{2}, t_{1})=\exp(2\pi iaE(x_{1}, x_{2}))$ ,

where $t_{1}$ and $t_{2}$ are points on $A_{y}$ such that $at_{1}=at_{2}=0$ and $x_{1},$ $x_{2}$ are vectors
in $C^{2}$ corresponding to $t_{1}$ and $t_{2}$ . Hence, for every $\beta_{1}$ and $\beta_{2}$ of $\mathfrak{o}$ we have

(3) $e_{X,a}(\theta_{y}(\beta_{2})t_{0}, \theta_{y}(\beta_{1})t_{0})=\exp(2\pi iaE(\chi(\beta_{1}\alpha^{-1})e(y), \chi(\beta_{2}\alpha^{-1})e(y)))$

$=\exp$ ($2\pi iaN(a)^{-1}$ tr $(\rho\beta_{1}\beta_{2}^{\prime})$).

Let $\sigma$ be an element of $\mathcal{G}_{a}$ ; extend $\sigma$ to an isomorphism of the universal do-
main into itself and denote it again by $\sigma$ . $\eta$ and $\alpha_{\sigma}$ being as in the proof of
Proposition 4.2, $\eta^{-1}(X^{\sigma})$ is algebraically $equival\Leftrightarrow.nt$ to $X$, so that $e_{X^{\sigma}.a}(s_{2}, s_{1})=$

$e_{X,a}(\eta^{-1}s_{2}, \eta^{-1}s_{1})$ ; we have therefore

(4) $e_{X,a}(\theta_{y}(\beta_{2})t_{0}, \theta_{y}(\beta_{1})t_{0})^{\sigma}=e_{X^{\sigma},a}(\theta_{y}^{\sigma}(\beta_{2})t_{0}^{\sigma}, \theta_{y}^{\sigma}(\beta_{1})t_{0}^{\sigma})=e_{X,a}(\theta_{y}(\beta_{2}\alpha_{\sigma})t_{0}, \theta_{y}(\beta_{1}\alpha_{\sigma})t_{0})$ .
Now assume that $a=ao$ and put $\zeta_{a}=e_{X,a}(t_{0}, \theta_{y}(\xi_{0})t_{0})$ . By (3), we have $\zeta_{t_{\vee}^{I}}=$

$\exp(2\pi ia^{=1})$, so that $\zeta_{a}$ is a primitive a-th root of unity. Substituting $\xi_{0}$ and
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a for $\beta_{1}$ and $\beta_{2}$ in (4), we obtain, on account of (3), $\zeta_{a}^{\sigma}=\zeta_{a}^{N(a_{\sigma})}$ ; this proves that
( $\zeta_{a}$ is contained in $K_{\alpha}$ and the assertion iv) in the case $a=ao$ .

Coming back to the general case, put $a=\alpha\alpha_{1}$ and
$u_{0}=\Lambda(\chi(a^{-1})e(y),y)$ .

Then $\alpha_{1}$ is an element of $0$ and we have $t_{0}=\theta_{y}(\alpha_{1})u_{0}$ . Obviously $K_{a}$ contains
$K_{u}$ . Taking $a0$ in place of $\mathfrak{a}$ , we obtain an isomorphism $\sigma\rightarrow\beta_{\sigma}$ of the Galois
group $\mathcal{G}_{a}$ of $K_{a}$ over $K_{1}$ into $G_{a}/\{\pm 1\}$ by means of the relation $h_{y}(\theta_{y}(\beta)u_{0})^{\sigma}=$

$h_{y}(\theta_{y}(\beta\beta_{\sigma})u_{0})$ . By what we have just proved, $\zeta_{a}$ is contained in $K_{a}$ and $\zeta_{a}^{\sigma}=$

$\zeta^{N(\beta_{\sigma})}$ . As $\alpha_{1}=a\alpha^{-1}$ , we have $\alpha_{1}0\alpha_{1}^{-1}=0$ . Put $\alpha_{1}\beta_{\sigma}\alpha_{1}^{-1}=r_{\sigma}$ . We have then,
$h_{y}(\theta_{y}(\beta)t_{0})^{\sigma}=h_{y}(\theta_{y}(\beta\gamma_{\sigma})t_{0})$ , so that $\gamma_{\sigma}\equiv\pm\alpha_{\sigma}mod$ . $\mathfrak{a}$ . Hence an element $0$ of $\mathcal{G}_{a}$

leaves invariant the elements of $K_{\alpha}$ if and only if $\alpha_{1}\beta_{0}\alpha_{1}^{-1}\equiv\pm 1mod$ . $\mathfrak{a}$ , namely,
$\beta_{\sigma}\equiv\pm 1mod$ . $\mathfrak{a}$ . Now if $\beta_{\sigma}\equiv\pm 1mod$ . $\mathfrak{a}$, we have $N(\beta_{\sigma})\equiv 1mod$ . $aZ$, so that
$\zeta_{a}^{d}=\zeta_{a}$ . This shows that if an element $\sigma$ of $\mathcal{G}_{a}$ leaves invariant the elements
of $K_{a}$ , we have $\zeta_{a}^{\sigma}=\zeta_{a}$ . It follows that $\zeta_{a}$ is contained in $K_{\mathfrak{a}}$ ; and we have,
for every element $\sigma$ of $\mathcal{G}_{a},$

$\zeta_{a}^{\sigma}=\zeta_{a}^{N(\beta_{\mathcal{O}})}=\zeta_{a}^{N(\alpha_{\sigma})}$ . This proves the assertion iv) in
the general case. In particular, $\sigma$ is the identity on $K_{1}(\zeta_{a})$ if and only if the
class of $a.mod.$ $a$ is contained in $S_{a}$ . Let $G_{a}^{\prime}$ denote the image of the isomor-
phism $0\rightarrow\alpha_{\sigma}$ . We have proved above $G_{a}^{\prime}\supset S_{\mathfrak{a}}/\{\pm 1\}$ . As $K_{1}(\zeta_{a})$ corresponds
to $S_{a}/\{\pm 1\}$ , we have

$[G_{0}^{\prime} : S_{a}/\{\pm 1\}]=[K_{1}(\zeta_{a}):K_{1}]$ .
If we denote by $\varphi(a)$ the order of the multiplicative group of $Z/aZ$, we get
$[G_{\mathfrak{a}}/\{\pm 1\} : S_{\alpha}/\{\pm 1\}]=[G_{\alpha}:S_{a}]=\varphi(a)$ . On the other hand, by Theorem 6 of
[AF], $Q$ is algebraically closed in $K_{1}$ , so that

$[K_{1}(\zeta_{a}):K_{1}]=[Q(\zeta_{a}):Q]=\varphi(a)$ .
It follows that $G_{\mathfrak{a}}^{\prime}=G_{\alpha}/\{\pm 1\}$ . Thus we have proved the assertions i) and ii).

Now let $k_{1}$ be the set of elements of $K_{a}$ which is algebraic over $Q$ . Then $k_{1}$

contains $Q(\zeta_{a})$. We have seen above that every element $\sigma$ of $\mathcal{G}_{a}$ corresponding
to $S_{\mathfrak{a}}$ is obtained from an isomorphism $F(z)\rightarrow F(r_{1}[z])$ of the function-field (2).

Obviously, this isomorphism leaves invariant the elements of $k_{1}$ . Therefore
$k_{1}$ must be contained in the subfield of $K_{a}$ corresponding to $S_{a}$ ; so we have
$k_{1}\subset K_{1}(\zeta_{a})$ , and hence $k_{1}=Q(\zeta_{\alpha})$ . Our theorem is thereby completely proved.

In the above proof, we have used an isomorphism between $K_{a}$ and the
function-field (2). Therefore, we may consider Theorem 2 as a statement con-
cerning the Galois-group of the function-field (2) over $Q(f_{i})$ . If we extend the
constant field to the complex number field, the function-fields (2) and $Q(f_{i})$

yield $R(\mathfrak{o};\mathfrak{a})$ and $R(0)$ . The relation between the fields and the groups is
illustrated by the following table.
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1

1.
$K_{a}^{/^{C_{1}K\cong ff(0;\mathfrak{a})\cdots\cdots\cdots\Gamma_{a^{*}}}}|$

$/^{S_{a}/\{\pm 1\}\cdots\cdots K_{1}(\zeta_{a})}||C_{1}K_{1}\cong ff(0)\cdots\cdots\cdots\cdots\Gamma/|$

$G_{\alpha}/\{\pm 1\}\cdots\cdots\cdots K_{1^{/|}}/^{C}Q^{1/}Q(\zeta_{a})$

4.2. Transformations of $g(z)$ . Let $q=0\alpha$ be an integral left o-ideal; sup-
pose that $N(\alpha)>0$ ; and let $\{q_{1}, \cdots, q_{m}\}$ be the set of integral left o-ideals hav-
ing the same elementary divisors as $q$ . $\{q_{1}, \cdots , q_{m}\}$ corresponds to a double
coset $\Gamma\alpha\Gamma$ ; and if we take elements $\alpha_{i}$ so that $q_{i}=0\alpha_{i}$ and $N(\alpha_{i})>0$ for every
$i,$ $\Gamma\alpha\Gamma=\bigcup_{t=1}^{m}\Gamma\alpha_{i}$ is a disjoint sum. Put $q=N(q)$ . We have then $0\supset q\supset qo$ , and
$0/q$ is $0$-isomorphic to $0\alpha^{\prime}/qo$ . As we have $\Gamma\alpha\Gamma=\Gamma\alpha^{\prime}\Gamma,$ $0\alpha^{\prime}$ coincides with one
of the $q_{i}$ . Therefore, $0/qo$ contains exactly $m$ o-submodules isomorphic to $0/q$ .

Now let $9(y)=(A_{y}, C_{y}, \theta_{y})$ be a member of the system $S$ . By Proposition
4.1, $\mathfrak{g}(q, A_{y})$ is isomorphic to $0/qo$ as o-module. Hence $\mathfrak{g}(q, A_{y})$ has exactly $m$

subgroups $\mathfrak{g}_{i}$ which are o-isomophic to $0/q$ .
PROPOSITION 4.3. Notations being as above, there exist $m$ members $9(y_{i})$

$(1\leqq i\leqq m)$ of $S$ and a homomorphism $\lambda_{i}$ of $9$)$(y)$ onto $9(y_{i})$ for each $i$ such that
the kernel of $\lambda_{i}$ is $\mathfrak{g}_{i}$ .

PROOF. The elements $\alpha_{i}$ being as above, put $\alpha_{i}[y]=y_{i}$ ; then there exists
a complex number $a_{i}$ such that $\chi(a_{i})e(y)=a_{i}e(y_{i})$ . We have obviously

$D(y_{i})=\chi(0)e(y_{i})=a_{i^{-1}}\chi(q_{i})e(y)$ .
Hence the linear mapping $x\rightarrow qa_{i^{-1}}x$ gives a homomorphism of $C^{2}/D(y)$ onto
$C^{2}/D(y_{i})$ ; denote by $\lambda_{i}$ the homomorphism of $A(y)$ onto $A(y_{i})$ corresponding
to this linear mapping. Since $\lambda_{t}$ commutes with the operation of $0,$ $\lambda_{i}$ is a
homomorphism of $9(y)$ onto $9(y_{i})$ (cf. [AF, no. 20]). Put $t_{0}=\Lambda(q^{-\iota}e(y), y)$ ; then
$t_{0}$ is a primitive element of $\mathfrak{g}(q, A_{y})$ ; and $\theta_{y}(q_{i})t_{0}$ for $1\leqq i\leqq m$ give the sub-
modules of $\mathfrak{g}(q, A_{y})$ which are o-isomorphic to $0/q$ . We see easily that the
kernel of $\lambda_{i}$ is $\theta_{y}(q_{i})t_{0}$ . This proves our proposition.

Let $a$ be an integral two-sided o-ideal. We shall now consider the fields
$K_{1},$ , and $K_{\alpha,z}$ for the points $y_{i}$ determined in Proposition 4.3. The $\alpha_{i}$ being as
above, suppose that $y$ is generic for $\Psi(z),$ $\Psi(\alpha_{i}[z])$ over $Q$ ; then there exists
an isomorphism $\rho_{i}$ of $Q(\Psi(y))$ onto $Q(\Psi(y_{i}))$ such that $\Psi(y)^{p_{i}}=\Psi(y_{f})$ . We have
then
(6) $9(y_{i})^{p_{i}}=9(y_{i})$, $V(y)^{\rho_{i}}=V(y_{i})$, $h_{y^{l}}^{\rho}=h_{y_{i}}$ .
It is easy to see that $\rho_{i}$ induces an isomorphisms of $K_{a_{y}}$, onto $K_{\alpha.y_{i}}$ and of
$K_{1,y}$ onto $K_{1,y_{i}}$ . Now suppose that $q$ is prime to ($x$ . Then, the mapping $ t\rightarrow$
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$\langle(\lambda_{i}t)^{0_{i}-1}$ gives an o-automorphism of $\mathfrak{g}(\mathfrak{a}, A_{y})$ . Hence, if $t_{0}$ is a primitive element
of $\mathfrak{g}(\mathfrak{a}, A_{y})$, there exists an element $\gamma_{i}$ of $0$ , prime to $\mathfrak{a}$ , such that

$(\lambda_{i}\theta_{y}(\beta)t_{0})^{p_{i}-1}=\theta_{y}(\beta\gamma_{i})t_{0}$

for every $\beta\in 0$ . By Theorem 2, there exists an automorphism $\tau_{i}$ of $K_{\mathfrak{a},y}$ over
$K_{1,y}$ such that

$h_{y}(\theta_{y}(\beta)t_{0})^{\tau_{i}}=h_{y}(\theta_{y}(\beta\gamma_{i})t_{0})$

for every $\beta\in 0$ . Put $\sigma_{i}=\tau_{i}\rho_{i}$ . We have then

$h_{y}(\theta_{y}(\beta)t_{0})^{\sigma_{i}}=h_{yi}(\lambda_{i}\theta_{y}(\beta)t_{0})$ .
We have thus proved the following proposition.

