March 2007 Combinatorial principles weaker than Ramsey's Theorem for pairs
Denis R. Hirschfeldt, Richard A. Shore
J. Symbolic Logic 72(1): 171-206 (March 2007). DOI: 10.2178/jsl/1174668391

Abstract

We investigate the complexity of various combinatorial theorems about linear and partial orders, from the points of view of computability theory and reverse mathematics. We focus in particular on the principles ADS (Ascending or Descending Sequence), which states that every infinite linear order has either an infinite descending sequence or an infinite ascending sequence, and CAC (Chain-AntiChain), which states that every infinite partial order has either an infinite chain or an infinite antichain. It is well-known that Ramsey's Theorem for pairs (RT₂²) splits into a stable version (SRT₂²) and a cohesive principle (COH). We show that the same is true of ADS and CAC, and that in their cases the stable versions are strictly weaker than the full ones (which is not known to be the case for RT₂² and SRT₂²). We also analyze the relationships between these principles and other systems and principles previously studied by reverse mathematics, such as WKL₀, DNR, and BΣ₂. We show, for instance, that WKL₀ is incomparable with all of the systems we study. We also prove computability-theoretic and conservation results for them. Among these results are a strengthening of the fact, proved by Cholak, Jockusch, and Slaman, that COH is Π₁¹-conservative over the base system RCA₀. We also prove that CAC does not imply DNR which, combined with a recent result of Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and Slaman, shows that CAC does not imply SRT₂² (and so does not imply RT₂²). This answers a question of Cholak, Jockusch, and Slaman. Our proofs suggest that the essential distinction between ADS and CAC on the one hand and RT₂² on the other is that the colorings needed for our analysis are in some way transitive. We formalize this intuition as the notions of transitive and semitransitive colorings and show that the existence of homogeneous sets for such colorings is equivalent to ADS and CAC, respectively. We finish with several open questions.

Citation

Download Citation

Denis R. Hirschfeldt. Richard A. Shore. "Combinatorial principles weaker than Ramsey's Theorem for pairs." J. Symbolic Logic 72 (1) 171 - 206, March 2007. https://doi.org/10.2178/jsl/1174668391

Information

Published: March 2007
First available in Project Euclid: 23 March 2007

zbMATH: 1118.03055
MathSciNet: MR2298478
Digital Object Identifier: 10.2178/jsl/1174668391

Rights: Copyright © 2007 Association for Symbolic Logic

JOURNAL ARTICLE
36 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.72 • No. 1 • March 2007
Back to Top