Translator Disclaimer
June 2008 The polynomial and linear hierarchies in models where the weak pigeonhole principle fails
Leszek Aleksander Kołodziejczyk, Neil Thapen
J. Symbolic Logic 73(2): 578-592 (June 2008). DOI: 10.2178/jsl/1208359061

Abstract

We show, under the assumption that factoring is hard, that a model of PV exists in which the polynomial hierarchy does not collapse to the linear hierarchy; that a model of S21 exists in which NP is not in the second level of the linear hierarchy; and that a model of S21 exists in which the polynomial hierarchy collapses to the linear hierarchy.

Our methods are model-theoretic. We use the assumption about factoring to get a model in which the weak pigeonhole principle fails in a certain way, and then work with this failure to obtain our results.

As a corollary of one of the proofs, we also show that in S21 the failure of WPHP (for Σb1 definable relations) implies that the strict version of PH does not collapse to a finite level.

Citation

Download Citation

Leszek Aleksander Kołodziejczyk. Neil Thapen. "The polynomial and linear hierarchies in models where the weak pigeonhole principle fails." J. Symbolic Logic 73 (2) 578 - 592, June 2008. https://doi.org/10.2178/jsl/1208359061

Information

Published: June 2008
First available in Project Euclid: 16 April 2008

zbMATH: 1141.03012
MathSciNet: MR2414466
Digital Object Identifier: 10.2178/jsl/1208359061

Rights: Copyright © 2008 Association for Symbolic Logic

JOURNAL ARTICLE
15 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.73 • No. 2 • June 2008
Back to Top