PROPOSITION 4.4. Let $\mathfrak{a}$ be an integral two-sided c-ideal and $y$ a point of $\mathfrak{H}$ ;

define $9(y_{i})$ and $\lambda_{i}$ as in Proposition 4.3. Suppose that $q$ and $\mathfrak{a}$ are relatively
prime. If $y$ is sufficiently generic, there exists, for each $i$ , an isomorphism $\sigma_{i}$ of
$K_{n.y}$ onto $K_{a_{yi}}$, such that
(7) $c(9(y))^{\sigma_{i}}=c(\mathscr{Z}(y_{i}))$ ,

(8) $h_{y}(t)^{\sigma_{i}}=h_{yi}(\lambda_{i}t)$

for every $t\in \mathfrak{g}(\mathfrak{a}, A_{y})$ .
Since $K_{a_{y}}$, is generated over $Q$ by the points $c(\mathscr{Z}(y))$ and $h_{y}(t)$ for $ t\in$

$g(a, A_{y})$ , the isomorphism $\sigma_{t}$ is uniquely determined by (7) and (8).
From now on, we assume $y$ to be so generic that we may apply Proposi-

tion 4.4 to $9(y)$ for any pair of $q$ and $t\ddagger$ . By Propositions 2.7 and 2.8, $K_{\mathfrak{a}.yt}$ is
contained in $K_{qa,y}$ ; this implies in particular that $K_{n_{Vi}}$. is algebraic over $K_{1,y}$ .

PROPOSITION 4.5. Notations being as in Proposition 4.4, every conjugate of
$c(F(y_{1}))$ over $K_{1,y}$ is of the form $c(\mathcal{G}(y_{i}))$ for $1\leqq i\leqq m$ .

PROOF. Let $\tau$ be an isomorphism of the universal domain into itself leav-
ing invariant the elements of $K_{1,y}$ . Then, there exists an isomorphism $\eta$ of
$9(y)$ onto $9(y)^{\tau}$. We see that $\lambda_{1}^{\tau}\circ\eta$ is a homomorphism of $\mathscr{L}(y)$ onto $9(y_{1})^{\tau}$,
and, the kernel of $\lambda_{1}^{\tau}\circ\eta$ is contained in $\mathfrak{g}(q, A_{y})$ and is o-isomorphic to $0/q$ .
Therefore, the kernel of $\lambda_{1}^{\tau}\circ\eta$ coincides with one of the $\mathfrak{g}_{i}$ . Then, by i) of
Proposition 2.5, $9(y_{1})^{\tau}$ is isomorphic to one of the $9(y_{i})$ . It follows that $g(y_{1})^{\tau}$

coincides with one of the $g(y_{i})$ on account of Proposition 1 of [AF]; this
proves our proposition.

Now let $\mathfrak{b}$ be the set of elements $\beta$ such that $\beta 0\subset q$ . Then $\mathfrak{b}$ is an in-
tegral two-sided o-ideal; and we have $q\supset b\supset qo$ . As $1i_{i}$ is o-isomorphic to $D/q$ ,
we have
(9) $\theta_{y}(\beta)\mathfrak{g}_{i}=\{0\}\Leftrightarrow\beta\in \mathfrak{b}$ .
We shall use this relation in the proof of the following proposition.

PROPOSITION 4.6. Let $u=$ $(u_{1}, \cdots , u_{l})$ be a set of quantities such that
$K_{a_{y}},\supset Q(u)\supset K_{1,y}$ . Let $\sigma_{1},$

$\cdots$ , $\sigma_{m}$ be the isomorphisms of $K_{u.y}$ onto the $K_{\alpha_{yi}}$, deter-
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mined by (7) and (8) of Proposition 4.4. Then:
i) $Q(u, c(q(y_{i})))$ contains $Q(u^{\sigma_{i}})$ for each $i$ ;
ii) $(u^{\sigma_{1}}, \cdots, u^{\sigma_{m}})$ is the complete set of conjugates of $u^{\sigma_{1}}$ over $Q(u)$ .
PROOF. Let $\tau$ be an isomorphism of the universal domain into itself leav-

ing invariant the elements of $Q(c(g(y)), c(\mathcal{G}(y_{1})))$ . Then there exist an isomor-
phism $\epsilon$ of $9(y)$ onto $9(y)^{\prime}$ and an isomorphism $\epsilon_{1}$ of $g(y_{1})$ onto $9(y_{1})^{\prime}j$ by the
property (K3) of normalized Kummer variety, we have

(10) $h_{y}^{\tau}\circ\epsilon=h$ , $h_{y_{1}}^{\tau}\circ\epsilon_{1}=h_{y_{1}}$ .
We observe that the kernel of $\lambda_{1}^{\tau}\circ e$ is o-isomorphic to $0/q$ . We can apply, on
account of (9), Proposition 2.5 to the homomorphisms $6_{1}\circ\lambda_{1}$ and $\lambda_{1}^{\tau}\circ\epsilon$ of $9(y)$}

onto $9(y_{1})^{\tau}$ ; then by ii) of that proposition, $\epsilon_{1}\circ\lambda_{1}$ and $\lambda_{1}^{\tau}\circ\epsilon$ have the same
kernel; hence by i) of the same proposition, there exists an automorphism $\eta$

of $9(y_{1})^{\tau}$ such that $\eta\circ e_{1}\circ\lambda_{1}=\lambda_{1}^{\tau}\circ\epsilon$ . By Proposition 3.1, $\eta$ mu@t be $\pm 1$ , so
that
(11) $\pm\epsilon_{1}\circ\lambda_{1}=\lambda_{1}^{r}\circ e$ .
Let $t_{0}$ be a primitive element of $g(\mathfrak{a}, A_{y})$ and $\alpha_{t}$ be an element of $0$ such that-

(12) $h_{y}(\theta_{y}(\beta)t_{0})^{\prime}=h_{y}(\theta_{y}(\beta\alpha_{\tau})t_{0})$

for every $\beta\in 0$ . Then, by the relation (10), we have

(13) $\epsilon^{-1}(\theta_{y}(\beta)t_{0})^{\prime}=\pm\theta_{y}(\beta\alpha_{\tau})t_{0}$ .

The relations (8), (10), (11), (12), (13) yield

(14) $h_{y}(\theta_{y}(\beta)t_{0})^{\sigma_{1}\tau}=h_{y_{1}}(\lambda_{1}\theta_{y}(\beta)t_{0})^{\tau}=h_{y_{1}}^{f}(\lambda_{1}^{\tau}\circ e\circ\epsilon^{-1}(\theta_{y}(\beta)t_{0})^{r})=h_{y_{1}}^{\tau}(\epsilon_{1}\lambda_{1}\theta_{y}(\beta\alpha_{\tau})t_{0})$

$=h_{y_{1}}(\lambda_{1}\theta_{y}(\beta\alpha_{\tau})t_{0})=h_{y}(\theta_{y}(\beta\alpha_{\tau})t_{0})^{\sigma_{1}}=h_{y}(\theta_{y}(\beta)t_{0})^{\tau\sigma_{1}}$ .
On the other hand, we have $c(g(y))^{\sigma_{1}\tau}=c(\mathscr{Z}(y_{1}))=c(\Psi(y))^{r}\sigma_{1}$ . This combined
with (14) shows $\sigma_{1}\tau=\tau\sigma_{1}$ , since $K_{\alpha,y}$ is generated by $c(\xi\gamma(y))$ and $h_{y}(\theta_{y}(\beta)t_{0})$ .
Therefore, if $\tau$ leaves invariant the elements of $Q(u, c(\mathcal{Q}^{7}(y_{1})))$ , we have $u^{\sigma_{1}\tau}=$

$n^{\tau\sigma_{1}}=u^{\sigma_{1}}$ ; this proves the assertion i). From i) we obtain

$[Q(u, u^{\sigma_{1}}):Q(u)]=[Q(u, c(9^{7}(y_{1})):Q(u)]$

$\leqq[Q(c(\mathscr{Z}(y)), c(S^{7}(y_{1}))):Q(c(4\leftarrow(y)))]$ .

By Proposition 4.5, the right hand side of this inequality is not greater than
$m$ . If $i\neq j$ , the kernel of $\lambda_{i}$ and $\lambda_{j}$ are different from each other; hence, by
ii) of Proposition 2.5 and (9), $9(y_{i})$ and $9(y_{j})$ are not isomorphic. It follows
that $m$ points $c(9^{7}(y_{i}))$ are different from each other. Therefore, our proposi-
tion is completely proved if we show that $u^{\sigma_{i}}$ is a conjugate of $u^{\sigma_{1}}$ over $K_{a,y}$

for every $i$ . Let $s$ be a primitive element of $\mathfrak{g}(qa, A_{y})$ and $\alpha$ an element of $\mathfrak{o}$

such that $\mathfrak{a}=\alpha 0$ . Put $r=\theta_{y}(\alpha)s$ . Then $r$ is a primitive element of $\mathfrak{g}(q, A_{y})$ .
The ideals $q_{i}$ being as in the first part of this \S , we may, after reordering if
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necessary, assume that $\theta_{y}(q_{i})r$ is the kernel of $\lambda_{i}$ for each $i$ . Now by iv) of
Proposition 1.6, there exists a unit $\gamma_{1}$ of $0$ such that

(15) $q_{1}\gamma_{1}=q_{i}$ .
As $q$ is prime to $\mathfrak{a}$ , and as we have $\alpha^{-1}0\alpha=0$ , there exists an element $\gamma$ of $0$

such that
(16) $\gamma\equiv\alpha^{-1}r_{1}^{\alpha}mod.qo$ , $r\equiv 1mod$ . $\mathfrak{a}$ .
By Theorem 2, there exists an automorphism $\rho$ of $K_{q\alpha,y}$ over $K_{1.y}$ such that

(17) $h_{y}(\theta_{y}(\beta)s)^{\rho}=h_{y}(\theta_{y}(\beta\gamma)s)$

for every $\beta\in 0$ . Obviously $qs$ is a primitive element of $\mathfrak{g}(\mathfrak{a}, A_{y})$ ; and by ( $ 16\rangle$

we have $\beta\gamma\equiv\beta mod$ . $\mathfrak{a}$ , so that $\theta_{y}(\beta\gamma)qs=\theta_{y}(\beta)qs$ . Hence we obtain

$h_{y}(\theta_{y}(\beta)qs)^{\rho}=h_{y}(\theta_{y}(\beta\gamma)qs)=h_{y}(\theta_{y}(\beta)qs)$ .
This shows that $\rho$ leaves invariant the elements of $ K_{\alpha_{y}},\cdot$ Extend $\rho$ to an iso-
morphism of the universal domain into itself and denote it again by $\rho$ . As $\rho$

is the identity on $K_{1,y}$ , there exists an isomorphism $\xi$ of $9(y)$ onto $9(3’)^{p}$ : and
we have $/h^{p}\circ\xi=h_{y}$ . By (16) and (17), we find

$h_{y}(\xi^{-1}(\theta_{y}(\beta)r)^{\rho})=h_{y}(\theta_{y}(\beta)r)^{0}=h_{y}(\theta_{y}(\beta\alpha\gamma\alpha^{-1})r)=h_{y}(\theta_{y}(\beta\gamma_{1})r)$ ,

and hence $\xi^{-1}(\theta_{y}(\beta)r)^{p}=\pm\theta_{y}(\beta\gamma_{1})r$. We have therefore by (15)

$\xi^{-1}(\theta_{y}(q_{1})r)^{p}=\theta_{y}(q_{1}\gamma_{1})r=\theta_{y}(q_{i})r$ .
This show that the kernel of $\lambda_{1}^{p}\circ\xi$ coincides with the kernel of $\lambda_{i}$ . By i) of
Proposition 2.5, there exists an isomorphism $\xi_{1}$ of $9(y_{i})$ onto $9(y_{1})^{\rho}$ such that

(18) $\xi_{1}\circ\lambda_{i}=\lambda_{1}^{\rho}\circ\xi$ .
It follows that $c(\ovalbox{\tt\small REJECT}(y_{1}))^{0}=c(\mathscr{Z}(y_{i}))$ by virtue of Proposition 1 of [AF], and
hence
(19) $c(\mathscr{Z}(y))^{\sigma_{1}p}=c(\mathscr{Z}(y_{i}))=c(\mathscr{Z}(y))^{\sigma_{i}}$ .

