December 2006 Every 1-generic computes a properly 1-generic
Barbara F. Csima, Rod Downey, Noam Greenberg, Denis R. Hirschfeldt, Joseph S. Miller
J. Symbolic Logic 71(4): 1385-1393 (December 2006). DOI: 10.2178/jsl/1164060461

Abstract

A real is called properly n-generic if it is n-generic but not n+1-generic. We show that every 1-generic real computes a properly 1-generic real. On the other hand, if m > n ≥ 2 then an m-generic real cannot compute a properly n-generic real.

Citation

Download Citation

Barbara F. Csima. Rod Downey. Noam Greenberg. Denis R. Hirschfeldt. Joseph S. Miller. "Every 1-generic computes a properly 1-generic." J. Symbolic Logic 71 (4) 1385 - 1393, December 2006. https://doi.org/10.2178/jsl/1164060461

Information

Published: December 2006
First available in Project Euclid: 20 November 2006

zbMATH: 1117.03052
MathSciNet: MR2275865
Digital Object Identifier: 10.2178/jsl/1164060461

Rights: Copyright © 2006 Association for Symbolic Logic

JOURNAL ARTICLE
9 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

Vol.71 • No. 4 • December 2006
Back to Top