Translator Disclaimer
December 2002 Finitude simple et structures o-minimales (Finiteness property implies o-minimality)
Jean-Marie Lion
J. Symbolic Logic 67(4): 1616-1622 (December 2002). DOI: 10.2178/jsl/1190150303

Abstract

L’objet de ce texte est de montrer que des fonctions qui appartiennent à une famille vérifiant une propriété de finitude a priori non uniforme sont en fait définissables dans une structure o-minimale.

We consider a family of differential algebras of real functions on real euclidean spaces, stable under right composition by affine maps. We prove that under a weak finiteness property, there is an o-minimal expansion of the ordered field of real numbers in which all these functions are definable.

Citation

Download Citation

Jean-Marie Lion. "Finitude simple et structures o-minimales (Finiteness property implies o-minimality)." J. Symbolic Logic 67 (4) 1616 - 1622, December 2002. https://doi.org/10.2178/jsl/1190150303

Information

Published: December 2002
First available in Project Euclid: 18 September 2007

zbMATH: 1042.03030
MathSciNet: MR1955657
Digital Object Identifier: 10.2178/jsl/1190150303

Subjects:
Primary: 14P15
Secondary: 03C64 , 32B20

Rights: Copyright © 2002 Association for Symbolic Logic

JOURNAL ARTICLE
7 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.67 • No. 4 • December 2002
Back to Top