Consider the isomorphisms $\rho_{i}$ satisfying the relation (6). We have obviously
$g(y_{1})^{9}=g(y_{i})^{p_{i^{-1}}p_{1}\rho}$ . Applying the property (K3) of normalized Kummer $variety^{\vee}$

to $9(y_{i})$, we have $(h_{yi})^{p_{t^{-1}}p_{1}\rho}\circ\xi_{1}=h_{yt}$ , namely,

(20) $h_{y_{1}}^{p}\circ\xi_{1}=h_{yi}$ .
As $\rho$ leaves invariant the elements of $K_{a.y}$, we have, for every $t\in \mathfrak{g}(a, A_{y})$,
$h_{y}(t)=h_{y^{\rho}}(t^{p})=h_{y}(\xi^{-1}t^{\rho})$, so that

(21) $\xi^{-1}t^{p}=\pm t$ .
By (8), (18), (20), (21), we obtain, for every $t\in \mathfrak{g}(\mathfrak{a}, A_{y})$ ,

$h_{y}(t)^{\sigma_{1}p}=h_{y_{1}}(\lambda_{1}t)^{\rho}=h_{y_{1}}^{\rho}(\lambda_{1}^{p}\xi\xi^{-1}t^{p})=h_{y_{1}}^{\rho}(\xi_{1}\lambda_{i}t)=h_{yi}(\lambda|t)=h_{y}(t)^{\sigma_{i}}$ .
This together with (19) shows $\sigma_{1}\rho=\sigma_{i}$ . Hence we have $u^{\sigma_{i}}=(u^{\sigma_{1}})^{0}$ . It follows
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that $u^{\sigma_{i}}$ is a conjugate of $u^{\sigma_{1}}$ over $K_{0y}$ . This completes the proof.
PROPOSITION 4.7. Notations being as in Proposition 4.4, let $\tau_{q}$ be the auto

morphism of $K_{a_{y}}$, corresponding to the element $q$ of $G_{a}$ . Then there exists $a/$

isomorphism $\tau$ of the universal domain into itself such that $\tau=\sigma_{1}$ on $K_{\emptyset,y}an($

$\tau=\sigma_{1}^{=1}\tau_{q}$ on $K_{\alpha.y_{1}}$ .
PROOF. As the kernel of $\lambda_{1}$ is contained in $\mathfrak{g}(q, A_{y})$ , there exists a homo

morphism $\mu$ of $A(y_{1})$ onto $A_{y}$ such that $\mu\circ\lambda=q1_{y}$ , where $1_{y}$ denotes th $($

identity of $A(A_{y})$ . By Proposition 2.4, $\mu$ is a homomorphism of $9(y_{1})ont($

$9(y)$ . We observe that the kernel of $\mu$ is o-isomorphic to $0/q$ . Therefore, $i$

$y$ is sufficiently generic, we can apply Proposition 4.4 to $9(y_{1})$ ; we obtain the]

an isomorphism $\sigma$ of $K_{a,y_{1}}$ onto $K_{\alpha,y}$ such that

(22) $c(\mathscr{Z}(y_{1}))^{\sigma}=c(\mathscr{Z}(y))$ ,

(23) $h_{y_{1}}(t)^{\sigma}=h_{y}(\mu t)$ ,

for every $t\in \mathfrak{g}(\mathfrak{a}, A(y))$ . Extend $\sigma$ to an isomorphism of the universal domaii
and denote it again by $0$ . By (22), there exists an isomorphism $\epsilon$ of $9(y)ont($

$\mathscr{L}(y_{1})^{\sigma}$ . The isomorphisms $\rho_{i}$ being as in (6), we have $q(y_{1})^{\sigma}=\mathscr{L}(y)^{p_{1}\sigma}$, so tha
by the property (K3) of normalized Kummer variety, we obtain $h_{y_{1}}^{\sigma}\circ\epsilon=$

$h_{y^{\rho_{1}\sigma}}\circ\epsilon=h_{y}$ . Hence, for every $t\in \mathfrak{g}(\mathfrak{a}, A_{y})$, we get, by (23),

$h_{y}(t)=h_{y_{1}}^{\sigma}(\epsilon t)=h_{y_{1}}((\epsilon t)^{\sigma-1})^{\sigma}=h_{y}(\mu(\epsilon t)^{a-1})$ .
It follows that $t=\pm\mu(\epsilon t)^{\sigma-1}$ , namely
(24) $t^{\sigma}=\pm\mu^{\sigma}\epsilon t$ .
Now we observe that $\mu^{\sigma}\circ\epsilon$ is a homomorphism of $9(y)$ onto $9(y)^{\sigma}$ whost
kernel is o-isomorphic to $0/q$ . By i) of Proposition 2.5, there exists, for somt
$i$, an isomorphism $\eta$ of $9(y_{i})$ onto $1^{^{\backslash }}(y)^{\sigma}$ such that

(25) $\eta\circ\lambda_{i}=\mu^{\sigma}\circ\epsilon$ .
We have then
(26) $c(\mathscr{Z}(y))^{\sigma}=c(q(y_{i}))$ .
As we have $9(y)^{\sigma}=\mathscr{L}(y_{l})^{\rho_{i^{-1}}\sigma}$ , we obtain, by the property (K3),

(27) $h_{y}^{\sigma}\circ\eta=h_{y_{i}}^{p_{i^{-1}}\sigma}\circ\eta=h_{y_{i}}$ .
In the proof of Proposition 4.6, we have constructed an isomorphism $\rho$ of tht
universal domain such that $\rho$ leaves invariant the elements of $K_{\alpha y}$ and $\sigma_{1}\rho=\sigma_{i}$

Put now $\tau=\sigma\rho^{-1}$ . Then, by (26), we have
$c(\mathcal{G}(y))^{\sigma\rho-1}=c(\mathscr{Z}(y_{i}))^{\rho-1}=c(\mathscr{Z}(y))^{\sigma_{i}\rho-1}=c(g(y))^{\sigma_{1}}$ ,

and by (24), (25), (27), (8), for every $t\in \mathfrak{g}(\mathfrak{a}, A_{y})$,

$h_{y}(t)^{\sigma p=}1=h_{y}^{\sigma}(t^{\sigma})^{\rho-\lambda}=h_{y}^{\sigma}(\mu^{\sigma}\epsilon t)^{\rho-1}=h_{y}^{\sigma}(\eta\lambda_{i}t)^{\rho-1}=h_{y_{i}}(\lambda_{i}t)^{\rho-}=h_{y}(t)^{\sigma_{i}\rho}‘’=h_{y}(t)^{\sigma_{1}}$ .
Hence we have $\tau=\sigma_{1}$ on $ K_{\alpha_{y}}.\cdot$ Now, by (22),
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$c(g(y_{1}))^{\sigma p-1}=c(\mathscr{Z}(y))^{\rho-1}=c(S^{i}(y))=c(9^{7}(y))^{\tau_{q}}=c(X(y_{1}))^{\sigma_{1^{-1}}\tau_{q}}$ ,

and by (23), (8), for every $t\in \mathfrak{g}(\mathfrak{a}, A(y_{1}))$ ,

$h_{y_{1}}(qt)^{\sigma p-1}=h_{y}(q\mu t)^{\rho-1}=h_{y}(q\mu t)=h_{y}(\mu t)^{r_{q}}=h_{y_{1}}(\lambda_{1}\mu t)^{\sigma_{1^{-1}}\tau_{q}}=h_{y_{1}}(qt)^{\sigma_{1^{-1}}\tau_{q}}$ .
This shows that $\tau=\sigma_{1}^{-1}\tau_{q}$ on $K_{\mathfrak{a}_{y_{1}}}$, ; our proposition is thereby proved.

$u$ being as in Proposition 4.6, we have, by Proposition 4.7, $u^{\tau}=u^{\sigma}$:, $u^{\sigma_{1}\tau}=$

$u^{\tau_{q}}$ . As $\tau_{q}$ is contained in the center of the group $\mathcal{G}_{\sigma}$ , we have $Q(u)=Q(u^{\tau_{q}})$ ;
hence $\tau$ gives an automorphism of $Q(u, u^{\sigma_{1}})$ and maps $Q(u)$ onto $Q(u^{\sigma_{1}})$ . We
have therefore, by Proposition 4.6,

(28) $[Q(u^{\sigma_{1}}, u):Q(u)]=[Q(u, u^{\sigma_{1}}):Q(u^{\sigma_{1}})]=m$ .

4.3. Modular correspondences. Let $L$ be a subfield of $K_{\mathfrak{a},y}$ such that

\langle 29) $L\supset K_{1,y}$ , $L\cap Q(\zeta_{a})=Q$ ,

where $a$ is the smallest positive integer divisible by $\mathfrak{a}$ and $\zeta_{a}$ is a primitive
a-th root of unity. By Theorem 2, $Q$ is algebraically closed in $L$ . Hence we
can find a complete non-singular curve $\mathfrak{C}=\mathfrak{C}_{L}$ defined over $Q$ such that we
have $L=Q(u)$ for a generic point $u$ of $\mathfrak{C}$ over $Q$ . We call $\{\mathfrak{C}, u\}$ a model of
$L$ . We shall now define certain algebraic correspondences on the curve $\mathfrak{C}$ .

Fix an integral left o-deal $q$ and put $N(q)=q$ ; suppose that $q$ is prime to
$\langle\ddagger$ . Define the isomorphisms $\{\sigma_{1}, \cdots, \sigma_{m}\}$ as in Proposition 4.4. Let $X_{\mathfrak{q}}$ be the
locus of $u\times u^{\sigma_{1}}$ on $\mathfrak{C}\times \mathfrak{C}$ over $Q$ . We have then, using the notation of Weil
[28],
(30) $X_{\mathfrak{q}}(u)=u^{\sigma_{1}}+\cdots+u^{\sigma_{m}}$ .
We call $X_{\eta}$ the modular correspondence on $\mathfrak{C}$ associated with $q$ .

Let $n$ be an integer prime to $\mathfrak{a}$ and $\tau_{n}$ be the automorphism of $K_{\mathfrak{a}.y}$ cor-
responding to the element $n$ of $G_{a}$ . As $\tau_{n}$ is contained in the center of $G_{a,T_{n}}$

induces an automorphism on $L=Q(u)$ . Let $Y_{n}$ be the locus of $uXu^{\tau_{n}}$ on $\mathfrak{C}\times \mathfrak{C}$

over $Q$. Obviously, $Y_{n}$ gives a birational correspondence on G. By Proposi-
tion 4.7, we obtain

$\rightarrow Y_{n^{\prime}}\circ Y_{q}=_{A}X_{\eta}^{-}$ ,

$d(X_{q})=d^{\prime}(X_{\eta})=m$ ,

the notations being as in [28].

Now assume that $\mathfrak{a}$ is prime to $d(\Phi)$ . Then we have $\mathfrak{a}=oN$ for a positive
integer $N$ : and $0/\mathfrak{a}$ is isomorphic to the total matric ring $M_{2}(Z/NZ)$ . Fix an
isomorphism of $D/a$ onto $M_{2}(Z/NZ)$ ; then $G_{a}$ is identified with the group of
regular elements of $M_{2}(Z/NZ)$ . Let $H$ be the subgroup of $G_{\alpha}$ consisting of

the matrices $\left(\begin{array}{ll}a & 0\\0 & \pm 1\end{array}\right)$ for $(a, N)=1$ . Let $L_{N}$ be the subfield of $K_{a_{y}}$, corres-
ponding to $H$ Then we see easily



316 G. SHIMURA

$L_{N}(\zeta_{N})=K_{\mathfrak{a}_{y}},$ , $L_{N\cap}Q(\zeta_{N})=Q$ .

Let $\{\mathfrak{C}_{N}, u\}$ be a model of $L_{N}$ . Put $\psi=\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)$ . It is clear that

$K_{a,y}=Q(u, \zeta_{N})=Q(u^{\psi}, \zeta_{N})$ .
Let $Z$ be the locus of $u\times u^{\psi}$ over $Q(\zeta_{N})$ ; then $\angle^{\leftrightarrow_{d}}$ is a birational correspondence-
on $\mathfrak{C}_{N}$ .

PROPOSITION 4.8 Let $\varphi_{n}$ be an $automorp/lism$ of $Q(\zeta_{N})$ such that $\zeta_{N}^{\varphi_{n}}=\zeta_{N^{7}}$ .
$Tlf$en we have

$Z^{\varphi_{n}}\circ Y_{n}=Z$ .
As the proof is quite similar to that of Proposition 12 of [22], we omit it.

\S 5. Congruence-relations for modular correspondences.

5.1. In the following treament, we shall make use of the theory of
reduction modulo $p$ of algebraic varieties (cf. [21, 25]). We shall use mainiy
the terminology of [25]; and a place (or valuation) will mean a discrete one.
We recall here only one definition: let $U$ be a variety defined over a field
with a place $p;U$ is then called p-simple if the reduction of $U$ modulo $p$ has
only one component and its multiplicity is 1.

Let $k$ be a field with a place $p$ ; we denote by $p(U)$ or $\tilde{U}$ the reduction
of any object $U$ modulo $p$ . By [21, Proposition 5, Theorem 15] (see also [14,

Appendix]), we obtain
LEMMA R. Let $U$ be a variety defined over $k$ , which is p-simple. Let $x$ be

a generic point of $U$ over $k$ and $\xi$ a generic point of $\tilde{U}$ over $\tilde{k}$. Then, the
specialization-ring $[x\rightarrow\xi;p]$ is a discrete valuation ring.

Hence there exists one and only one extension $p_{1}$ of $p$ in $k(x)$ such that
$ p_{\perp}(x)=\xi$ ; we call $p_{1}$ the place determined by the specialization $ x\rightarrow\xi$ ref. $p$ .

PROPOSITION 5.1. Let $A$ be a projective abelian variety, defined over $k$ , satis-
fying the following conditions:

i) there is no hyperplane containing $A$ ;
ii) the linear system on A defined by hyperplane sections is complete.
Suppose that $A$ is without defect for $p$ in the sense of [25, \S 11]. Then, $\tilde{A}$

satisfies the conditions $i$ , ii).

PROOF. We can find a prolongation $\{k_{1},p_{1}\}$ of $\{k,p\}$ and a hyperplane
section $X$ of $A$, rational over $k_{1}$ , so that $\tilde{X}=p(X)$ is a hyperplane section of
$\tilde{A}$ . Let $L(X;k_{1})$ and $L(\tilde{X};\tilde{k}_{1})$ be respectively the set of functions $f$ on $A$

defined over $k_{1}$ such that $(f)>-X$ and the set of functions $g$ on $\tilde{A}$ defined
over $\tilde{k}_{1}$ such that $(g)>-\tilde{X}$ ; denote by $l(X)$ and $l(\tilde{X})$ the dimensions of
$L(X;k_{1})$ over $k_{1}$ and of $L(\tilde{X};\tilde{k}_{1})$ over $\tilde{k}_{1}$ . By our assumption, if we denote
by $n$ the dimension of the ambient space for $A$, we have $l(X)=n+1$ . By the
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result of [25, pp. 86-87], $L(X;k_{1})$ has a base $\{f_{0}, \cdots ,f_{n}\}$ over $k_{1}$ such that
$p(f_{0}),$ $\cdots,p(f_{n})$ are linearly independent over $\tilde{k}_{1}$ . Hence, no hyperplane contains

$\tilde{A}$ . Now by Nishi [16], we have $l(X)=l(\tilde{X})$ . It follows that $\tilde{A}$ satisfies ii).

Let $\mathscr{D}=(A, C, \theta)$ be a polarized abelian variety of type $\mathfrak{r}$ , defined over $k$ .
Suppose that $A$ is without defect for $p$ . Take a divisor $X$ in $C$ which is
rational over $k$ . Then, by [25, \S 11, Proposition 14], $\tilde{X}$ is non-degenerate

divisor on $\tilde{A}$ ; so $\tilde{X}$ determines a polarization on $\tilde{A}$ , which we denote by $ C\sim$.
Let $\tilde{\theta}(\alpha)$ be the reduction of $\theta(\alpha)$ modulo $p$ for every $\alpha\in \mathfrak{r}$ . In this way, we
obtain a polarized abelian variety $\tilde{\mathscr{L}}=(\tilde{A},\tilde{C},\tilde{\theta})$ of type $\mathfrak{r}$ , defined over $k$ .

PROPOSITION 5.2. Let $9=(A, C, \theta)$ be a polarized abelian variety of type $\mathfrak{r}$ ,

defined over $k$ . Suppose that $A$ is a projective variety satisfying $i$ , ii) of $Pr^{\prime}opo-$

sition 5.1 and that $A$ is without defect for $p$ . Then we have
$p[\mathscr{Z}(A, \theta)]\supset X(\tilde{A},\tilde{\theta})$ .

Moreover, if $q(A, \theta)$ is p-simple, we have
$p[\mathscr{Z}(A, \theta)]=\Psi(\tilde{A}_{J}\tilde{\theta})$ .

PROOF. The first assertion is proved in a straightforward way; the argu-
ment is the same as in the proof of [AF, Theorem 1]. Now we note that
[AF, Lemma 8] is valid for any polarized abelian variety of type $\mathfrak{r}$ whenever
the variety satisfies the conditions $i$ , ii) of Proposition 5.1. Therefore, by the
proposition, $F(A, \theta)$ and $9^{7}(\tilde{A},\tilde{\theta})$ are of the same dimension; so $f(\tilde{A},\tilde{\theta})$ is a
component of the cycle $p[g(A, \theta)]$ . Hence, if $\Xi(A, \theta)$ is p-simple, we must
have the equality of our proposition.

5.2. Fix a sufficiently generic point $y$ on $\mathfrak{H}$ and denote $9_{y}=(A_{y}, C_{y}, \theta_{y})$,
$(V_{y}, h_{y})$ simply by $9=(A, C, \theta),$ $(V, h)$ , respectively. Let $U$ be the locus of
$c(\Re y))$ over $Q$ . Let $k_{0}$ be a field of definition for 9, which is finitely gener-
ated over $Q$ . Fix a set of independent variables $(t_{1}, \cdots , t_{s})$ in $k_{0}$ such that $k_{0}$ is
algebraic over $Q(t_{1}, \cdots , t_{s})$ . For each prime number $p$ , we obtain a place of $Q$ :
$a\rightarrow amod p$ . We extend this to a place $p_{0}$ of $k_{0}$ as follows : first define a
place $p_{1}$ of $Q(t_{1}$ , $\cdot$ .. $t_{s})$ so that $p_{1}=p$ on $Q$ and $p_{1}(t_{1})$ , $\cdot$ .. $p_{1}(t_{S})$ are independent
variables over $Z/pZ$ ; then extend $p_{1}$ to a place $p_{0}$ of $k_{0}$ . Such a place $p_{0}$ is
not necessarily unique. We choose and fix once for all a place $p_{0}$ for each $p$ .
By the result of [25, \S 12], the following assertions hold for almost all $p$ .

Pl) $A$ is without defect for $p_{0}$ .
P2) $\mathscr{Z}=Z(A, \theta)$ is $p_{0}$-simple.
P3) $U$ is $p_{0}$-simple.
P4) $p_{0}(c(\mathscr{Z}))$ is not algebraic over $Z/pZ$.
P5) $V$ is $p_{0}$-simple.
P6) $h$ is everywhere defined on $p_{0}(A)$ .

Here and henceforth, by the terms “ for almost all ”, we understand “ for all
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except a finite number of ”.
PROPOSITION 5.3. If the conditions Pl, 2, 4) are satisfied and if $p$ is prime

to $d(\Phi)$ , we have $\nu_{i}(p\delta)=\nu_{s}(p\delta)=p^{2}$ , where $\delta$ is the identity element of $d(\tilde{A})$ .
PROOF. As $p$ is prime to $d(\Phi)$ , we can find two integral left o-ideals $b_{1}$

and $\mathfrak{b}_{2}$ such that $0=\mathfrak{b}_{1}+\mathfrak{b}_{2},$ $po=\mathfrak{b}_{1}\cap \mathfrak{b}_{2},$ $N(\mathfrak{b}_{1})=N(\mathfrak{b}_{2})=p$ . Take a generic point
$x$ of $\tilde{A}$ over $\tilde{k}_{0}$ . Let $K_{i}$ , for $i=1,2$ , be the composite of the fields $\tilde{k}_{0}(\tilde{\theta}(\beta)x)$

for $\beta\in \mathfrak{b}_{i}$ . We have obviously

(1) $\tilde{k}_{0}(x)=K_{1}K_{2}$ , $\tilde{k}_{0}(x)\supset K_{i}\supset\tilde{k}_{0}(px)$ .
By [25, \S 7.2, Proposition 10], we have $[\tilde{k}_{0}(x):K_{i}]=p^{2}$ ; and by a well-known
theorem, we have $p^{4}\geqq\nu_{i}(p\delta)\geqq p^{2}$ , so that $1\leqq\nu_{s}(p\delta)\leqq p^{2}$ . On the other hand,
we observe that the points of order $p$ on $\tilde{A}$ form an o-module. Since there is
no o-module of order $p$, we must have $\nu_{s}(p\delta)=1$ or $p^{2}$ , so that $\nu_{i}(p\delta)=p^{4}$ or $p^{2}$ .
Suppose that $\nu_{i}(p\delta)=p^{4}$ . Then, $\tilde{k}_{0}(x)$ is purely inseparable over $K_{\iota}$ and hence
$K_{i}\supset\tilde{k}_{0}(x^{p^{2}})$ . Putting $M=K_{1}\cap K_{2}$ , we see that $M\supset\tilde{k}_{0}(x^{p^{2}})$ . If $M\neq\tilde{k}_{0}(x^{p*})$ , we
must have $[K_{1} : M]=[K_{2} : M]\leqq p$ , so that $[K_{1}K_{2} : K_{1}]\leqq p$ ; but this is a
contradiction in view of (1); so we must have $M=\tilde{k}_{0}(x^{p^{2}})$ . As $K_{i}\supset\tilde{k}_{0}(px)$ , we
have $M\supset\tilde{k}_{0}(px)$ ; and considering the degrees, we find $\tilde{k}_{0}(x^{p^{q}})=\tilde{k}_{0}(px)$ . Hence
there exists an isomorphism $\epsilon$ of $\tilde{A}^{p^{2}}$ onto $\tilde{A}$ such that $\epsilon\pi=p$, where $\pi$ denotes
the $p^{2}$ -th power homomorphism of $\tilde{A}$ onto $\tilde{A}^{p^{a}}$ . Put $\tilde{\theta}^{p^{2}}(\alpha)=\tilde{\theta}(\alpha)^{p^{r}}$ for every
$\alpha\in 0$ . We have then $5(\tilde{A},\tilde{\theta})^{p^{2}}=\mathcal{G}(\tilde{A}^{p^{2}},\tilde{\theta}^{p}’)$ . We see easily that $\pi$ is a homo-
morphism of $\tilde{9}$) onto $\tilde{\rightarrow}9^{p^{2}}$ . Then, by Proposition 2.4, $\epsilon$ is an isomorphism of $\tilde{9}^{p*}$

onto $\tilde{9}$ ; so we have, by [AF, Proposition 1], $\mathscr{Z}(\tilde{A},\tilde{\theta})=S^{\prime}(\tilde{A},\tilde{\theta})^{p^{2}}$ . On account
of Proposition 5.2, this shows that $p_{0}(c(q))$ is algebraic over $Z/pz$ ; this con-
tradicts the condition P4). Therefore we must have $\nu_{i}(p\delta)=p^{2}$ .

5.3. Let $p$ be a prime number which does not divide $d(\Phi)$ . There are
exactly $p+1$ integral left o-ideals $q$ such that $N(\mathfrak{q})=p^{2}$ ; we denote them by
$q_{0}$ , , $q_{p}$ . For these $q_{i}$ , we define $9(y_{i})$ , $V(y_{i}),$ $h_{yi}$ and $\lambda_{i}$ for $0\leqq i\leqq p$ as in
\S 4.2; we denote $B(y_{i}),$ $V(y_{i}),$ $h_{yi}$ simply by $9_{i}=(A_{i}, c_{i}, \theta_{i}),$ $V_{i},$ $h_{i}$ . Let $\mathfrak{g}_{i}$

denote the kernel of $\lambda_{i}$ . As $\mathfrak{g}_{i}$ is contained in $\mathfrak{g}(p, A)$ , there exists a homo-
morphism $\mu_{i}$ of $A_{i}$ onto $A$ such that $\mu_{i}\circ\lambda_{i}=p$ ; then $\mu_{i}$ is a homomorphism
of $9_{i}$ onto 9.

THEOREM 3. Let $p$ be a prime number which satisfies the conditions P1\sim 6)
and is prime to $d(\Phi)$ . Let $k$ be an exlension of $k_{0}$ such that the $9_{i}$ and the $\lambda_{i}$

are defned over $k$ ; and let $p$ be an extension of $p_{0}$ in $k$ . Then, reordering the
$9_{i}$ suitably, the following relations hold.

$p(c(1\circ(y_{0})))=p(c(Z(y)))^{p}$ ,

$p(c(g(y_{i})))=p(c(\mathcal{G}(y)))^{1/p}$ $(i>0)$ ,

$p(h_{0}(\lambda_{0}t))=p(h(t))^{p}$ ,

$p(h_{i}(\lambda_{i}t))=p(h(pt))^{1/p}$ $(i>0)$ ,
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for every point $t$ of A rational over $k$ .
We prove this theorem in this and the following sections.
PROPOSITION 5.4. There exist an extension $\{k_{1}, p_{1}\}$ of $\{k,p\}$ and $polari_{\&^{Y}}ed$

abelian varieties $\Omega_{i^{*}}$) $=(A_{i^{*}}, C_{i}^{*}, \theta_{i^{*}})$ of type $c$ , defined over $k_{1}$ , having the following
propertt es.

i) For each $i$ , there exists an isomorphism $\eta_{i}$ of $9_{i}^{)}$ onto $\mathscr{Z}^{*}$ .
ii) $\eta_{i}=$ ( $a$ projective $transformation$) $+const$ .
iii) $A_{i^{*}}$ is without defect for $p_{1}$ .
iv) Reordering suitably,

$\tilde{A}_{0^{*}}=\tilde{A}^{p}$ , $\tilde{\theta}_{0^{*}}=\tilde{\theta}^{p}$ , $\tilde{A}_{i^{*p}}=\tilde{A}$ , $\tilde{\theta}_{i^{*p}}=\tilde{\theta}$ $(i>0)$ .
v) Let $\pi$ be the p-th power homomorphism of $\tilde{A}$ onto $\tilde{A}^{p}$ and $\pi^{\prime}$ the p-th

power homomorphism of $\tilde{A}^{1/}p$ onto $\tilde{A}$ ; then
$ p_{1}(\eta_{0}\circ\lambda_{0})=\pi$ , $p_{1}(\mu_{i}\circ\eta_{i^{-1}})=\pi^{\prime}$ $(i>0)$ .

PROOF. Without loss of generality, we may assume that the points in
$\mathfrak{g}(p, A)$ are rational over $k$ . As $A_{i}$ is isogenous to $A$ , we can find, by [14,

Theorem 4], an abelian variety $B_{i}$ and an isomorphism $\xi_{i}$ of $A_{i}$ onto $B_{i}$ , both
defined over $k$ , such that $B_{i}$ is without defect for $p$ . Put $\alpha_{i}=\xi_{i}\circ\lambda_{i},$ $\beta_{i}=$

$\mu_{i}\circ\xi_{i}^{-1}$ ; we have then $\beta_{i}\circ\alpha_{i}=p$ . Now the reduction modulo $p$ defines a
homomorphism of $\mathfrak{g}(p, A)$ onto $\mathfrak{g}(p,\tilde{A})$ , By Proposition 5.3, the kernel $\mathfrak{g}^{*}$ of
this homomorphism is of order $p^{2}$ ; and we observe that $\mathfrak{g}^{*}$ is an o-module.
Hence $\mathfrak{g}^{*}$ must coincide with one of the $\mathfrak{g}_{i}$ , say $\mathfrak{g}_{0}$ . Then we have $g_{0}=\{0\}$ .
As $\mathfrak{g}(p, A)=\mathfrak{g}_{0}+\{\mathfrak{j}_{i}$ for $i>0,$ $g_{i}$ is of order $p^{2}$ for $i>0$ . By [25, \S 11, Proposition
3], $\tilde{\mathfrak{g}}_{i}$ is the kernel of $\tilde{\alpha}_{i}$ for every $i$ . It follows that $\tilde{\alpha}_{0}$ is purely inseparable

and $\tilde{\alpha}_{i}$ is separable for $i>0$ . As we have $\tilde{\beta}_{i}\circ\tilde{\alpha}_{i}=p$ , we see, on account of
Proposition 5.3, that $\beta_{0}$ is separable and $\tilde{\beta}_{i}$ is purely inseparable for $i>0$ .
Let $x$ be a generic point of $\tilde{A}$ over $\tilde{k}$ . We have then $\tilde{k}(x)\supset\tilde{k}(x^{p})\supset\tilde{k}(px)$ . By
Proposition 5.3, $\tilde{k}(x^{p})$ is the maximal separable extension of $\tilde{k}(px)$ in $\tilde{k}(x)$ . We
have therefore
(2) $\tilde{k}(x^{p})=\tilde{k}(\tilde{\alpha}_{0}x)$ ;

a similar consideration shows, for $i>0$ ,

(3) $\tilde{k}(x_{i^{p}})=\tilde{k}(\tilde{\beta}_{i}x_{\dot{t}})$

for a generic point $x_{i}$ of $\tilde{B}_{l}$ over le. Putting $x_{i}=\tilde{\alpha}_{i}x$, we obtain

(4) $\tilde{k}((\tilde{\alpha}_{i}x)^{p})=\tilde{k}(px)$ .
Now take a hyperplane section $X$ of $A$ and a hyperplane section $X_{i}$ of $A_{i}$ for
each $i$, all defined over $k$ . By our construction of $A(z)$ , we see that $\lambda_{i^{-1}}(X_{i})\equiv$

$pX,$ $\mu_{i^{-1}}(X)\equiv pX_{i},$ $where\equiv denotes$ algebraic equivalence. Put $Y_{i}=\xi_{i}(X_{i})$ ; then
we have $\alpha_{i^{-1}}(Y_{i})\equiv p_{\rightarrow}t^{-},$ $\beta_{i^{-1}}(X)\equiv pl_{i}^{\gamma}$ . By virtue of [25, \S 11, Proposition 14],

we see that
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\langle 5) $\tilde{\alpha}_{i}^{-1}(\tilde{Y}_{i})\equiv p\tilde{X}$, $\tilde{\beta}_{i^{-1}}(\tilde{X})\equiv p\tilde{Y}_{i}$ .
Let $\pi$ be the p-th power homomorphism of $\tilde{A}$ onto $\tilde{A}^{p}$ ; by (2), there exists an
isomorphism $\epsilon$ of $\tilde{A}^{p}$ onto $\tilde{B}_{0}$ such that $\tilde{\alpha}_{0}=\epsilon\pi$ . We have then, $\tilde{\alpha}_{0}^{-1}(\epsilon(\tilde{X}^{p}))=$

$\pi^{-1}(\tilde{X}^{p})=p\tilde{X}$ ; hence on account of (5), $\epsilon(\tilde{X}^{p})\equiv\tilde{Y}_{0}$ . By Proposition 5.1, $\tilde{X}$ is
ample; therefore, $\tilde{X}^{p}$ is ample, and hence $\tilde{Y}_{0}$ is ample. By the result of [14,

\S 4], we can find a projective embedding $C_{0}$ of $B_{0}$ by $Y_{0}$ , whose reduction
modulo $p$ is a projective embedding of $\tilde{B}_{0}$ by $\tilde{Y}_{0}$ ; as $Y_{0}=\xi_{0}(X_{0}),$ $C_{0}$ is a pro-
jective transform of $A_{0}$ . We can take $C_{0}$ as $B_{0}$ ; namely, we may assume that
$B_{0}$ is a projective transform of $A_{0}$ , and $\xi_{0}$ differs from a projective transforma-
tion only by a translation. Define a polarized abelian variety $\mathscr{L}_{0^{\prime}}=(B_{0}, C_{0}^{\prime}, \theta_{0^{\prime}})$

of type $0$ so that $\xi_{0}$ is an isomorphism of $9_{0}$ onto $9_{0}^{r}$ ; then $C_{0}$
‘ is determined

by the hyperplane sections. As $\alpha_{0}=\xi_{0}\circ\lambda_{0},$ $\alpha_{0}$ is a homomorphism of 9 onto
$\mathscr{L}_{0^{\prime}}$ , so that $\tilde{\alpha}_{0}$ is a homomorphism of th onto $\tilde{9}_{0}^{\prime}$ . Since $\pi$ is a homomorphism
of $\tilde{9}$) onto $\tilde{\mathscr{L}}^{p}$ and $\tilde{\alpha}_{0}=\epsilon\circ\pi$ , we see that, by Proposition 2.4, $\epsilon$ is an isomor-
phism of $\tilde{9}^{p}$ onto $\tilde{9}_{0}^{\prime}$ . Now by Proposition 5.1 and by the proof of [AF,

Proposition 1], there exists a projective transformation $\overline{\psi}$ and a point $a^{=}$ on
$\tilde{B}_{0}$ such that $\overline{\psi}(u)=\epsilon(u)+\overline{a}$ for $u\in\tilde{A}^{p}$ . We can find a projective transforma-
tion $\psi$ , rational over $k$ , and a point $a$ of $B_{0}$ so that $(\psi, a)\rightarrow(\overline{\psi},\overline{a})$ ref. $p$ .
Put $k_{1}=k(a)$ and extend this specialization to a place $p_{1}$ of $k_{1}$ . Put $A_{0^{*}}=$

$\psi^{-1}(B_{0}),$ $\zeta_{0}=\psi-a$ ; and define a polarized abelian variety $9_{0}^{*}=(A_{0^{*}}, C_{0}^{*}, \theta_{0^{*}})$

of type $0$ , so that $\zeta_{0}$ is an isomorphism of $9_{0}^{*}$ onto $9_{0}^{\prime}$ . Then $A_{0^{*}}$ is without
defect for $p_{1}$ and $\tilde{A}_{0^{*}}=\overline{\psi}^{-1}(\tilde{B}_{0})=\epsilon^{-1}(\tilde{B}_{0})=\tilde{A}^{p},$ $\zeta_{0}\sim=\epsilon$ . Hence $(\tilde{A}_{0^{*}},\tilde{\theta}_{0^{*}})$ coincides
with $(\tilde{A}^{p},\tilde{\theta}^{p})$ . Moreover, putting $\eta_{0}=\zeta_{0}^{-1}\circ\xi_{0}$ , we have $p_{1}(\eta_{0}\circ\lambda_{0})=\overline{\zeta}_{0}^{-1}\circ\tilde{\alpha}_{0}=$

$\epsilon^{-1}\circ\tilde{\alpha}_{0}=\pi$ . Thus $B_{0}^{*}=(A_{0^{*}}, C_{0}^{*}, \theta_{0^{*}})$ satisfies i-v) of our proposition. Consider
now $B_{i}$ for $i>0$ . Let $\pi_{i^{\prime}}$ be the p-th power homomorphism of $\tilde{B}_{i}$ onto $\tilde{B}_{i}^{p}$ .
Then, by (3), there exists an isomorphism $\epsilon_{i}$ of $\tilde{B}_{i}^{p}$ onto $\tilde{A}$ such that $\tilde{\beta}_{i}=$

$\epsilon_{i}\circ\pi_{i^{\prime}}$ . By the same argument as above, we get $\tilde{X}\equiv\epsilon_{i}(\tilde{Y}_{i^{p}})$ ; it follows that
$\tilde{Y}_{i}$ is ample. Therefore, by the same reasoning as above, we may assume
that $B_{\dot{t}}$ is a projective transform of $A_{i}$ and $\xi_{i}=$ (a projective $transformation$) $+$

const. Define a polarized abelian variety $9_{i}^{\prime}=(B_{i}, C_{i}^{\prime}, \theta_{i^{\prime}})$ so that $\xi_{i}$ is an
isomorphism of $\Omega_{i}^{)}$ onto $9_{i}^{\prime}$ . Then, $\epsilon_{i}$ is an isomorphism of $\subset\sim_{\supset}c_{1_{i^{\prime p}}}$ onto $\tilde{9}$) so
that $\epsilon_{i^{1/1J}}$ is an isomorphism of $\tilde{9}_{i^{\prime}}$) onto $\tilde{9}$) $1/p$ In the same way as above, we
can find, taking a suitable extension of $\{k_{1},p_{1}\}$ , if necessary, a polarized
abelian variety $9_{i}^{*}=(A_{i^{*}}, C_{i}^{*}, \theta_{i^{*}})$ and an isomorphism $\zeta_{i}$ of $9_{i}^{\prime}$ onto $9_{i}^{*}$ such
that: i) $\zeta_{i}=$ (a projective transformation)+const. ; ii) $A_{i^{*}}$ is without defect
for $p_{1}$ and $\tilde{A}_{i^{*}}=\tilde{A}^{1/p},$ $\zeta_{i}\sim=\epsilon_{i^{1/p}}$. Putting $\eta_{i}=\zeta_{i}\circ\xi_{i}$ , we obtain $9_{i}^{*}$ and $\eta_{i}$

having the properties i-v); our proposition is thereby proved.
Now $9_{i}^{*}$ being as in the above proposition, by [AF, Proposition 1], we

have
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(6) $g(y_{i})=g(A_{i}, \theta_{i})=9(A_{i^{*}}, \theta_{i^{*}})$ .
By Proposition 5.2, we get
(7) $p_{1}(\mathcal{G}(A, \theta))=\mathcal{G}(\tilde{A},\tilde{\theta})$ ,

(8) $p_{1}(\mathcal{G}(A_{i^{*}}, \theta_{i^{*}}))\supset g(\tilde{A}_{i^{*}},\tilde{\theta}_{i^{*}})$ .
By iv) of Proposition 5.4 and by (6),

(9) $q(\tilde{A}_{0^{*}},\tilde{\theta}_{0^{*}})=S^{i}(\tilde{A}^{p},\tilde{\theta}^{p})=t\leftarrow(\tilde{A},\tilde{\theta})^{p}=p(\Re y))^{p}$ ,

(10) $g(\tilde{A}_{i^{*}},\tilde{\theta}_{i^{*}})^{p}=\mathcal{G}(\tilde{A}_{t^{*p}},\tilde{\theta}_{i}^{*p})=Z(\tilde{A},\tilde{\theta})=p(g(y))$ .
The relations (6), (8), (9) lead to

$p(gi(y_{0}))\supset p(9(y))^{p}$ .
As $y$ is sufficiently generic, $q(y)$ and $g(y_{0})$ have the same dimension and the
same degree. Therefore we must have

(11) $p(9(y_{0}))=p(\mathscr{D}(y))^{p}$ .
By (6), (8), (10) and a similar consideration, we obtain

(11) $p(9(y_{i}))^{1?}=p(\Re y))$ .
The relations (11) and (11) prove the first two equalities of Theorem 3.

5.4. Let the notations be the same as in Proposition 5.4. For the sake of
simplicity, we denote $k_{1}$ and $p_{1}$ again by $k$ and $p$ . The ambient space for $A$

is denoted by $P^{n}$ . By our construction of $9(y_{i})$ , there exists an isomorphism
$\rho_{i}$ of a field of definition for $\mathscr{L}$ such that $9$) $\rho_{i}=9_{i},$ $V^{0_{i}}=V_{i},$ $h^{p_{i}}=h_{i}$ . Extend
$\rho_{0}$ to an isomorphism of $k$ and denote it by $\rho$ ; put $M=kk^{0}$ . We denote by
$K$ and $K_{i}$ the fields of moduli of 9 and $\mathscr{D}$ , respectively.

Now fix a basis $\{r_{\nu}\}$ of $\mathfrak{o}$ over $Z$, and consider the mapping $T$ defined in
\S 3.4; we use the same notation $T$ for varieties in $P^{n}$ and in $\tilde{P}^{n}$ . Let $\varphi$ be a
projective transformation of $P^{n}$, generic over $M$, and $v_{1},$

$\cdots$ , $v_{a}$ be independent
generic points of $A$ over $M(\varphi)$ . Put

$B=\varphi(A)$ , $z=T(\varphi, v_{1}, \cdots, v_{a})$ .
Then, $M(z)\subset M(\varphi, v_{1}, \cdot.. v_{cl})$ ; and $t^{\sigma}(A, \theta)$ is the locus of $z$ over $M$, and hence
over $K$ Let $w\mathfrak{h}e$ a generic point of $B$ over $M(\varphi, v_{1}, \cdot , v_{a})$ . Put into $B$ a
structure of abelian variety by taking $w$ as its origin; then, $B$ is defined
over $K(z, w)$ as abelian variety. We can find an isomorphism $\xi$ of $A$ onto $B$

and a point $a$ on $B$ such that $\xi(x)=\varphi(x)+a$ for $x\in A$ . Define a polarized
abelian variety $9^{\prime}=(B, \theta^{\prime}, C^{\prime})$ of type $0$ so that $\xi$ is an isomorphism of 9 onto
$\mathscr{L}$ ; then $\mathscr{L}$ is defined over $K(z, w)$ (cf. [AF, Proof of Proposition 1]). Now
extend $\rho$ to an isomorphism of $k(\varphi, v_{1}, \cdots , v_{a}, w)$ , which we denote again by $\rho$ ;
we may assume that $(\varphi^{0}, v_{1}^{\rho}, \cdots , v_{tl^{p}}, w^{o})$ and $(\varphi, v_{1}, \cdots , v_{d}, w)$ are independent over

$\lrcorner tf_{1}$ and
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$\dim_{M}(\varphi^{\rho}, v_{1}^{\rho}, \cdots , v_{a^{\rho}}, w^{\rho})=\dim_{k^{\beta}}(\varphi^{0}, v_{1}^{\rho}, \cdots , v_{a^{\rho}}, w^{0})$ .
Let $\mathfrak{p}$ be an extension of $p$ in $M$. Let $\overline{\varphi}$ be a projective transformation of
$\tilde{P}^{n}$ , generic over $\tilde{M}$, and $\overline{v}_{1},$ $\cdots$ , $v_{a}$ be independent generic points of $\tilde{A}$ over
$\tilde{M}(\overline{\varphi})$ ; and let $\overline{w}$ be a generic point of $\overline{\varphi}(\tilde{A})$ over $\tilde{M}(\overline{\varphi},\overline{v}_{1}, \cdot.. \overline{v}_{a})$ . Then, we
obtain a specialization

(12) $(\varphi, v_{1}, \cdots , v_{d}, w)\rightarrow(\overline{\varphi},\overline{v}_{1}, \cdots , \overline{v}_{d},\overline{w})$ ref. $\mathfrak{p}$ .
Now consider $A_{t^{*}}$ of Proposition 5.4. By ii) of the proposition, there exists a
projective transformation $\psi$ , defined over $k$ , and a point $b$ on $A_{0^{*}}$ such that
$\eta_{0}=\psi+b$ ; we have then $A_{0^{*}}=\psi(A_{0})$ . Put $\chi=\varphi^{0}\circ\psi^{-1},$ $u_{\nu}=\eta_{0}(v_{\nu}^{\rho})-b+\theta_{0^{*}}(r_{\nu})b$ ,

Then, we have $ B^{0}=\chi(A_{0^{*}});\chi$ is generic over $M$, and $u_{1},$
$\cdots$ , $u_{a}$ are independent

generic on $A_{0^{*}}$ over $M(\chi)$ . Furthermore, we see easily

$M(\varphi^{\rho}, v_{1}^{\rho}, \cdots , v_{a^{\rho}})=M(\chi, u_{1}, \cdots , u_{d})$ ;

by the definition of $T$ and by our choice of $u_{\nu}$ , we obtain

(13) $T(\chi, u_{1}, \cdots , u_{a})=T(\varphi^{\rho}, v_{1}^{\rho}, \cdots, v_{et^{\rho}})=z^{p}$ .
Note that: $\overline{\varphi}^{p}$ is generic over $\tilde{M}$ ; $\overline{v}_{1}^{p},$ $\cdots,\overline{v}_{a^{p}}$ are independent generic on
$\tilde{A}_{0^{*}}=\tilde{A}^{p}$ over $\tilde{M}(\overline{\varphi}^{p});\overline{w}^{p}$ is generic on $\overline{\varphi}(\tilde{A})^{p}$ over $\tilde{M}(\overline{\varphi}^{p},\overline{v}_{1}^{p}, \cdots , \overline{v}_{a^{p}})$ . We see
easily that the following specialization holds.

(14) $(\chi, u_{1}, \cdots , u_{a}, w^{0})\rightarrow(\overline{\varphi}^{p},\overline{v}_{1}^{p}, \cdots , \overline{v}_{a^{p}},\overline{w}^{p})$ ref. $\mathfrak{p}$ .
As $M(\varphi, v_{1}, \cdot.. , v_{a}, w)$ and $M(\chi, u_{1}, \cdot.. , u_{a}, w^{\rho})$ are linearly disjoint over $M$, the
specialization (12) and (14) are compatible:

(16) $(\varphi, v_{1}, \cdots , v_{a}, w, \chi, u_{1}, \cdots , u_{a}, u^{\rho})\rightarrow(\overline{\varphi},\ell=_{)1}, \cdots , \overline{v}_{a},\overline{w},\overline{\varphi}^{p=p}v_{1}, \cdots,\overline{v}_{a^{p}},\overline{w}^{p})$ ref. $\mathfrak{p}$ .
Extend this to a place $\mathfrak{P}$ of $M(\varphi, v_{1}, \cdot., , v_{a}, w, \chi, u_{1}, \cdot.. , u_{a}, w^{\rho})$ . We can easily
verify $\xi^{p}\circ\lambda_{0}\circ\xi^{=1}=\chi\circ\eta_{0}\circ\lambda_{0}\circ\varphi^{-1}+const.$ , so that by (16) and v) of Proposi-
tion 5.4,

(17) $\mathfrak{P}(\xi^{0}\circ\lambda_{0}\circ\xi^{-1})=\overline{\varphi}^{p}\circ\pi\circ\overline{\varphi}^{-1}=the$ p-th power homomorphism of $\mathfrak{P}(B)$ .
Put $\mathfrak{P}(z)=\overline{z}$ . We have then
(18) $T(\overline{\varphi},\overline{v}_{1}, \cdots,\overline{v}_{d})=\overline{z}$ .
By the definition of $T$, we have $\overline{z}=c(\mathfrak{P}(B))\times\cdots$ , so that $\mathfrak{P}(B)$ is defined over
$\tilde{Q}(\overline{z})$ if we leave the structure of abelian variety out of consideration. Now
by (13), (16), (18),

$\mathfrak{P}(z^{p})=\mathfrak{P}(T(\chi, u_{1}, \cdots, u_{d}))=T(\overline{\varphi}^{pp\ldots=}\overline{v}_{1},,\iota_{a^{p}})=\overline{z}^{p}$ .
Hence
(19) $\mathfrak{P}(z, \iota\iota’’ z^{\rho}, w^{\rho})=(\overline{z},\overline{w},\overline{z}^{p},\overline{w}^{p})$ .
Put $f=c(\mathscr{Z}(A, \theta)),$ $f=p(f)$ . We have then $f^{p}=c(\mathcal{J}(A_{0}, \theta_{0})),$ $p(f^{\rho})=f^{p}$ by (11).

By our assumption P3) and P4), $\tilde{f}$ is a generic point of $\tilde{U}$ over $\tilde{Q}=Z/pZ$. By
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(18), $\overline{z}$ is generic on $\Delta^{\sigma}(\tilde{A},\tilde{\theta})$ over $\tilde{M}$, and hence over $\tilde{Q}(f)$ ; and $\overline{w}$ is generic
on $\overline{\varphi}(\tilde{A})=\mathfrak{P}(B)$ over $\tilde{M}(\overline{z})$ , and hence over $\tilde{Q}(\tilde{f},\tilde{z})$ . Therefore, by Lemma $R_{r}$

the specialization
$(f, z, w)\rightarrow(\tilde{f},\overline{z},\overline{w})$ ref. $p$

determines a place $\mathfrak{P}_{1}$ of $K(z, w)$ . We see then easily that the specialization
$(f^{\rho}, z^{p}, w^{\rho})\rightarrow(f^{p=p}z,\overline{w}^{p})$ ref. $p$

determines a place $\mathfrak{P}_{2}$ of $K^{p}(z^{\rho}, w^{p})$ , satisfying $\mathfrak{P}_{2}(a^{p})=\mathfrak{P}_{1}(a)^{p}$ for every $a\in K(z, w)$ .
Now, by (19), $\mathfrak{P}=\mathfrak{P}_{1}$ on $K(z, w)$ and $\mathfrak{P}=\mathfrak{P}_{2}$ on $K^{\rho}(z^{0}, w^{0})$ ; hence, we have, for
every $a\in K(z, w)$ ,

(20) $\mathfrak{P}(a^{0})=\mathfrak{P}(a)^{p}$ .
Since $V$ is defined over $K$, we have, by (20),

$\mathfrak{P}(V_{0})=\mathfrak{P}(V^{\rho})=\mathfrak{P}(V)^{p}$ .
Put $g=h\circ\xi^{-1}$ . By Proposition 2.2, (V, $g$) is a normalized Kummer variety of
$9^{\prime}$ ; and by the property (K2) of normalized Kummer variety, $g$ is defined
over $K(z, u’)$ since 9’ is defined over $K(z, w)$ . By the assumption P6), $g$ is
everywhere defined on $\mathfrak{P}(B)$ ; and by (20), we have

(21) $\mathfrak{P}(g^{0})=\mathfrak{P}(g)^{p}$ .
Therefore, if $t$ is a point on $A$ , rational over $k$ , we have, by (17) and (21),

$p(h_{0}(\lambda_{0}t))=\mathfrak{P}(h^{o}(\lambda_{0}t))=\mathfrak{P}(g^{\cap}(\xi^{\rho}\lambda_{0}\xi^{-1}\xi t))=\tilde{g}^{p}((\tilde{\xi}\tilde{t})^{p})=\tilde{g}(\tilde{\xi}\tilde{t})^{p}=p(h(t))^{p}$ .
This proves the third equality of Theorem 3. Consider now $9_{i}^{)}$ for $i>0$ . Fix
an $i>0$ and put $\sigma=\rho_{i}$ . By the same argument as above, we extend $\sigma$ to
$L=k(\varphi, v_{1}, \cdots , v_{a}, w)$ suitably and find an extension $\mathfrak{Q}$ of $p$ in $LL^{\sigma}$ such that:
i) $B$ and $B^{\sigma}$ are without defect for $\mathfrak{Q}$ ; ii) $\mathfrak{O}(\xi\circ\mu_{i}\circ(\xi^{\sigma})^{-1})=the$ p-th power
homomorphism of $\mathfrak{Q}(B^{\sigma})$ ; iii) $\mathfrak{O}(g^{\sigma})=\mathfrak{Q}(g)^{1/p}$ . Then, for every point $t$ on $A$,
rational over $k$, putting $s=\xi^{\sigma}\lambda_{i}t$, we obtain

$h(pt)=h(\mu_{i}\lambda_{i}t)=g(\xi\mu_{i}(\xi^{\sigma})^{-1}s)$ ,

so that
$p(h(pt))=\mathfrak{Q}(g(\xi\mu_{i}(\xi^{\sigma})^{-1}s))=\mathfrak{Q}(g^{\sigma}(s))^{p}=\mathfrak{Q}(h^{\sigma}((\xi^{\sigma})^{-1}s))^{p}=p(h_{i}(\lambda_{i}l))^{p}$ .

This proves the fourth equality of Theorem 3 and completes the proof.
5.5. Congruence-relations. Fix an integral two-sided o-ideal $\mathfrak{a}$ . We take

a field $k_{0}$ of \S 5.2 so that the points in $\mathfrak{g}(\mathfrak{a}, A)$ are rational over $k_{0}$ . Put
$b=c(9^{i}(y))\times h(t_{1})\times\cdots\times h(t_{m})$ ,

where $t_{1},$ $\cdots$ , $t_{m}$ are the points in $\mathfrak{g}(\mathfrak{a}, A)$ . Let $F$ be the algebraic closure of
$Q$ in $K_{\alpha,y}$ ; and let $\mathfrak{B}$ be the locus of $b$ over $F$. Then, for almost all $p$ , the
following assertions hold.

P7) $\mathfrak{B}$ is $p_{0}$-simple.
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P8) $p_{0}(b)$ is generic on $p_{0}(\mathfrak{B})$ over $p_{0}(F)$ .
Now let $\sigma_{i}$ , for $0\leqq i\leqq p$, be the isomorphisms of $K_{\mathfrak{a},y}$ onto $K_{\mathfrak{a},y_{\dot{t}}}$ , determined
by Proposition 4.4 for the ideals $q_{i}$ of \S 5.3. Let $\tau_{p}$ be the automorphism of
$K_{a,y}$ over $K_{1,y}$ corresponding to the element $p$ of $G_{\mathfrak{a}}$ . By Theorem 3, if $p$

satisfies $P1\sim 6$) and is prime to $d(\Phi)a$ , we have

(22) $p(b^{\sigma_{0}})=p(b)^{p}$ , $p(b^{\sigma_{i}})=p(b^{\tau_{p}})^{1/p}$ $(i>0)$ .
Let $p_{1}$ be the restriction of $p$ on $F$. If $p$ satisfies P7, 8), then, by Lemma $R$ ,

the specialization
$b\rightarrow p(b)$ ref. $p_{1}$

determines a place of $F(b)=K_{\mathfrak{a}_{y}},$ ; and the specializations

$b^{\sigma}\cdot\rightarrow p(b)^{p}$ , $b^{\sigma_{\dot{x}}}\rightarrow p(b^{-}p)^{1/p}$ ref. $p_{1}$

determine respectively places on $K_{\mathfrak{a}_{yo}}$, and on $K_{\mathfrak{a},yi}$ . These places are of course
restrictions of the place $p$ . Therefore, we observe that, if $p$ satisfies $P1\sim 8$)

and is prime to $d(\Phi)\mathfrak{a}$ ,

(23) $p(a^{\sigma_{0}})=p(a)^{p}$ , $p(a^{\sigma_{i}})=p(a^{\tau_{p}})^{1/p}$ $(i>0)$

hold for every $ a\in K_{\mathfrak{a}_{y}},\cdot$

Let $L$ be a subfield of $K_{\alpha}$ satisfying (29) of \S 4.3 and $\{\mathfrak{C}, u\}$ a model of $L$ .
For almost all $p$, the following assertions hold.

P9) $\mathfrak{C}$ is $p$-simple and $p(\mathfrak{C})$ has no multiple point.
P10) $p_{0}(u)$ is a generic point of $p(\mathfrak{C})$ over $Z/pZ$.

Let $p$ be a prime number which satisfies $P1\sim 10$) and is prime to $d(\Phi)\mathfrak{a}$ . Let
$q$ be an integral left o-ideal such that $N(q)=p$ and $X_{0}$ the modular corre-
spondence on $\mathfrak{C}$ associated with $q$ (cf. \S 4.3). Now we want to consider the
reduction of $X_{q}$ modulo $p$ . As $\mathfrak{C}$ is defined over $Q,\tilde{\mathfrak{C}}$ is defined over $Z/pZ$.
Let $\Pi$ and $\Pi^{\prime}$ be respectively the loci of $\tilde{u}\times\tilde{u}^{p}$ and of $\tilde{u}^{p}\times\tilde{u}$ on $\tilde{\mathfrak{C}}\times\tilde{\mathfrak{C}}$ over
$Z/pZ$. The relation (23) shows

$p(u^{\sigma_{0}})=p(u)^{p}$ , $p(u^{\sigma_{i}})=p(u^{\tau_{p}})^{1/p}$ $(i>0)$ ,

so that, by (30) of \S 4.3 and by [21, Theorem 19], we have
$\tilde{X}_{\mathfrak{q}}(\tilde{u})=\tilde{u}^{p}+p\tilde{Y}_{p}(\tilde{u})^{1/p}=\Pi(\tilde{u})+\Pi^{\prime}\circ\tilde{Y}_{p}(\tilde{u})$ .

It follows that $\tilde{X}_{q}-(\Pi+\Pi^{\prime}\circ\tilde{Y}_{p})$ is of the form $e\times\tilde{\mathfrak{C}}$, where $\epsilon$ is a divisor on
$\tilde{\mathfrak{C}}$. Since $\Pi+\Pi^{\gamma}\circ\tilde{Y}^{p}$ has no component of the form $e\times\tilde{\mathfrak{C}}$, we conclude that
$e>0$ . On the other hand, we have

$d^{\prime}(\tilde{X}_{q})=d^{f}(X_{\mathfrak{q}})=p+1=d^{\prime}(\Pi+\Pi^{\prime}\circ Y_{p})$ ;

so we must have $e=0$ . Thus we have proved:
THEOREM 4. Notations being as above, let $p$ be a prime number which satis-

fies $P1\sim 10$) and $i\dot{s}$ prime to $d(\Phi)\mathfrak{a}$ . Then $\iota ve$ have
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$\tilde{X}_{q}=\Pi+\Pi^{\prime}\circ\tilde{Y}_{p}$

on the reduction $\tilde{\mathfrak{C}}$ of the curve $\mathfrak{C}$ modulo $p$ .
Now suppose that $\mathfrak{a}$ is prime to $d(\Phi)$ ; let $L_{N}$ be the subfield of $K_{\alpha,y}$ given

in \S 4.3, and $\{\mathfrak{C}_{N}, u\}$ a model of $L_{N}$ . Notations being as in Proposition 4.8.
consider the case $n=p$ . We observe then $\tilde{Z}^{p}\circ\tilde{Y}_{p}=\tilde{Z}$, so that

$\tilde{Z}^{\prime}\circ\Pi^{\gamma}\circ\tilde{Z}=\tilde{Z}^{\prime}\circ\Pi^{\gamma}\circ\tilde{Z}^{p}\circ\tilde{Y}_{p}=\tilde{Z}^{\prime}\circ\tilde{Z}\circ\Pi^{\prime}\circ\tilde{Y}_{p}=\Pi^{\prime}0\tilde{Y}_{p}$ .

We obtain thus:
THEOREM 5. Notations being as above, we have

$\Pi^{\prime}0\tilde{Y}_{p}=\tilde{Z}^{\prime}\circ\Pi^{\gamma}\circ\tilde{Z}$

on $\tilde{\mathfrak{C}}_{N}$ .
5.6. Let $J_{N}$ be a jacobian variety of $\mathfrak{C}_{N}$ , and $\varphi$ a canonical mapping of

$\mathfrak{C}_{N}$ onto $]_{N}$ . As $\mathfrak{C}_{N}$ is defined over $Q$ , we may assume that $J_{N}$ is defined over
$ Q;\varphi$ may not be defined over $Q$ ; but we may assume that $\varphi^{\sigma}=\varphi+const$ . for
any isomorphism $\sigma$ over $Q$ . Every correspondence $X$ on $\mathfrak{C}_{N}$ determines an
endomorphism $\xi$ of $J_{N}$ by the relations

$X(x)=\sum_{\nu}x_{\nu}$ , $\xi(\varphi(x))=\sum_{\nu}\varphi(x_{v})+const$ .

(cf. [29, no. 43]). We see easily that $\xi$ is defined over any field of definition
for $X$. Let $\xi_{p},$

$\eta_{p},$
$\zeta$ be the endomorphisms of $J_{N}$ determined by $X_{\dagger},$ $Y_{p},$ $Z$,

respectively. Now $J_{N}$ is without defect for almost all $p$, and $\tilde{J}_{N}$ is a jacobian
variety of $\tilde{\mathfrak{C}}_{N}$ ; more precisely, as remarked by Igusa, Chow’s construction of
jacobian is compatible with the specialization; so we may assume that $J_{N}$ is
without defect and $\tilde{J}_{N}$ is a jacobian variety of $\mathfrak{C}_{N}\sim$ for every prime $p$ satis-
fying P9). Let $\pi$ be the p-th power endomorphism $of.\tilde{\Gamma}_{N}$ and $\pi^{\prime}=p_{\tau\pi^{-1}}$ . Then,
Theorems 4 and 5 yield the relations

(24) $\tilde{\xi}_{p}=\pi+\pi^{\prime}\circ\eta\sim_{p}$ ,

(25) $\pi^{\prime\sim}\circ\eta_{p}=\zeta^{-1}\sim\circ\pi^{\prime}\circ\zeta\sim$ .

\S 6. The zeta-functions of algebraic curves.

6.1. Transference to the upper half plane. Let $\mathfrak{a}=No$ be an integral
two-sided o-ideal which is prime to $d(\Phi)$ . $\Gamma_{N}$ being as in \S 1.3, let $ff_{N}$ denote
the field of automorphic functions with respect to $\Gamma_{N}$ . Put

$\mathfrak{F}_{N}=Q(f_{i}(z), g_{j}(N^{-1}\beta, z)|1\leqq i\leqq m, 1\leqq j\leqq M, \beta\in 0)$ ,

where the $f_{i}$ and the $g_{j}$ are the functions determined by (3) of \S 3.1 and (4)

of \S 3.2. We have seen that $C\mathfrak{F}_{N}=P_{N}$ ; and if $y$ is sufficiently generic, the
mapping $f(z)\rightarrow f(y)$ gives an isomorphism of $\mathfrak{F}_{N}$ onto $ K_{a_{V}},\cdot$ Let $\mathfrak{L}_{N}$ be the
subfield of $\mathfrak{F}_{N}$ corresponding to the subfield $L_{N}$ of $K_{a.y}$ . We have then
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$\mathfrak{L}_{N}(\zeta_{N})=\mathfrak{F}_{N}$ , $c_{\lambda_{\sim N}^{7}=ff_{N}}$ ,

where $\zeta_{N}$ is a primitive N-th root of unity. For every $f\in \mathfrak{F}_{N}$ , define a func-
tion $f_{1}$ on $\mathfrak{C}_{N}$ by $f_{1}(u)=f(y)$ . Identifying $f_{1}$ with $f,$ $\mathfrak{L}_{N}$ is regarded as the
field of functions on the curve $\mathfrak{C}_{N}$ defined over $Q$ ; and then $R_{N}$ is identified
with the field of functions on $\mathfrak{C}_{N}$, the universal domain being $C$.

Let $\alpha$ be an element of $0$ such that $N(\alpha)>0$ ; suppose that $\alpha$ is prime to
$N$. Let the notations be as in Propositions 4.3 and 4.4. Consider the coordi-
nates of the points $c(\mathscr{Z}(y))$ and $h_{y}(\theta(\beta)t)$ for $t=\Lambda(N^{-1}e(y), y)$ . We see easily
that

$f_{j}(y)^{\sigma_{\nu}}=f_{j}(\alpha_{\nu}[y])$ , $g_{j}(N^{-1}\beta, y)^{\sigma_{\nu}}=g_{j}(N^{-1}\beta\alpha_{\nu}^{\prime}, \alpha_{\nu}[y])$ ,

where the $\alpha_{v}$ are representatives for $\Gamma_{N}\backslash \Gamma_{N}\alpha\Gamma_{N}$ ; namely we have

$\Gamma_{N}\alpha\Gamma_{N}=\bigcup_{\nu=1}^{m}\Gamma_{N}\alpha_{\nu}$ .
As $\alpha_{\nu}^{\prime}\equiv\alpha^{\prime}$ $mod$ . No, we have $g_{j}(N^{-1}\beta a_{v}^{\prime}, \alpha_{\nu}[y])=g_{j}(N^{=1}\beta\alpha^{\prime}, \alpha_{\nu}[y])$ . By
Theorem 2 of \S 4.1, there exists an automorphism $\rho$ of $\mathfrak{F}_{N}$ over $\mathfrak{F}_{1}$ defined by
$g_{j}(N^{-1}\beta, z)^{0}=g_{j}(N^{-1}\beta\alpha^{\prime}, z)$ . Then, for every $f\in \mathfrak{F}_{N}$,

(1) $f(y)^{\sigma_{\nu}}=f^{o}(\alpha_{\nu}[y])$ .
Now define an isomorphism $\sigma_{\nu}$ of $\mathfrak{F}_{N}$ by

$f^{\sigma_{\nu}}(z)=f^{0}(a_{\nu}[z])$ .
Then, (1) shows, for every $f\in \mathfrak{F}_{N}$

(2) $f^{\sigma_{\nu}}(y)=f(y)^{\sigma_{\nu}}$ .
Now fix an isomorphism of $0/No$ onto $M_{2}(Z/NZ)$ and define with respect to
this isomorphism the set $\Delta_{a^{*}}$ of \S 1.4 and the field $L_{N}$ of \S 4.3. Then, if $\alpha\in\Delta_{\mathfrak{a}^{*}}$ ,

the automorphism $\rho$ is the identity on $\mathfrak{L}_{N}$ ; hence, for every $f\in \mathfrak{L}_{N}$,

$f^{\sigma_{\nu}}(z)=f(\alpha_{\nu}[z])$ .
If we denote by the prime the derivation with respect to $z$ , we obtain

$(f^{\sigma_{\nu}})^{\prime}(z)=f^{\prime}(\alpha_{\nu}[z])j(\alpha_{\nu}, z)^{-2}N(\alpha)$ .
New let $gdf$ be a differential form on $\mathfrak{C}_{N}$ of the first kind, $f$ and $g$ being
$elements$ of $R_{N}$ ; $g(z)f^{\prime}(z)$ is then a cusp-form of degree 2 with respect to
$\Gamma_{N}$ , namely, $f(z)g^{\prime}(z)\in S_{2}(\Gamma_{N})$ . Conversely, every element of $S_{2}(\Gamma_{N})$ is obtained
in this manner. If $f$ and $g$ are contained in $\mathfrak{L}_{N}$ , we have

(3) $gf^{\prime}|(\Gamma_{N}\alpha\Gamma_{N})_{2}=N(\alpha)\sum_{\nu}g(\alpha\backslash ’[z])f^{\prime}(\alpha_{v}[z])j(\alpha_{\nu}, z)^{-2}=\sum_{\nu}g^{\sigma_{\nu}}(f^{\sigma_{\nu}})^{\prime}$ .
Let $9_{0}(\mathfrak{C}_{N})$ and $\mathscr{D}_{0}(J_{N})$ denote the sets of differential forms of the first kind,

of degree 1, on $\mathfrak{C}_{N}$ and $J_{N}$ , respectively. Then, $\varphi$ being a canonical mapping
of $\mathfrak{C}_{N}$ onto $J_{N},$ $\omega\rightarrow\omega\circ\varphi$ gives an isomorphism of $g_{0}(J_{N})$ onto $9_{0}(\mathfrak{C}_{N})$ . Put
$O2\circ\varphi=gdf$. Then, by (2), (3) and [25, \S 2.9, Proposition 9], we observe that
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$fg^{\prime}|(\Gamma_{N}\alpha\Gamma_{N})_{2}$ corresponds to $\omega\circ\xi\circ\varphi$ , where $\xi$ denotes the endomorphism of
$J_{N}$ determined by $X_{q}$ for $q=oa$ . Therefore, if we denote by $M^{d}(\xi)$ the repre-
sentation of $\xi\in d(J_{N})$ in $9_{0}(J_{N})$ , we have, for a suitable choice of bases,

$[(4)$ $M^{a}(\xi)=\mathfrak{T}_{2}(\Gamma_{N}\alpha\Gamma_{N})$ .

Let $\gamma$ be an element of $\Gamma$ such that $\gamma\equiv\left(\begin{array}{ll}p^{-1} & 0\\0 & p\end{array}\right)mod$ . $\mathfrak{a}$ . Let $\tau_{p}$ be the auto-
morphism of $\mathfrak{F}_{N}$ over $\mathfrak{F}_{1}$ defined by

$g_{j}(N^{-1}\beta, z)^{\tau_{P}}=g_{j}(N^{-1}\beta p, z)$ .
By Proposition 3.2 and by the definition of $L_{N}$ , we see easily

$f^{\tau_{p}}(z)=f(\gamma[z])$

for every $f\in \mathfrak{L}_{N}$ . It follows that $\Gamma_{N}\gamma\Gamma_{N}$ corresponds to $Y_{p}$ defined in \S 4.3;
and hence
$’(5)$ $M^{a}(\eta_{p})=\mathfrak{T}_{2}(\Gamma_{N}\gamma\Gamma_{N})=R_{2}(p;\mathfrak{a})$ ,

notations being as in \S 1.5.
6.2. The zeta-function of $\mathfrak{C}_{N}$ . Let $p$ be a prime number satisfying P9)

for $\mathfrak{C}=\mathfrak{C}_{N}$ . Denote by $\zeta(s, \mathfrak{C}_{N},p)$ the zeta-function of $p(\mathfrak{C}_{N})$ over $Z/pz$ ; we
have

$\zeta(s, \mathfrak{C}_{N},p)=\det[1-M_{l}(\underline{\pi}_{p})_{1}p_{-s}^{-s}(1-p^{-s})(1-p\overline{)}^{]_{-}}$

where $\pi_{p}$ is the p-th power endomorphism of $p(I_{N})$ and $M_{l}$ is an l-adic repre-
sentation of $d_{0}(\tilde{J}_{N})$ . Now the zeta-function of the algebraic curve $\mathfrak{C}_{N}$ over $Q$

$is$ defined by
$\zeta(s, \mathfrak{C}_{N})=\Pi^{\prime}\zeta(s, \mathfrak{C}_{N},p)$ ,

where the product is extended over all the prime numbers $p$ satisfying P9)

for $\mathfrak{C}=\mathfrak{C}_{N}$ . $U$ being an indeterminate, the relations (24) and (25) of \S 5.6 imply

(6) $ 1-\wedge/W_{l}(\xi_{p})U+M_{\iota}(\tilde{\eta}_{p})pU^{2}\sim=[1-M_{1}(\pi_{p})U][1-M_{l}(\zeta^{-1}\pi_{p}^{\prime}\zeta)U]\sim\sim$ .
By the same argument as in [22, \S 5], we obtain

$\det[1-M_{\iota}(\pi_{p})p^{-s}]=\det[1-M^{a}(\xi_{p})+M^{d}(\eta_{p})p^{1-2s}]$ .
By (4) and (5), the right hand side is equal to

$\det[1-\mathfrak{T}_{2}(p;\mathfrak{a})p^{-s}+R_{2}(p;\mathfrak{a})p^{1=2S}]$ .
Therefore we obtain the following result.

MAIN THEOREM. Let $\Phi$ be an indefinite quaternion algebra over $Q$ , and $0$ a
maximal order in $\Phi$ . Let $N$ be a positive integer which is prime to the discrimi-
nant of $\Phi$ , and $\Gamma_{N}$ be the group of units $\gamma$ of $0$ , with positive reduced norm,
satisfying $\gamma\equiv 1mod$ . No. Regarding $\Gamma_{N}$ as a Fuchsian group on the upper half
plane, we can find an algebraic curve $\mathfrak{C}_{N}$ defined over $Q$ , such that: the field of
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functions on $\mathfrak{C}_{N}$ is the field of automorphic functions with respecl to $\Gamma_{N}$ ; and
the zeta-function of $\mathfrak{C}_{N}$ over $Q$ is written in the form

$\zeta(s, \mathfrak{C}_{N})=f(s)\zeta(s)\zeta(s-1)D(s)^{-1}$ ,

$D(s)=\det[\sum_{(n.N)=1}\mathfrak{T}_{2}(n;No)n^{-s}]$ ,

$u’ heref(s)$ is a product of rational functions of $p^{-s}$ for a finite number ofprimes
$p,$ $\zeta(s)$ is Riemann’s zeta-function, and $\mathfrak{T}_{2}$( $n$ ; No) is a representation of a certain
algebraic correspondence by cusp-forms of degree 2 $u’ ith$ respect to $\Gamma_{N}$ , given in
\S 1.5.

By Theorem 1, and by Hecke’s theory in the case $\Phi=M_{2}(Q)$ , we can
conclude:

COROLLARY. The zeta-function of $\mathfrak{C}_{N}$ over $Q$ is meromorphic on the $u^{f}hole$

s-plane and satisfies a functional equation.
Our theorem is a generalization of the previous results of $[6, 22]$ , obtained

in the case where $\Phi=M_{2}(Q)$ .
The relation (24) together with the argument of [22, no. 20] gives also in

a general case the following result.2)

THEOREM 6. Notations and assumptions being as in Main Theorem, the
absolute values of the characteristic roots of $\mathfrak{T}_{2}$( $p$ ; No) do not exceed $2\sqrt{p}$ for
almost all prime numbers $p$ .

In the case $\Phi=M_{2}(Q)$ , a more precise result is obtained by Igusa [13].

6.3. Concluding remarks. I) We begin with an interpretation of the
congruence-relations. Let $l$ be a prime number and $\mathfrak{g}_{\iota}$ the set of points on

$J_{N}$ whose orders are powers of $l$ ; and let $k_{l}$ be the extension of $Q$ generated
by the coordinates of all $t\in \mathfrak{g}_{\iota}$ . We denote by $G_{\iota}$ the Galois group of $k_{i}$ over
$Q$ . Then, as every element of $G_{l}$ induces an automorphism of $\mathfrak{g}_{l}$ , we obtain a
representation $\mathfrak{M}_{t}$ of $G_{l}$ by matrices whose coefficients are l-adic integers.
Let $p$ be a prime number different from $l$ and $\mathfrak{p}$ its extension in $k_{l}$ ; let $\sigma_{\mathfrak{p}}$ be
a Frobenius substitution for $\mathfrak{p}/p$ . Then, as is shown in $[25, 27]$ , if $J_{N}$ is
without defect for $p$, then $p$ is unramified in $k_{l}$ ; and we obtain, for a suitable
choice of l-adic coordinates,

$\mathfrak{M}_{\iota}(\sigma_{\mathfrak{p}})=M_{\iota}(\pi_{p})$ ,

where $\pi_{p}$ is the p-th power endomorphism of $p(J_{N})$ . Hence $D(s)=\Pi\det[1-$

$M_{i}(\pi_{p})p^{-s}]^{-1}$ gives an analogue of Artin’s L-function for the infinite extension
$k_{l}$ of $Q$ . By (6) of \S 6.2, $trM(z.)^{n}$ is easily obtained from the trace of certain
modular correspondences. Therefore, if we know the trace of $\mathfrak{T}_{2}(\Gamma_{N}\alpha\Gamma_{N})$ , this
determines the characteristic polynomial of $\mathfrak{M}_{l}(\sigma_{\mathfrak{p}})$ ; and the former is obtained
by the trace-formula of Eichler and Selberg. Thus the congruence-relations,

2) In [22, no. 20], the relation (25) was needed. But this is not necessary; only
the relation (24) proves the inequality, in view of the relation $\eta_{p^{\prime}}\eta_{p}=1$ .



Zeta-functions of the algebraic curves 329

or the above main theorem, may be regarded as a reciprocity-law for the
extensions $k_{l}$ over $Q$, which are not necessarily abelian, even may be non-
solvable.

II) There are many systems of polarized abelian varieties whose moduli are
given by the automorphic functions with respect to some discontinuous groups.
Our method is certainly applicable to those systems. Even in the case of
dimension one, we have more Fuchsian groups, defined arithmetically, than
treated in the present paper. In fact, take an algebraic number field $k$ whose
conjugates are all real, and take a quaternion algebra $\mathfrak{A}$ over $k$ which is un-
ramified at exactly one infinite prime spot of $k$ . The unit-groups obtained
from $\mathfrak{A}$ in the same way as for $\Phi$ , yield also Fuchsian groups; and we can at-
tach to them certain analytic systems of abelian varieties. Some new difficulties
may arise in treating them; it is sure, however, that we can investigate in
detail the arithmetic of the curves uniformized by the automorphic functions
with respect to those groups, by using modular correspondences.

The theory of modular correspondences, with their congruence-relations,
is the only tool, which we know at present, to calculate the zeta-function of
algebraic curves in a certain degree of generality. This connection does not
seem accidental, though one may find another approach to it. Therefore, it
is important to determine the algebraic curves which are uniformized by
automorphic functions ” defined arithmetically ”. This would be a difficult
problem; but a recent work of Selberg [19] and Weil [33] suggest that one
may anticipate something in this direction.

III) The zeta-function of the curve $\mathfrak{C}_{N}$ is concerned only with the cusp-
forms of degree 2. Now, in [24], it was shown that, for each even degree $\kappa$ ,

we can define an abelian variety by means of the ” periods ” of certain
integrals attached to cusp-forms of degree $\kappa$ . This abelian variety admit
doubtlessly an algebro-geometric interpretation; and what arithmetic does it
dominate ? We can expect from this not only a solution of Ramanujan’s
conjecture but also something more interesting; and needless to say, a similar
problem in the case of automorphic forms with more than one variables is
no less important.

University of Tokyo.
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Added in proof. Theorem 1 of \S ] lacks the explicit form of functional
equation in the case $\mathfrak{a}\neq 0$ ; it is given only by (27), which includes terms of
the form ${\rm Re}(i^{k}f(z))$ . It is not difficult to make it into the form containing
only holomorphic functions; then a more explicit form can be obtained.
Furthermore, it is better to deal rather with the representations of $\mathfrak{G}_{\mathfrak{a}}$ than
with those of $C\triangleright_{\mathfrak{a}}$ . Thus, in this respect, the view-point of Godement [10]

will be a more appropriate one. The author would like to give a treatment
for this in a more general case on some occasion. Recently, in the case
$\Phi=M_{2}(Q)$ , the relation between Hecke’s Euler-product and Artin’s L-function
for the extension $\mathfrak{F}_{N}/\mathfrak{F}_{1}(\zeta_{N})$ is investigated in the paper: Rangachari, Modulare
Korrespondenzen und L-Reihen, J. Reine Angew. Math., 205 (1961), 119-155.
A similar consideration seems also meaningful in the case of division quater-
nion algebras.


	On the zeta-functions ...
	Introduction.
	\S 1. Analytic theory ...
	THEOREM 1. ...

	\S 2. Kummer varieties.
	\S 3. Automorphic functions ...
	\S 4. Algebro-geometric ...
	THEOREM 2. ...

	\S 5. Congruence-relations ...
	THEOREM 3. ...
	THEOREM 4. ...
	THEOREM 5. ...

	\S 6. The zeta-functions ...
	THEOREM 6. ...

	References


